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Integral Representation of Wave Fields



Integral Representations of Wave Fields

A wave (e.g., electromagnetic) field can very often be expressed
through integrals.

This is the case of, e.g., the standard radiation integrals in free space
(or in particular bounded environments), which express the wave
field in terms of primary sources (e.g., impressed currents) as a
superposition integral having a suitable Green’s function as its kernel.

Similar integrals involving secondary sources are found also in
diffraction/scattering problems, where the field is typically
expressed in terms of its values on suitable reference surfaces via
Huygens principle.
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Asymptotic Evaluation of the Integral Representations

In this and the next lesson we aim at providing basic information on the
principal techniques for the asymptotic evaluation of integrals.

Such radiation or diffraction integrals can be evaluated analytically only
in a limited number of cases; alternatively, they can be evaluated
numerically or approximated through asymptotic expansions.



Asymptotic Evaluation of Integrals:
Laplace Type Integrals



Laplace-type Integrals

Let us consider generalized Laplace-type integrals of the kind
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We wish to obtain an asymptotic expansion of I(k) in the limit k →+∞.

where f(t), (t) are real differentiable functions and k is a real
parameter.



Asymptotics for Laplace-type Integrals: Intuition

As k →∞, the integrand becomes exponentially small for all t except for
t near 0, because as t → 0 and k →∞, kt could remain finite.
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The asymptotic behavior is the same as for

The global asymptotic behavior is thus related to the local behavior of
the integrand as t → 0
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Asymptotics for Laplace-type Integrals: Intuition
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Similarly, we expect that the asymptotic behavior of

be determined by the local behavior of the integrand in the
neighborhood of the point t=c where the function (t) has its
minimum in the interval a ≤ t ≤ b.



Asymptotics for Laplace-type Integrals: Intuition

The minimum can occur either at the boundaries or at an interior point,
which in the latter case necessarily means ‘(t)=0. It follows that one
only needs to carefully study such (critical) points.

We will separately consider:
• The case that (t) is monotonic (hence the major contribution to the asymptotics of

I(k) comes from the boundaries)

• The case that (t) has a local minimum in [a, b]
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f(t) Monotonic: Case of f(t) Regular

In this case if f(t) is sufficiently smooth the integration by parts
approach provides the full asymptotic expansion.
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This approach can be made rigorous by proving the following:



f(t) Monotonic: f(t) Regular: Integration by Parts

Theorem

Suppose that f(t) has N+1 continuous derivatives while f(N+2)(t) is
piecewise continuous on a ≤ t ≤ b. Then
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Two generalizations:

1) If b =+∞, then the above result is also valid provided that as t →∞
f(t) = O(eαt), α real constant, so that I(k) exists for k sufficiently large.

2) If (t) is monotonic in [a, b], then the integral
can be transformed to the above form by the
change of variables τ = (t).
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f(t) Monotonic: Case of f(t) Singular

If f(t) is not sufficiently smooth at t = a, then the integration by parts
approach may not work.

   
5 1/22

0

2 dktI k t t e t
  

Example:

     
51/22 5 1/22

0
0

2 1 d 2 d
d

kt kt
t t

I k e e t t t
k k t


 

 
                



By parts:

but this is singular at t = 0… (in fact, f(t)=O(t -1/2) as t→0)



Owing to the rapid decay of exp(kt), I(k) should be asymptotically
equivalent to
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for any R. If R<2 we may expand via Taylor series:
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f(t) Monotonic: Case of f(t) Singular



To evaluate the above integrals in terms of known functions, we replace R
by ∞. Again we expect that this introduces only an exponentially small
error (i.e., terms beyond all orders) as k →∞. Thus
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f(t) Monotonic, f(t) Singular: Watson’s Lemma

Theorem (Watson’s Lemma)

If f(t) is integrable in [0,b], is O(eCt) as t→+∞, and has the asymptotic
expansion
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Actually, the same assumptions guarantee that

for some  such that 0 <  < /2.



f(t) with a Local Minimum

Now we consider the case that (t) is not monotonic.

We suppose, for simplicity, that the local minimum occurs at an interior
point c, a < c < b, ’(c) = 0, ’’(c) > 0.

Further, we assume that ’(t)  0 in [a, b] except at t = c and that f
and  are sufficiently smooth.

By expanding both f and f in the neighborhood of c, we expect that
for large k
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f(t) with a Local Minimum

By letting we have
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When k tends to infinity the latter integral becomes the Gauss integral
and thus converges exponentially to . Hence



Theorem (Laplace’s Method)

Assume that ’(c) = 0, ’’(c) > 0 for some point c in the interval [a,
b]; ’(t)  0 in [a, b] except at t = c;  C4[a, b]; and f  C2 [a, b].

Then if c is an interior point,

with an error O(ek(c)/k3/2).

If c is an endpoint,

with an error O(ek(c)/k).

f(t) with a Local Minimum: Laplace’s Method
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The main idea of the proof of the Laplace method is to split [a,b] in two
half-open intervals [a,c and c,b], in each of which (t) is monotonic so
that, using a change of variables, Watson’s lemma can be applied:

Remark: Complete Asymptotic Expansions

Since Watson’s lemma can, in principle, provide infinite (i.e., complete)
asymptotic expansions, also the Laplace method can, in principle, give
complete asymptotic expansions. This fact, will be utilized further in
connection with the steepest descent method.
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Laplace’s method can also be used when f(t) either vanishes algebraically
or becomes infinite at an algebraic rate.

