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Abstract
Schizophrenia (SCZ) is associated with an increased risk of violence compared to the general population. Previous studies 
have indicated smaller hippocampal and amygdala volumes in violent than non-violent psychotic  patients. However, little is 
known about volumetric differences at the subdivision level of these structures. In the present study, hippocampal subfields 
and amygdala nuclei volumes were estimated with FreeSurfer from 3 T MRI of SCZ patients with (SCZ-V, n = 24) and 
without (SCZ-NV, n = 51) a history of severe violence and 90 healthy controls (HC). Volumetric differences between groups 
were explored with a general linear model covarying for confounders, in addition to follow-up analyses in patient groups 
controlling for clinical characteristics such as antipsychotic medication, duration of illness and illicit substance use. SCZ-V 
had smaller total hippocampal volume and smaller CA1, HATA, fimbria, and molecular layer of DG volumes compared to 
HC. Total amygdala volume together with basal nucleus, accessory basal nucleus, CTA, and paralaminar nucleus volumes 
were smaller in SCZ-V compared to HC. In SCZ-NV, compared to HC, the observed smaller volumes were limited to basal 
and paralaminar nucleus. There were no significant differences in hippocampal subfield and amygdala nuclei volumes between 
SCZ-V and SCZ-NV. Follow-up analyses showed that the results in patient groups were not affected by clinical characteristics. 
The results suggest that smaller hippocampal subfield and amygdala nuclei volumes may be relevant to violence risk in SCZ. 
However, the neurobiological signature of violence in SCZ should be further investigated in larger cohorts.
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Introduction

Violence in persons with schizophrenia (SCZ) constitutes 
a significant public health concern and contributes to the 
major stigma associated with mental illness. Epidemiolog-
ical studies indicate that SCZ patients are at an increased 
risk of committing violent acts compared to the general 
population [1–4]. A large population-based study from 
Sweden estimated that one of ten male SCZ patients will 
be convicted for a violent offence within 5 years from the 
initial diagnosis [5]. Importantly, aggression and violence 
in SCZ are associated with different, though phenomeno-
logically correlated factors including low socio-economic 
status, substance abuse and other psychopathological 
comorbidities [6]. Furthermore, aggression can be con-
ceptualized in a dimensional manner on an axis where 
proactive and reactive forms coexist and influence each 
other [7]. Additionally, violent behavior in SCZ has been 
associated with exacerbating delusions during the states 
of acute psychosis [8, 9]. Bearing in mind the complexity 
of violence in SCZ, mapping its neurobiological signature 
represents an indispensable step towards improvement in 
therapeutic strategies and preventive measures.

Structural MRI (sMRI) studies of the brain consistently 
indicate SCZ to be associated with volume reductions 
in multiple cortical regions and subcortical structures, 
including the hippocampus and the amygdala [10–14]. It 
has been hypothesized that SCZ patients with a history 
of violence (SCZ-V) may be characterized by specific 
morphological brain abnormalities (e.g. lower volumes 
of prefrontal and temporal regions) distinguishing them 
from SCZ patients with no history of violence (SCZ-NV) 
[15, 16]. Smaller amygdala and hippocampal volumes 
have been associated not only with SCZ in general, but 
also with violence in SCZ in particular [17], emphasiz-
ing the role of these structures in emotional processing 
and impulse control. However, previous studies produced 
somewhat inconsistent results in SCZ-V, ranging from 
smaller hippocampal and/or amygdala volumes [18–20], 
no significant volumetric differences [21], to lower volume 
of hippocampus and increased volume of amygdala when 
compared to SCZ-NV [15].

Importantly, the hippocampus and the amygdala are not 
homogenous structures as both consist of morphologically 
differentiated subfields/nuclei subserving distinct func-
tions. Owing to a tremendous progress in MRI data acqui-
sition and analysis, it is now possible to interrogate them 
in vivo on a subdivision level [22–24]. The hippocampus 
is a C-shaped bilateral gray matter structure embedded in 
the temporal lobe. Histologically, it consists of the cornu 
ammonis (CA1–CA3), the dentate gyrus (DG, including 
a polymorphous CA4 layer), presubiculum, subiculum, 

and fimbria [25, 26]. Apart from its key role in learning, 
episodic and spatial memory, hippocampus is involved 
in a plethora of other behaviors and functions [27, 28]. 
Specifically, it plays a role in affect regulation and has 
been implicated in the processing of social emotions [29]. 
A recent meta-analysis [30] showed significant volume 
reductions in all investigated hippocampal subfields in 
SCZ when compared to HC. Furthermore, decreased vol-
umes of CA1 have been associated with positive symptoms 
[31], whereas smaller subiculum volumes have been linked 
to negative symptoms [11]. The hypothetical involvement 
of specific hippocampal subfields in violence in psychotic 
offenders or associations between volumetric changes on 
the subfield level in relation to interpersonal aggression 
in psychiatric populations have not yet been addressed.

