
2 From the Schrödinger Equation to Molecular
Dynamics

In particle methods, the laws of classical mechanics [48, 371] are used, in
particular Newton’s second law. In this chapter we will pursue the question
why it makes sense to apply the laws of classical mechanics, even though one
should use the laws of quantum mechanics. Readers that are more interested
in the algorithmic details or in the implementation of algorithms in molecular
dynamics can skip this chapter.

In quantum mechanics, the Schrödinger equation is taking the place of
Newton’s equations. But the Schrödinger equation is so complex that it can
be solved analytically only for a few simple cases. Also the direct numeri-
cal solution on computers is limited to very simple systems and very small
numbers of particles because of the high dimension of the space in which
the Schrödinger equation is posed. Therefore, approximation procedures are
used to simplify the problem. These procedures are based on the fact that the
electron mass is much smaller than the mass of the nuclei. The idea is to split
the Schrödinger equation, which describes the state of both the electrons and
nuclei, with a separation approach into two coupled equations. The influence
of the electrons on the interaction between the nuclei is then described by an
effective potential. This potential results from the solution of the so-called
electronic Schrödinger equation. As a further approximation the nuclei are
moved according to the classical Newton’s equations using either effective po-
tentials which result from quantum mechanical computations (which include
the effects of the electrons) or empirical potentials that have been fitted to the
results of quantum mechanical computations or to the results of experiments.

All in all, this approach is a classical example for a hierarchy of approxi-
mation procedures and an example for the use of effective quantities. In the
following, the derivation of the molecular dynamics method from the laws
of quantum mechanics is presented. For further details see the large body of
available literature, for example [372, 427, 554], [381, 514], and [417, 626, 627].

2.1 The Schrödinger Equation

Up to the end of the nineteenth century, classical physics could answer the
most important questions using Newton’s equations of motion. The Lagrange
formalism and the Hamilton formalism both lead to generalized classical
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equations of motion that are essentially equivalent. These equations furnish
how the change in time of the position of particles depends on the forces
acting on them. If initial positions and initial velocities are given, the po-
sitions of the particles are determined uniquely for all later points in time.
Observable quantities such as angular momentum or kinetic energy can then
be represented as functions of the positions and the impulses of the particles.

In the beginning of the twentieth century the theory of quantum mechan-
ics was developed. There, the dynamics of the particles is described by a new
equation of motion, the Schrödinger equation. In contrast to Newton’s equa-
tions its solution no longer provides unique trajectories, meaning uniquely
determined positions and impulses of the particles, but only probabilistic
statements about the positions and impulses of the particles. Furthermore,
position and impulse of a single particle can no longer be measured arbitrarily
accurately at the same time (Heisenberg’s uncertainty principle) and certain
observables, as for example the energies of bound electrons, can only assume
certain discrete values. All statements that can be made about a quantum
mechanical system can be derived from the state function (or wave function)
Ψ which is given as the solution of the Schrödinger equation. Let us con-
sider as an example a system consisting of N nuclei and K electrons. The
time-dependent state function of such a system can be written in general as

Ψ = Ψ(R1, . . . ,RN , r1, . . . , rK , t),

where Ri and ri denote positions in three-dimensional space R3 associated
to the ith nucleus and the ith electron, respectively. The variable t denotes
the time-dependency of the state function. The vector space (space of con-
figurations) in which the coordinates of the particles are given is therefore of
dimension 3(N + K). In the following we will abbreviate (R1, . . . ,RN ) and
(r1, . . . , rK) with the shorter notation R and r, respectively.

According to the statistical interpretation of the state function, the ex-
pression

Ψ∗(R, r, t)Ψ(R, r, t)dV1 · · ·dVN+K (2.1)

describes the probability to find the system under consideration at time t in
the volume element dV1 · . . . · dVN+K of the configuration space centered at
the point (R, r). By integrating over a volume element of the configuration
space one determines the probability to find the system in this domain.