Remark: Vanishing or Singular f(t)
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Evaluate the Gamma function for large real values of its argument:

Example: Asymptotic Expansion of the Gamma Function
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By writing we could let
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However, the maximum of (t) occurs at infinity, where f(t) decays
exponentially to zero…



By writing we see that the true maximum of the exponent
occurs when

Example: Asymptotic Expansion of the Gamma Function

hence at t=k (since it depends on k, it is a movable maximum).
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The function (s) now has a fixed minimum at s=1, where (s=1)=1.
Furthermore,

Example: Asymptotic Expansion of the Gamma Function
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Therefore, using the standard formula of Laplace’s method we find
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known as the Stirling-Laplace approximation of the Gamma function (or
the factorial: (n+1)=n!).
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Asymptotic Evaluation of Integrals:
Fourier Type Integrals



Fourier-type Integrals

Let us consider generalized Fourier-type integrals of the kind
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We wish to obtain an asymptotic expansion of Ik in the limit k →+∞

where f(t), (t) are real continuous functions and k is a real parameter.



Theorem (Riemann-Lebesgue Lemma)

Riemann-Lebesgue Lemma

The value of a Fourier-type integral tends to zero as k→∞. This is a
consequence of the fact that as k→∞, the exponential factor oscillates
rapidly and these oscillations are self-canceling.

I(k)→0 as k→∞, provided that:

• exists

 (t) is continuously differentiable in [a,b]

 (t) is not constant on any subinterval of [a,b]
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Suppose that t=c is a point in [a,b] for which ’(t) does not vanish. If
Wc is a small neighborhood of c, then we expect that I(k) can be
approximated by
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As k→∞, the rapid oscillation of exp(jk) produces cancelations that,
in turn, tend to decrease the value of Ic(k).

But if we assume that ’(t) vanishes at t=c, then, even for large k,
there exists a small neighborhood of c throughout which k does not
change so rapidly. In this region, exp(jk) oscillates less rapidly and
less cancelation occurs.

Asymptotics for Fourier-type Integrals: Intuition



The Method of Stationary Phase

As for Laplace-type integrals, we will separately consider:
• The case that (t) is monotonic (hence the major contribution to the asymptotics of

I(k) comes from the boundaries)

• The case that (t) has a stationary point in [a,b]

Thus we expect that the value of I(k) for large k depends primarily on
the behavior of f and  near points for which ’(t)=0. Such points are
called, in calculus, stationary points.

Furthermore, in many applications,  has the physical interpretation of
a phase.

Thus the asymptotic method based on the above arguments is usually
referred to as the method of stationary phase.



f(t) Monotonic, f(t) Regular: Integration by Parts

Theorem

Suppose that f(t) has N+1 continuous derivatives while f(N+2)(t) is
piecewise continuous on a ≤ t ≤ b with a, b finite. Then
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Generalization:

If (t) is monotonic in [a,b], then the integral

can be transformed to the above form by the change of variables =(t).
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f(t) Monotonic, f(t) Regular: Integration by Parts

Example
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f(t) Monotonic, f(t) Singular: Generalized Watson’s Lemma

Theorem (Generalized Watson’s Lemma)

If f(t) is zero with all its derivatives at t=b, f(t) exists with all its
derivatives in (0,b], and
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f(t) with a Stationary Point

Now we consider the case that (t) is not monotonic.

We suppose, for simplicity, that the local minimum occurs at an interior
point c, a < c < b, ’(c) = 0, ’’(c) > 0.

Further, we assume that ’(t)  0 in [a, b] except at t = c and that f
and  are sufficiently smooth.

By expanding both f and  in the neighborhood of c, we expect that for
large k
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f(t) with a Stationary Point

To evaluate this integral, we let
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f(t) with a Stationary Point: Stationary Phase Method

Theorem (Stationary Phase Method)

If
- t=c is the only point in [a, b] where (t) vanishes;
- f(t) vanishes infinitely smoothly at the two end points t=a and t=b;
- both f and  are infinitely differentiable on the half-open intervals

[a, c) and (c, b];

-
t → c;  >1;

then:

       
 



1
2

1
1 2
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
                 

       



              
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 

                     
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This result can be generalized substantially. It is possible to allow (t)
and f(t) to have different asymptotic behaviors as t → c+ and t → c.

For instance, if

then

           , , , 1t c t c f t t c o t c t c
  

    
 

          

     
 

1
1

21 1 1d ,
b jjk t jk c

c

f t e t e e k
k


    

  







                
 

sgn 



f(t) with a Stationary Point: Stationary Phase Method

Example

Evaluate the leading behavior of the Bessel function of the first kind
Jn(n) as n →∞.

   
0

1 cos sin dnJ n n t nt t



 Using the integral representation

   

3

0
1
3

6

sin

0

1 Re d

1 1 1 6Re d cos ,
3 6 3

jn
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t tJ n e t

e t n
n








 







                           





 
3

3sin , 0 (Taylor)
6
tt t o t t  

where the previous formula has been applied with a+=1/6, n=3, b+=1, g=0.



Fourier vs. Laplace

There is an important difference between Fourier and Laplace type
integrals.

• For Fourier type integrals, although the stationary points give the
dominant contribution, we must also consider the endpoints if
more than the leading term is needed. The endpoint contribution is
only algebraically smaller than the stationary point contribution.

• In contrast, we recall that for the Laplace type integrals we have
considered so far, the entire asymptotic expansion depends only on
the behavior of the integrand in a small neighborhood of the global
minimum of φ; the points away from the minimum are
exponentially small in comparison.
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