In contrast, more attention has been given to the unique 
relationship between the anatomical subdivisions of the 
amygdala and aggression. This almond-shaped structure is 
anatomically divided into three nuclear complexes including 
the basolateral complex (lateral, basal, and accessory basal 
nuclei), the central complex (central and medial nuclei) and 
the superficial nuclei (including cortico-amygdaloid transi-
tion zone) [32, 33]. The amygdaloid complex receives mul-
timodal inputs and plays a pivotal role in both integration 
of motivationally salient stimuli and subsequent transmis-
sion of this information to a wide range of cortical and sub-
cortical regions [34]. The lateral nucleus of the basolateral 
complex is viewed as a sensory input gateway, whereas the 
central nucleus is thought to serve the output role for innate 
emotional responses [7].

Evidence from studies on rodents and non-human pri-
mates indicates that the nuclei of the amygdala play different 
roles in aggression, with central and medial amygdala being 
particularly important for aggression [35–37]. Additionally, 
human studies showed that the dorsal (central complex) and 
the ventral (basolateral complex) components of the amyg-
dala are volumetrically differently associated with aggres-
sion and impulsivity in psychiatric populations [38] and with 
reactive aggression in non-psychotic populations [39].

As outlined above, the overwhelming majority of sMRI 
studies investigated the role of the hippocampus and the 
amygdala in aggression by treating these structures as 
homogenous, without further parcellation. To our best 
knowledge, there have been no previous studies mapping 
volumetric changes in the hippocampus and the amygdala at 
the subdivision level in SCZ-V. Such a detailed interrogation 
may bring us closer to elucidating neurobiological mecha-
nisms underpinning violence in SCZ.

In the current study, we applied a robust, automated par-
cellation method with a high level of segmentation accu-
racy [23, 24] to identify neurobiological correlates of trait 
violence (i.e. history of severe violent offending) in SCZ 
by simultaneously measuring volumes in hippocampal 
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subfields and nuclei of amygdala. We hypothesized that both 
SCZ groups would have global volume reductions in the 
hippocampus and the amygdala compared to HC, and that 
SCZ-V would have more pronounced volumetric decreases 
on the subfield and nuclei level than SCZ-NV. Based on the 
previous findings on aggression and amygdala subdivisions, 
we hypothesized the nuclei of the basolateral complex as 
well as central nuclei to be the most affected. Due to paucity 
of research on hippocampal subdivisions and aggression in 
general and in SZ, our investigation had an exploratory char-
acter aiming at a better understanding of this heterogenous 
structure in relation to violence in SCZ.

Methods

Sample

The subject sample (n = 165) consisted of SCZ-V (n = 24), 
SCZ-NV (n = 51), and HC (n = 90). The participants from 
SCZ-V group were recruited from high-security forensic 
psychiatric wards at Østfold Hospital and Oslo University 
Hospital, Norway. The SCZ-V group was comprised of 
patients with a Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV) diagnosis of paranoid SCZ (DSM-IV 
295.3, n = 19), undifferentiated SCZ (DSM-IV 295.9, n = 2) 
or residual SCZ (DSM-IV 295.6, n = 3), male/female ratio 
23/1. Inclusion criteria for this group were in addition to 
diagnosis, also history of murder or attempted murder as 
well as severe physical assault towards other people (includ-
ing sexual assaults) according to the MacArthur criteria [40]. 
The participants from the SCZ-NV group were recruited 
from four major psychiatric hospitals and their affiliated 
outpatient clinics that cover most of the population in Oslo, 
Norway. The SCZ-NV group consisted of sex-matched SCZ 
patients without previous history of interpersonal violence 
and with a corresponding diagnostic profile, that is paranoid 
SCZ (DSM-IV 295.3, n = 40), undifferentiated SCZ (DSM-
IV 295.9, n = 6), residual SCZ (DSM-IV 295.6, n = 4), and 
disorganized SCZ (DSM-IV 295.1, n = 1), male/female ratio 
50/1. The HC cohort (n = 90) matched for sex (male/female 
ratio 87/3) and within the same age range as SCZ patients 
was extracted from a larger HC group randomly selected 
from the national records. All participants in the study were 
obtained from the on-going multi-center TOP (thematically 
organized psychosis) study in Oslo, Norway. The inclusion 
criteria were age between 18 and 65 years, no head trauma 
leading to loss of consciousness, and the absence of previous 
or current somatic illness that might affect brain morphol-
ogy. Some of the SCZ-NV and HC subjects may have been 
included in the previous large MRI meta-analyses (compris-
ing over 4000 subjects) in the ENIGMA studies of whole 

hippocampal volumes in schizophrenia [12] and bipolar 
disorders [41].