We assume in the following that nuclei and electrons are charged parti-
cles. The electrostatic potential (Coulomb potential) of a point charge (with
elementary charge +e) is e

4πϵ0
1
r , where r is the distance from the position of

the charged particle and ϵ0 is the dielectric constant. 1/(4πϵ0) is also called
Coulomb constant. An electron moving in this potential has the potential
energy V (r) = − e2

4πϵ0
1
r . Neglecting spin and relativistic interactions and as-

suming that no external forces act on the system, the Hamilton operator
associated to the system of nuclei and electrons is given as the sum over the
operators for the kinetic energy and the Coulomb potentials,
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∆Rk . (2.2)

Here, Mj and Zj denote the mass and the atomic number of the jth nucleus,
me is the mass of an electron and ! = h/2π with h being Planck’s constant.
∥rk − rj∥ are the distances between electrons, ∥rk − Rj∥ are distances be-
tween electrons and nuclei and ∥Rk −Rj∥ are distances between nuclei. The
operators ∆Rk and ∆rk stand here for the Laplace operator with respect to
the nuclear coordinates Rk and with respect to the electronic coordinates
rk.1 In the following we will denote the separate parts of (2.2) in abbreviated
form (written in the same order) with

H = Te + Vee + VeK + VKK + TK . (2.3)

The meanings of the individual parts are the following: Te and TK are the
operators of the kinetic energy of the electrons and of the nuclei, respectively.
Vee, VKK and VeK refer to the operators of the potential energy of the inter-
actions (thus the Coulomb energy) between only the electrons, between only
the nuclei, and between the electrons and the nuclei, respectively.

The state function Ψ is now given as the solution of the Schrödinger
equation

i!∂Ψ(R, r, t)
∂t

= HΨ(R, r, t) (2.4)

where i denotes the imaginary unit. The expression ∆RkΨ(R, r, t), which oc-
curs in HΨ , stands there for ∆YΨ(R1, . . . ,Rk−1,Y,Rk+1, . . . ,RN , r, t)|Rk ,
that is, the application of the Laplace operator to Ψ seen as a function of Y
(the kth vector of coordinates) and the evaluation of the resulting function
at the point Y = Rk. The operators ∆rk and later ∇Rk and others are to be
understood in an analogous way.

In the following we consider the case that the Hamilton operator H is
not explicitly time-dependent, as we already assumed in (2.2).2 Then, the
separation approach

Ψ(R, r, t) = ψ(R, r) · f(t) (2.5)

of Ψ with a function ψ = ψ(R, r) that does not depend on time and a function
f = f(t) that depends on time when substituted into (2.4) gives rise to
1 If we denote the three components of Rk by (Rk)1, (Rk)2 and (Rk)3, then we

obtain ∆Rk = ∂2

∂(Rk)21
+ ∂2

∂(Rk)22
+ ∂2

∂(Rk)23
.

2 Since the Hamilton operator H depends on the coordinates and impulses of the
particles, it depends implicitly on time this way. If time-dependent external forces
act on the system, the Hamilton operator could also explicitly depend on time.
Then, one would write H(R, r, t) to reflect this dependency.
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i!df(t)
dt

ψ(R, r) = f(t)Hψ(R, r), (2.6)

since H does not act on f(t).3 A formal division of both sides by the term
ψ(R, r) · f(t) ̸= 0 yields

i! 1
f(t)

df(t)
dt

=
1

ψ(R, r)
Hψ(R, r). (2.7)

The left hand side contains only the time coordinate t, the right hand side
only the coordinates in space. Therefore, both sides have to be equal to a
common constant E and (2.7) can be separated. We obtain the two equations

i! 1
f(t)

df(t)
dt

= E (2.8)

and
Hψ(R, r) = Eψ(R, r). (2.9)

The differential equation (2.8) describes the evolution over time of the wave
function. Its general solution reads

f(t) = ce−iEt/!. (2.10)

Equation (2.9) is an eigenvalue problem for the Hamilton operator H with
the energy eigenvalue E. This equation is called time-independent (or station-
ary) Schrödinger equation. To every energy eigenvalue En there is one (or, in
the case of degenerated states, several) associated energy eigenfunctions ψn.
Also, for every energy eigenvalue En, (2.10) yields a time-dependent term fn.
The solution of the time-dependent Schrödinger equation (2.4) is then given
as a linear combination of the energy eigenfunctions ψn and the associated
time-dependent terms fn of the form

Ψ(R, r, t) =
∑

n

cne−iEnt/!ψn(R, r) (2.11)

with the weights cn =
∫

ψ∗
n(R, r)Ψ(R, r, 0)dRdr.