The study was approved by the Norwegian Regional 
Committee for Medical Research Ethics and the Norwegian 
Data Inspectorate. Written informed consent was obtained 
from all participants in the study.

Clinical assessment

All patients were thoroughly assessed by trained psycholo-
gists and physicians. Clinical diagnoses were confirmed 
with the Structured Clinical Interview for DSM-IV axis I 
disorders (SCID-I) [42]. The SCZ-V had diagnostic evalu-
ation based on detailed medical records as well as foren-
sic reports. The diagnoses of SCZ-NV were confirmed by 
clinical interviews as well as supplementary information 
drawn from medical records. Psychosocial functioning was 
evaluated with the Global Assessment of Function (GAF) 
scale (split version). Affective symptoms were assessed with 
the Young Mania Rating Scale (YMRS) and the Calgary 
Depression Scale for Schizophrenia (CDSS). Alcohol and 
illicit substance use were evaluated with The Alcohol Use 
Disorders Identification Test (AUDIT) and The Drug Use 
Disorders Identification Test (DUDIT), respectively. Cur-
rent psychotic symptoms were rated using the Positive and 
Negative Syndrome Scale (PANSS) [43].

The SCZ samples included medicated (n = 69), unmedi-
cated (n = 4) patients as well as patients with missing medi-
cation status (n = 2). Defined daily dosages (DDD) of cur-
rent antipsychotic medication use were calculated in line 
with the guidelines from WHO (https ://www.whocc .no/
atc_ddd_index /).

The medical charts of SCZ-NV patients were carefully 
inspected to confirm/disconfirm absence of previous history 
of violence. This procedure encompassed thorough evalu-
ation of all study inclusion protocols which are based on 
comprehensive information obtained from medical records, 
including data from clinical journals and detailed interview 
with the patient. All patients in the SCZ-NV group who had 
scores above 4 on item G14 (poor impulse control, PANSS) 
were excluded from the study.

HC subjects were screened with the Primary Care Evalu-
ation of Mental Disorders (Prime-MD) questionnaire [44] 
and interviewed by trained clinical psychologists to confirm 
no history of psychiatric disorder.

MRI acquisition and processing

MRI data were acquired using two GE 3 T scanners due 
to a hardware upgrade. The MRI data obtained before the 
upgrade were collected on a 3 T GE Signa HDxt scan-
ner (GE Medical Systems, Milwaukee, WI, USA) using a 
standard 8-channel head coil at Oslo University Hospital, 
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Norway. T1-weighted volumes were acquired using a sagit-
tal 3D fast spoiled gradient echo (FSPGR) sequence with 
the following parameters: repetition time (TR) 7.8 ms, echo 
time (TE) 2.9 ms, flip angle 12°, slice thickness 1.2 mm, 
166 slices, field of view (FOV) 256 mm × 256 mm, acquisi-
tion matrix 256 × 192 mm, reconstructed in-plane resolution 
256 × 256 mm/pix. MRI data after the upgrade were col-
lected on a 3 T GE 750 Discovery scanner using a 32-chan-
nel head coil at Oslo University Hospital. T1-weighted vol-
umes were acquired using a sagittal 3D BRAVO sequence 
with the following parameters: repetition time (TR) 8.2 ms, 
echo time (TE) 3.2  ms, flip angle 12°, slice thickness 
1.0 mm, 192 slices, field of view (FOV) 256 mm × 256 mm. 
All MRI scans were evaluated by a neuroradiologist to 
ensure no brain pathology affecting the analyses.

Briefly, T1-weighted MRI volumes were pre-processed 
using the standard FreeSurfer recon-all pipeline (version 5.3) 
(https ://surfe r.nmr.mgh.harva rd.edu/). Hippocampal subfield 
and amygdala nuclei volume estimates were subsequently 

obtained by applying the hippocampal subfield segmenta-
tion algorithm released by FreeSurfer (version 6.0). This 
tool employs a probabilistic atlas based on Bayesian infer-
ence and created with ultra-high resolution ex vivo MRI 
data (~ 0.1–0.15 mm isotropic) to generate an automated 
segmentation of the hippocampus and the amygdala. Simul-
taneous parcellation of both structures ensures that they do 
not overlap and excludes the possibility that there are gaps 
between them [23, 24]. Hippocampal segmentation included 
12 subfields: the parasubiculum, presubiculum, subiculum, 
cornu ammonis fields 1, 2/3, and 4 (henceforth referred to 
as CA1, CA3, and CA4), granule cell layer of dentate gyrus 
(DG), hippocampal–amygdaloid transition area (HATA), 
fimbria (a white matter structure), the molecular layer of 
DG, hippocampal fissure, and the hippocampal tail. Nuclei 
of the amygdala included nine subdivisions: the lateral, basal 
and accessory basal, central, medial, cortical and parala-
minar nucleus, the anterior amygdaloid area as well as the 
cortico-amygdaloid transition area (CTA) (Fig. 1).