Similar to the time-dependent Schrödinger equation, (2.9) is so complex
that analytical solutions can only be given for a few very simple systems. The
development of approximation procedures is therefore a fundamental area of
research in quantum mechanics. There exists an entire hierarchy of approxi-
mations that exploit the different physical properties of nuclei and electrons
[417, 626, 627]. We will consider these approximations in the following in
more detail.
3 One then also calls ψ state or wave function.
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2.2 A Derivation of Classical Molecular Dynamics

In the following we will derive, starting from the time-dependent Schrödinger
equation (2.4), the equations of classical molecular dynamics by a series of
approximations. We follow [417] and [626, 627].

2.2.1 The TDSCF Approach and Ehrenfest’s Molecular Dynamics

First, we decompose the Hamilton operator (2.3) as follows: We set

H = He + TK (2.12)

with the electronic Hamilton operator

He := Te + Vee + VeK + VKK . (2.13)

We decompose He further into its kinetic and potential part

He := Te + Ve

where now
Ve := Vee + VeK + VKK

is just the operator for the potential energy of the entire system.
The wave function Ψ(R, r, t) depends on the coordinates of the electrons

and of the nuclei as well as on time. First, we separate the wave function into
a simple product form4

Ψ(R, r, t) ≈ Ψ̃(R, r, t) := χ(R, t)φ(r, t) exp
[

i

!

∫ t

t0

Ẽe(t′)dt′
]

(2.14)

of the contribution of the nuclei and electrons to the full wave function Ψ .
It is assumed that the nuclear wave function χ(R, t) and the electronic wave
function φ(r, t) are normalized for any point in time t, that means that both∫

χ∗(R, t)χ(R, t)dR = 1 and
∫

φ∗(r, t)φ(r, t)dr = 1 hold. The phase factor
Ẽe is chosen in the form

Ẽe(t) =
∫

φ∗(r, t)χ∗(R, t)Heφ(r, t)χ(R, t)dRdr (2.15)

which is convenient for the following derivation of a coupled system of equa-
tions.

Now, we insert (2.14) into the time-dependent Schrödinger equation (2.4)
with Hamilton operator H, multiply from the left with φ∗(r, t) and χ∗(R, t)
4 This approximation is a so-called single determinant or single configuration

ansatz for the full wave function. It can only result in a mean field description
of the coupled dynamics.
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and integrate over R and r. Finally, we require conservation of energy, that
is,

d

dt

∫
Ψ̃∗HΨ̃dRdr = 0,

and obtain thereby the coupled system of equations

i !∂φ

∂t
= −

∑

k

!2

2me
∆rkφ +

(∫
χ∗(R, t)Ve(R, r)χ(R, t)dR

)
φ, (2.16)

i !∂χ

∂t
= −

∑

k

!2

2Mk
∆Rkχ +

(∫
φ∗(r, t)He(R, r)φ(r, t)dr

)
χ. (2.17)

These equations constitute the foundation for the TDSCF approach (time-
dependent self-consistent field) introduced by Dirac in 1930, see [181, 186].
Both unknowns again obey a Schrödinger equation, but now with a time-
dependent effective operator for the potential energy which arises as an appro-
priate average of the other unknown. These averages can also be interpreted
as quantum mechanical expectation values with respect to the operators Ve

and He and give a mean field description of the coupled dynamics.
As a next step the nuclear wave function χ is to be approximated by

classical point particles. For this, we first write the wave function χ as

χ(R, t) = A(R, t) exp
[

i

!S(R, t)
]

(2.18)

with an amplitude A > 0 and a phase factor S, both real [187, 427, 536].
Substitution into the equation for the nuclei in the TDSCF system (2.17) and
separating real and imaginary parts leads to the coupled system of equations

∂S

∂t
+

N∑

k

1
2Mk

(∇RkS)2 +
∫

φ∗Heφdr = !2
N∑

k

1
2Mk

∆RkA

A
, (2.19)

∂A

∂t
+

N∑

k

1
Mk

(∇RkA) (∇RkS) +
N∑

k

1
2Mk

A (∆RkS) = 0. (2.20)