Fig. 1  Sagittal and coronal view 
of the FreeSurfer 6.0 hippocam-
pal subfield and amygdala 
nucleus segmentation. CA cornu 
ammonis, GC-DG granule cell 
layer of dentate gyrus, HATA  
hippocampal–amygdaloid tran-
sition area, ML molecular layer, 
ABN accessory basal nucleus, 
AAA  anterior amygdaloid area, 
CTA  cortico-amygdaloid transi-
tion area
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Statistical analyses

Demographics and clinical characteristics

Descriptive statistical analyses were performed using R 
(version 3.5.3, www.R-proje ct.org). The analysis of vari-
ance, Person’s Chi-squared or t test were applied to assess 
group differences on age, sex as well as psychometric 
measures, use of medication, alcohol and illicit substance 
use. All statistical tests were two tailed with statistical 
significance reported at the 0.05 level.

Volumetric analyses

All statistical analyses of volumetric MRI data were per-
formed with R (version 3.5.3, www.R-proje ct.org). 12 
hippocampal subfields and 9 nuclei of the amygdala were 
included in the subsequent analyses. Whole hippocampal 
volume was defined as the sum of all subfields minus the 
hippocampal fissure whereas whole amygdala volume was 
defined as the sum of all nuclei. The estimates of both 
hemispheres were summed together to reduce the number 
of analyses thus minimizing the multiple testing burden 
and increasing statistical power. Volumes of whole hip-
pocampus and whole amygdala were checked for outliers 
in all subjects and discarded from the analyses if larger 
than four standard deviations from the mean.

Primary analyses

Main effects of diagnostic group (SCZ-V, SCZ-NV and 
HC) on volumes (whole hippocampus together with 12 
hippocampal subfields as well as whole amygdala together 
with 9 amygdala nuclei) were tested using a general linear 
model (GLM) by creating 3 pairwise contrasts (SCZ-NV 
versus HC, SCZ-V versus HC, SCZ-V versus SCZ-NV) 
covarying for age,  age2, sex, intracranial volume (ICV), 
and scanning site. Effect sizes were calculated with 
Cohen’s d. All p values were adjusted for multiple com-
parisons with false discovery rate (FDR) [45].

Secondary analyses

We repeated our analyses in patient groups (SCZ-V and 
SCZ-NV) using the same GLM as in the primary analy-
sis and covarying for duration of illness, illicit substance 
use (DUDIT), and antipsychotic medication use (DDD) in 
three separate tests. All p values were adjusted for multiple 
comparisons with false discovery rate (FDR) [45].

Results

Clinical and demographic characteristics

Clinical and demographic statistics are summarized in 
Table 1. There was a significant main effect of group on 
age (F2,162 = 6.12, p = 0.002), education (F2,156 = 22.36, 
p = 0.001), and illicit substance abuse (F2,147 = 28.8, 
p = 0.001), with higher age in SCZ-V and HC compared to 
SCZ-NV, longer education in HC compared to both SCZ 
groups (HC > SCZ-NV > SCZ-V) and higher illicit substance 
use in SCZ-V compared to SCZ-NV and HC (SCZ-V > SCZ-
NV > HC). Additionally, SCZ-V had a significantly lower 
age at psychosis onset (t41 = 2.63, p = 0.011), lower age 
at first admission for psychosis (t39 = 2.64, p = 0.011) and 
longer duration of illness (t31 = − 3.51, p = 0.001) compared 
to SCZ-NV. There was also a significant difference in CDSS 
with SCZ-NV scoring higher compared to SCZ-V (t45 = 3.13, 
p = 0.002). Finally, there was a trend-significant difference 
in antipsychotic medication use between the patient groups 
with SCZ-NV having higher DDD than SCZ-V (t29 = -1.95, 
p = 0.06). There were no other significant differences on a 
group level for other demographic or clinical variables.

Volumetric analyses

Primary analyses

The results from the primary volumetric analyses are sum-
marized in Table 2 and visualized in Fig. 2. Violin plots 
showing distributions of the original brain volumes are 
shown in supplementary Fig. 1.