Here, ∇Rk =
(

∂
∂(Rk)1

, ∂
∂(Rk)2

, ∂
∂(Rk)3

)T
. The abbreviation (∇RkS)2 denotes

the scalar product of ∇RkS with itself and (∇RkA) (∇RkS) denotes the scalar
product of the vectors ∇RkA and ∇RkS. This system corresponds exactly
to the second equation in the TDSCF system (2.17) in the new variables A
and S.5 The only term that directly depends on ! is the right hand side of
5 This is the so-called quantum fluid dynamics representation [182, 187, 427, 536,

668] which opens up another possibility to treat the time-dependent Schrödinger
equation. (2.20) can be written with |χ|2 ≡ A2 as continuity equation that locally
conserves the probability density |χ|2 of the nuclei under a flow.
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equation (2.19). In the limit ! → 0 equation (2.19) gives6

∂S

∂t
+

N∑

k

1
2Mk

(∇RkS)2 +
∫

φ∗Heφdr = 0.7 (2.21)

Setting ∇RS = (∇R1S, . . . ,∇RN S), this is isomorphic to the Hamilton-
Jacobi form

∂S

∂t
+ H (R,∇RS) = 0 (2.22)

of the equations of motion of classical mechanics with the classical Hamilton
function8

H(R,P) = T (P) + V (R) (2.23)

with P = (P1, . . . ,PN ), where one puts

Pk(t) ≡ ∇RkS(R(t), t).

Here, R corresponds to generalized coordinates and P to their conjugated
moments. Newton’s equations of motion Ṗk = −∇RkV (R) associated to
equation (2.22) are then

dPk

dt
= −∇Rk

∫
φ∗Heφdr or (2.24)

MkR̈k(t) = −∇Rk

∫
φ∗Heφdr (2.25)

=: −∇RkV Ehr
e (R(t)). (2.26)

The nuclei move now according to the laws of classical mechanics in an effec-
tive potential given by the electrons. This so-called Ehrenfest potential V Ehr

e

is a function of the nuclear coordinates R at time t. It results from an av-
eraging over the degrees of freedom of the electrons, weighted by He, where
the nuclear coordinates are kept constant at their current positions R(t).

There is still the wave function χ of the nuclei in the equation for the
electrons in the system for the TDSCF approach (2.16). Consistency requires
it to be replaced by the position of the nuclei. Thus, if one replaces the
probability density of the nuclei |χ(R, t)|2 by the product of delta functions
6 Because of this approximation step, the function φ is only an approximation of

the original wave function φ in (2.16) and (2.17). To keep the notation simple
we denote this approximation again by the symbol φ.

7 An expansion of the right hand side of equation (2.19) with respect to ! leads
to a hierarchy of semi-classical methods [427].

8 In the literature often the notation Q is found instead of R for the general-
ized classical coordinates. For the sake of simplicity, we will continue using the
notation R in this chapter.
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Πkδ(Rk − Rk(t)) in the limit ! → 0 in (2.16), then one obtains for example
for the position operator Rk with

∫
χ∗(R, t)Rkχ(R, t)dR !→0−→ Rk(t) (2.27)

the classical position Rk(t) as limit of the quantum mechanical expectations.
Here, the delta functions are centered in the instantaneous positions R(t) of
the nuclei given by (2.25). For (2.16), this classical limit process9 leads to a
time-dependent wave equation for the electrons

i !
∂φR(t)(r, t)

∂t
= −

∑

k

!2

2me
∆rkφR(t)(r, t) + Ve(R(t), r)φR(t)(r, t) (2.28)

= He(R(t), r)φR(t)(r, t), (2.29)

that move in a self-consistent way with the nuclei, if the classical nuclei are
propagated by (2.25). Note that now He and therefore the wave function φ
of the electrons depend parametrically via Ve on the positions R(t) of the
nuclei. The nuclei are thus treated as classical particles, whereas the electrons
are still treated using quantum mechanics. In honor of Ehrenfest, who first
posed the question how Newton’s classical dynamics could be derived from
Schrödinger’s equation, one often calls approaches that are based on the
equations

MkR̈k(t) = −∇RkV Ehr
e (R(t)), (2.30)

i !
∂φR(t)(r, t)

∂t
= He(R(t), r)φR(t)(r, t) (2.31)

Ehrenfest molecular dynamics. Alternatively, one finds such approaches in
the literature under the name QCMD (quantum-classical molecular dynam-
ics model) [104, 204, 447]. Note again that the wave function φR(t) of the
electrons is here not equal to the wave function φ in (2.16), since an approx-
imation was introduced by the limit process for the positions of the nuclei.
The wave function of the electrons depends implicitly on R via the coupling
in the system, which we expressed by the parametric notation φR(t). In the
following we will omit this parametrization for the sake of simplicity and will
denote, if clear from the context, the electronic wave function just by φ.