Pairwise comparisons showed that whole hippocam-
pal volume was significantly smaller in SCZ-V compared 
to HC (p = 0.02, d = − 0.664). On the subfield level, we 
found that CA1 (p = 0.009, d = − 0.712), HATA (p = 0.009, 
d = − 0.803), fimbria (p = 0.009, d = − 0.711), and molecu-
lar layer (p = 0.025, d = − 0.635) were significantly smaller, 
whereas hippocampal fissure (p = 0.009, d = 0.793) was sig-
nificantly larger in SCZ-V compared to HC. There were no 
significant volumetric differences for whole hippocampus/
hippocampal subfields for other pairwise comparisons.

Whole amygdala was significantly smaller in SCZ-V 
when compared to HC (p = 0.033, d = − 0.553). On the 
subdivision level, both SCZ-V and SCZ-NV had sig-
nificant volumetric decreases in basal nucleus (SCZ-V: 
p = 0.009, d = − 0.544; SCZ-NV: p = 0.046, d = − 0.571) 
and paralaminar nucleus (SCZ-V: p = 0.009, d = − 0.69; 
SCZ-NV: p = 0.046, d = − 0.545) compared to HC. Addi-
tionally, accessory basal nucleus (p = 0.033, d = − 0.544) 
and CTA (p = 0.009, d = −  0.667) were significantly 
smaller only in SCZ-V group compared to HC. There were 
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no significant volumetric differences in whole amygdala/
amygdala nuclei for other pairwise comparisons. However, 
there was a clear step-wise pattern of larger effect sizes for 
all subfields and nuclei in SCZ-V compared to HC than in 
SCZ-NV and HC, as can be seen in Fig. 2, indicating more 
pronounced volumetric abnormalities in SCZ-V group.

Secondary analyses

There were no significant volumetric differences on hip-
pocampal subfields or amygdala nuclei between SCZ-V 
and SCZ-NV after controlling for illicit substance use 
(DUDIT), duration of illness or antipsychotic medication 
(DDD).

These results are summarized in Table 1 in supplemen-
tary materials.

Discussion

Our results revealed significantly smaller total hippocam-
pal and amygdala volumes as well as smaller hippocampal 
subfields and amygdala nuclei in SCZ-V when compared to 
HC. In SCZ-NV the observed smaller volumes were limited 
to several amygdala nuclei when compared to HC. This is 
to the best of our knowledge the first study assessing asso-
ciations between hippocampal subfields, amygdala nuclei 
volumes, and violence in SCZ.

The smaller total hippocampal and amygdala volumes 
in SCZ-V are in line with previous studies (see [17] for 
review). Regarding specific amygdala nuclei analyses, the 
SCZ-V but not the SCZ-NV group showed smaller acces-
sory basal nucleus and CTA compared to HC. The acces-
sory basal nucleus has extensive internuclear connections 
with the basal nucleus and is one of the main targets for 

Table 1  Demographic variables and clinical characteristics

SCZ-V schizophrenia patients with a history of violence, SCZ-NV schizophrenia patients with no history of violence, HC healthy controls, m/f 
male/female, SD standard deviation, PANSS Positive and Negative Syndrome Scale, CDSS Calgary Depression Scale for Schizophrenia, GAF 
Global Assessment of Function split version, DDD defined daily dosage, AUDIT alcohol use disorder identification test, DUDIT drug use disor-
der identification test
Bold p value indicates significant differences between groups
a Valid scores in brackets

SCZ-V (n = 24) SCZ-NV (n = 51) HC (n = 90) Chi-square
n n (%) n n (%) n n (%)

Sex (m/f) 23/1 96/4 50/1 98/2 87/3 97/3 p = 0.847
Cannabis, last 2 weeks (no/yes)a 

(n = 24/50)
22/2 91/9 44/6 88/12 p = 0.939

Cannabis, last 2 years (no/yes)a 
(n = 22/50)

11/11 50/50 22/28 44/56 p = 0.830

Mean (SD) Range Mean (SD) Range Mean (SD) Range t test

Alcohol last 2 weeks (units)a (n = 22/49) 1.59 (4.1) 0–18 5.0(12.52) 0–72 p = 0.094
Alcohol last 2 years (units)a (n = 21/46) 372.86 (731.72) 0–2496 511.24(878.46) 0–4160 p = 0.504
CDSSa (n = 18/49) 1.89 (2.47) 0–7 4.35(3.67) 0–15 p =  0.002
GAF  symptoma (n = 21/51) 43.33 (13.98) 28–73 44.71(15.15) 21–91 p = 0.718
GAF  functiona (n = 21/51) 40.38 (15.19) 20–78 45.8(14.25) 21–85 p = 0.169
PANSS  positivea (n = 20/51) 16.65 (7.36) 7–28 14.67 (5.61) 7–32 p = 0.286
PANSS  negativea *(n = 21/51) 18.62 (6.62) 8–33 17.61 (6.47) 7–43 p = 0.556
PANSS  generala (n = 20/51) 29.85 (9.9) 18–49 32.61 (8.6) 17–69 p = 0.282
Age at psychosis  onseta (n = 23/50) 19.04 (5.38) 10–30 22.56 (5.13) 14–39 p =  0.011
Age at first psychosis  admissiona 

(n = 19/40)
20.68 (4.92) 10–29 24.48 (5.57) 15–41 p =  0.011

Duration of  illnessa (n = 22/49) 13.6 (8.53) 3.06–28.93 6.53 (6.02) 0.35–22.15 p =  0.001
Antipsychotics (DDD)a (n = 20/48) 1.81 (1.07) 0.47–4.09 1.28 (0.85) 0.05–5 p = 0.06

Mean (SD) Range Mean (SD) Range Mean (SD) Range ANOVA

Age (years)a (n = 24/51/90) 33.84 (8.21) 19.2–49.1 28.89 (6.95) 18.76–48.86 33.18 (7.72) 19.45–46.22 p =  0.002
Years of  educationa (n = 22/51/86) 10.7 (1.82) 9–15 13.45 (2.8) 4.5–20 14.53 (2.29) 11–25 p <  0.000
AUDITa (n = 19/48/83) 5.21 (6.09) 0–22 5.83 (5.83) 0–22 5.39 (3.01) 0–13 p = 0.822
DUDITa (n = 18/49/82) 8.44 (9.9) 0–29 4.39 (6.53) 0–31 0.09 (0.36) 0–2 p <  0.000
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inputs from cortical as well as subcortical regions [32]. 
Although both SCZ groups showed smaller volumes of the 
basal and paralaminar nucleus compared to HC, the effect 
sizes were greater for the SCZ-V group. The basal nucleus 
belongs to the basolateral complex and connects to striatal 
areas implicated in control of instrumental behaviours [46] 
and in generating emotional states via signalling affective 
arousal to higher-order brain areas [47]. Additionally, this 
nucleus is the main target of afferents from the prefrontal 
cortex [32]. The anatomical and functional connectivity 
between the orbital prefrontal cortex and the basal amyg-
dala are essential for decoding emotionally vital informa-
tion and thus are critical for guiding goal-directed behav-
iours [48, 49]. The paralaminar nucleus, on the other hand, 
being closely associated with the basal nucleus projects to 
the central nucleus as well as to the ventral striatum and 
receives afferent inputs from the rostral CA1 and subiculum 
[50]. The anatomical circuit involving hippocampal inputs 

to paralaminar nucleus is speculated to be involved in con-
textual fear learning [51]. It has been argued that psychotic 
and impulsive aggression is characterized by excessive fear 
conditioning, while predatory (psychopathic) aggression is 
linked to deficient fear conditioning [52]. A previous study 
by Gopal et al. [38] showed volumes of the ventral region 
of the amygdala (corresponding roughly to the basolateral 
complex) to be bilaterally positively correlated with motor 
impulsivity in a mixed population of psychiatric patients. A 
similar study in a non-psychiatric population found a nega-
tive correlation between reactive aggression and volumes 
of lateralized ventral amygdala [39]. These disparate results 
do not render a straightforward comparison to our findings 
due to stark methodological differences in the amygdala 
parcellation procedure and sample characteristics. Still, the 
observed volumetric decreases in the amygdala are in line 
with our hypothesis of more pronounced differences on the 
segmentation level in the SCZ-V than in the SCZ-NV group.

Table 2  Results from regression 
analysis of hippocampal 
subfield and amygdala nuclei 
volumes in SCZ-V, SCZ-NV, 
and HC

Effects of diagnostic group (SCZ-V, SCZ-NV, and HC) on hippocampal subfield and amygdala volumes 
were tested using general linear model by creating three pairwise contrasts (SCZ-NV versus HC, SCZ-V 
versus HC, SCZ-V versus SCZ-NV) covarying for age,  age2, sex, intracranial volume (ICV), and scanning 
site. All p values are FDR corrected for multiple comparisons. Bold p values indicate significant differ-
ences between groups. Effect sizes are calculated with Cohen´s D
SCZ-V schizophrenia patients with a history of violence, SCZ-NV schizophrenia patients with no history 
of violence, HC healthy controls, CA cornu ammonis, GCMLDG granule cell layer of the dentate gyrus, 
HATA  hippocampal–amygdaloid transition area