2.2.2 Expansion in the Adiabatic Basis

The TDSCF approach leads to a mean field theory. One should keep in mind
that transitions between different electronic states are still possible in this
9 A justification of the transition from the Schrödinger equation to Newton’s equa-

tion of motion of the nuclei is given by the theorem of Ehrenfest [381, 554] which
describes the time evolution of averages of observables.
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setting. This can be seen as follows: We expand the electronic wave function
φ from (2.31) for fixed t in an appropriate basis {φj} of the electronic states

φR(t)(r, t) =
∞∑

j=0

cj(t)φj(R(t), r) (2.32)

with complex coefficients {cj(t)} and
∑

j |cj(t)|2 ≡ 1. The {|cj(t)|2} describe
explicitly how the occupancy of the different states j evolves over time. A
possible orthonormal basis, called adiabatic basis, results from the solution
of the time-independent electronic Schrödinger equation

He(R, r)φj(R, r) = Ej(R)φj(R, r), (2.33)

where R denotes the nuclear coordinates from equation (2.25) at the chosen
time t. The values {Ej} are here the energy eigenvalues of the electronic
Hamilton operator He(R, r), and the {φj} are the associated energy eigen-
functions.

For (2.30) and (2.31) one obtains with the expansion (2.32) the equations
of motion in the adiabatic basis (2.33) as [447, 626, 627]

MkR̈k(t) = −
∑

j

|cj(t)|2 ∇RkEj −
∑

j,l

c∗j (t)cl(t) (Ej − El) djl
k , (2.34)

i !ċj(t) = cj(t)Ej − i !
∑

k,l

cl(t)Ṙk(t)djl
k , (2.35)

with the coupling terms given as

djl
k =

∫
φ∗

j∇Rkφldr, (2.36)

djj
k ≡ 0. (2.37)

Here, we used the properties
∫

φ∗
j (R, r)∇RkHeφl(R, r)dr = (El(R) − Ej(R))

∫
φ∗

j (R, r)∇Rkφl(R, r)dr,

∫
φ∗

j (R, r)φ̇l(R, r)dr =
N∑

k=1

Ṙk(t)
∫

φ∗
j (R, r)∇Rkφl(R, r)dr, ∀j ̸= l,

of the adiabatic basis and used furthermore that φ and R in V Ehr
e (R(t)) can

be treated as independent variables. This implies that the time-dependent
wave function can be represented by a linear combination of adiabatic states
and that its evolution in time is described by the Schrödinger equation (2.31).
Here, |cj(t)|2 is the probability density that the system is in state φj at time
point t.10

10 This model can be modified by the assumption that the system remains in an
adiabatic state until it jumps instantaneously to another adiabatic state. The
coefficients cj(t) and the coupling terms djl

k serve as a criterion for such a jump.
This assumption is made in the so-called surface-hopping method [300, 625].
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2.2.3 Restriction to the Ground State

As a further simplification we will restrict the whole electronic wave function
φ to a single state, typically the ground state φ0 of He according to the
stationary equation (2.33) with |co(t)|2 ≡ 1 as in (2.32). We thus assume
that the system remains in the state φ0, and truncate the expansion (2.32)
after the first term. This approximation is justified as long as the difference in
energy between φ0 and the first excited state φ1 is everywhere large enough
compared to the thermal energy kBT so that transitions to excited states11
do not play a significant role.12 The nuclei are then moved according to the
equation of motion (2.25) on a single hypersurface of the potential energy

V Ehr
e (R) =

∫
φ∗

0(R, r)He(R, r)φ0(R, r)dr ≡ E0(R). (2.38)

To compute this surface, the time-independent electronic Schrödinger equa-
tion (2.33)

He(R, r)φ0(R, r) = E0(R)φ0(R, r) (2.39)

has to be solved for its ground state. Hence, we identified the Ehrenfest
potential function V Ehr

e just as the potential E0 of the stationary electronic
Schrödinger equation for the ground state. Note that E0 is here a function of
the nuclear coordinates R.