Region SCZ-NV vs HC SCZ-V vs HC SCZ-V vs SCZ-NV
p value Effect size p value Effect size p value Effect size

Whole hippocampus 0.144 − 0.325 0.02 − 0.664 0.503 − 0.279
 Parasubiculum 0.789 − 0.05 0.168 − 0.332 0.503 − 0.324
 Presubiculum 0.575 − 0.154 0.061 − 0.47 0.503 − 0.344
 Subiculum 0.64 − 0.114 0.075 − 0.444 0.503 − 0.34
 CA1 0.097 − 0.394 0.009 − 0.712 0.503 − 0.289
 CA3 0.176 − 0.289 0.879 0.045 0.503 0.311
 CA4 0.144 − 0.323 0.332 − 0.251 0.881 0.063
 GCMLDG 0.097 − 0.423 0.17 − 0.361 0.881 0.055
 HATA 0.097 − 0.376 0.009 − 0.803 0.503 − 0.419
 Fimbria 0.136 − 0.328 0.009 − 0.711 0.503 − 0.396
 Molecular layer 0.097 − 0.374 0.025 − 0.635 0.654 − 0.213
 Hippocampal fissure 0.097 0.379 0.009 0.793 0.503 0.384
 Hippocampal tail 0.691 − 0.079 0.067 − 0.53 0.503 − 0.361

Whole amygdala 0.051 − 0.505 0.033 − 0.553 0.881 − 0.072
 Lateral nucleus 0.097 − 0.407 0.102 − 0.426 0.957 − 0.025
 Basal nucleus 0.046 − 0.571 0.009 − 0.678 0.81 − 0.133
 Accessory basal nucleus 0.064 − 0.468 0.033 − 0.544 0.861 − 0.11
 Anterior amygdaloid area 0.097 − 0.383 0.163 − 0.364 0.987 0.003
 Central nucleus 0.644 0.104 0.179 0.32 0.654 0.224
 Medial nucleus 0.617 0.124 0.061 0.477 0.503 0.386
 Cortical nucleus 0.617 − 0.122 0.879 0.034 0.776 0.165
 Corticoamygdaloid transition area 0.051 − 0.505 0.009 − 0.667 0.69 − 0.215
 Paralaminar nucleus 0.046 − 0.545 0.009 − 0.69 0.776 − 0.15
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Previous research indicates a substantial co-morbidity 
between SCZ and psychopathy in forensic populations [53]. 
Furthermore, it has been shown that amygdala is differently 
affected in a subgroup of psychopathic individuals character-
ized by callous–unemotional (CU) personality traits [54, 55]. 
High scores on CU facet of psychopathy have been associ-
ated with amygdala hypo-reactivity to negatively valanced 
emotional stimuli such as fearful facial expressions [56], 
whereas structural MRI studies have shown mixed effects, 
with the majority of findings indicating smaller volumes 
of amygdala compared to HC [57, 58], albeit segmentation 
studies investigating regional abnormalities of amygdala in 
this subgroup are still scarce [59]. As the participants in 
the SCZ-V group were recruited from high-security foren-
sic psychiatry wards and convicted for a violent crime, it 
is possible that these acts of violence were committed in a 

state of psychosis and as such driven by paranoid delusions 
and/or command hallucinations. It has also been estimated 
that over 50% of SCZ patients who had committed homicide 
did experience exacerbating delusions in the period anteced-
ent to the act of homicide [8]. However, we cannot exclude 
the possibility that violence in our SCZ-V group was con-
founded by possible co-morbidity with psychopathic traits. 
Bearing in mind that particular patterns of amygdala dys-
function have been shown to be contingent upon particular 
etiopathogenetic types of aggression and violence, we can 
only stipulate that psychopathic traits might have affected 
our results, as SCZ-V participants were not screened for 
these characteristics.

The hippocampal subfield analyses showed significant 
volumetric decreases in CA1, HATA, fimbria, and molecu-
lar layer in SCZ-V compared to HC. The observed large 

Fig. 2  Hippocampal subfield and amygdala nuclei volume differences 
between SCZ-V, SCZ-NV and HC. Visualization of effect sizes calcu-
lated with Cohen’s d. a Volumetric differences in hippocampal sub-
fields between SCZ-V versus HC and SCZ-NV versus HC. b Volu-
metric differences in amygdala nuclei between SCZ-V versus HC and 
SCZ-NV versus HC. Results corrected for age,  age2, sex, intracranial 

volume (ICV), and scanning site. SCZ-V schizophrenia patients with 
a history of violence, SCZ-NV schizophrenia patients with no history 
of violence, HC healthy controls, CA cornu ammonis, HATA  hip-
pocampal–amygdaloid transition area. *Significant p values < 0.05 
(FDR-corrected). **Significant p values <0.01 (FDR corrected)
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effect sizes for CA1 volumetric reductions are in line with 
our recent meta-analysis [30], indicating this region to be 
the most affected in SCZ in general. Additionally, CA1 has 
been shown to be selectively decreased in the early stages 
of SCZ [60] with its subsequent volumetric decline being 
correlated with increased symptom severity over time [61]. 
Indeed, it has been reported that volumetric deficits in CA1 
reflect symptom severity and are linked to the amount of 
antipsychotic medication required to control these symptoms 
[62]. As reductions in CA1 are thought to be involved in the 
neurobiological mechanisms of delusions and hallucinations, 
we may speculate that these reductions could be relevant to 
violence risk in SCZ.

However, since the smaller hippocampal subfield vol-
umes were only present in the SCZ-V and not in the SCZ-
NV group compared to HC, even though the SCZ-NV 
was twice the size the SCZ-V group, we might speculate 
that the smaller volumes in SCZ-V could reflect an overall 
higher symptomatic burden associated with SCZ rather than 
violence history. Moreover, we found smaller global hip-
pocampus and amygdala volumes, in line with the largest 
meta-analysis on subcortical volumes in SCZ to date [12], 
but these were also limited to the SCZ-V group. The SCZ-V 
patients had longer duration of illness and higher use of 
antipsychotic medication than the SCZ-NV group, both of 
which may have an impact on brain morphology [63–65]. 
However, the subsequent secondary analyses in SCZ groups 
indicated that the volumetric differences between the patient 
groups were not confounded by duration of illness, antip-
sychotic medication use or illicit substance use. The lack 
of significant differences between SCZ-NV and SCZ-V 
together with larger effect sizes in SCZ-V compared to HC 
than in SCZ-NV compared to HC are also in line with the 
results from our previous study of white matter microstruc-
ture in this group [66]. Taken together, the results from both 
studies emphasize the difficulties of disentangling effects of 
illness severity from violence or aggression traits on brain 
morphology within this patient group.

The present study has some limitations. First, the sam-
ple size in the SCZ-V group was relatively small. Thus, it 
is possible that the lack of significant differences between 
patient groups could be due to type II errors, as we found 
an overall pattern of larger effect sizes in SCZ-V compared 
to HC than in SCZ-NV compared to HC. However, the 
size of our SCZ-V sample matches previous studies inves-
tigating volumetric correlates of violence and aggression 
in SCZ-V (n = 10–37) [19–21]. Moreover, the only study 
investigating associations between volumes of amygdala 
subdivisions and aggression in psychiatric populations 
([38], n = 41) included nine SCZ patients, the remaining 
individuals having a wide spectrum of diagnoses including 
bipolar disorder and ADHD. There was also one scan-
ner upgrade during the inclusion of study participants. 

We accounted for this by splitting and matching subject 
cohorts before and after scanner upgrade as well as includ-
ing scanner as a covariate in the statistical analyses. Addi-
tionally, we used FDR procedure to control for multiple 
comparisons. This method is considered less conservative 
than FWER procedures, thus our results should be inter-
preted with caution.

Our study has several strengths. We applied a robust 
automated hippocampal and amygdala segmentation 
algorithm (FreeSurfer, v6.0) which allowed a thorough 
investigation of these two structures simultaneously. Addi-
tionally, violence in the SCZ-V group was operational-
ized according to the MacArthur criteria with a stringent 
inclusion protocol comprising exclusively individuals who 
committed serious acts of violence (murder, attempted 
murder as well as severe physical assaults towards other 
people).To ensure a high level of clinical homogeneity, 
the patient groups included only participants with a SCZ 
diagnosis and no other psychotic disorders.

Conclusions and future directions

In summary, our results revealed a pattern of smaller 
volumes in several hippocampal subfields and amygdala 
nuclei of importance to emotion regulation, control of 
instrumental behaviour, and fear conditioning in SCZ 
patients with a history of severe interpersonal violence 
compared to HC. We found no significant differences 
between the SCZ groups and hence no specific volumet-
ric correlates of trait violence in SCZ despite the larger 
effect sizes in SCZ-V. The neurobiological signature of 
violence in SCZ should be further investigated by increas-
ing the sample size. Further, to disentangle brain volu-
metric abnormalities related to illness severity from those 
related to antisocial traits, a non-psychotic violence cohort 
should be included in future analyses.
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