2.2.4 Approximation of the Potential Energy Hypersurface and
Classical Molecular Dynamics

As a consequence of (2.38), the computation of the dynamics of the nuclei
can now be separated from the computation of the hypersurface for the po-
tential energy. If we assume at first that we can solve the stationary electronic
Schrödinger equation (2.33) for a given nuclear configuration, then we could
derive an entirely classical approach by the following steps: First, the energy
of the ground state E0(R) is determined for as many representative nuclear
configurations Rj as possible from the stationary electronic Schrödinger equa-
tion (2.39). In this way, we evaluate the function V Ehr

e (R) at a number of
points and gain a number of data points (Rj , V Ehr

e (Rj)). From these discrete
data points we then approximately reconstruct the global potential energy
hypersurface for V Ehr

e . For this, we compute an approximate potential surface
by an expansion of many-body potentials in analytical form
11 In the case of bound atoms the spectrum is discrete. The ground state is an

eigenstate with the smallest energy level. The first excited state is an eigenstate
with the second smallest energy level.

12 So-called branching processes cannot be described this way in a satisfactory
manner.
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V Ehr
e ≈V appr

e (R)=
N∑

k=1

V1(Rk)+
N∑

k<l

V2(Rk,Rl)+
N∑

k<l<m

V3(Rk,Rl,Rm)+ . . . ,

(2.40)
which is appropriately truncated. With such an expansion the electronic de-
grees of freedom are replaced with interaction potentials Vn and are therefore
no longer explicit degrees of freedom of the equations of motion. After the
Vn are specified, the mixed quantum-mechanical and classical problem (2.30),
(2.31) is reduced to a completely classical problem. We obtain Newton’s equa-
tions of motion of classical molecular dynamics

MkR̈k(t) = −∇RkV appr
e (R(t)). (2.41)

Here, the gradients can be computed analytically.
This method of classical molecular dynamics is feasible for many-body

systems because the global potential energy gets decomposed according to
(2.40). Here, in practice, the same form of the potential is used for the same
kind of particles. For instance, if only a two-body potential function

V appr
e ≈

N∑

k<l

V2(||Rk − Rl||)

of the distance is used, only one one-dimensional function V2 has to be de-
termined.

This is certainly a drastic approximation that has to be justified in many
respects and that brings a number of problems with it. It is not obvious how
many and which typical nuclear configurations have to be considered to re-
construct the potential function from the potentials of these configurations
with an error which is not too large. In addition, the error caused by the trun-
cation of the expansion (2.40) plays certainly a substantial role. The precise
form of the analytic potential functions Vn and the subsequent fitting of their
parameters also have a decisive influence on the size of the approximation er-
ror. The assumption that the global potential function is represented well by
a sum of simple potentials of a few generic forms and the transferability of a
potential function to other nuclear configurations are further critical issues.
Altogether, not all approximation errors can be controlled rigorously in this
approach. Furthermore, quantum mechanical effects and therefore chemical
reactions are excluded by construction. Nevertheless, the method has been
proven successful, in particular in the computation of macroscopic properties.

The methods used in practice to determine the interactions in real sys-
tems are either based on the approximate solution of the stationary electronic
Schrödinger equation (ab initio methods) and subsequent force-matching
[208] or on the fitting (that is, parametrization) of given analytic poten-
tials to experimental or quantum mechanical results. In the first approach,
the potential is constructed implictly using ab initio methods. There, the
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electronic energy E0 and the corresponding forces are computed approxi-
mately13 for a number of chosen example configurations of the nuclei. By
extrapolation/interpolation to other configurations an approximate potential
energy hypersurface can be constructed that can in turn be approximated by
simple analytic functions. In the second, more empirical approach, one di-
rectly chooses an analytic form of the potential which contains certain form
functions that depend on geometric quantities such as distances, angles or
coordinates of particles. Subsequently, this form is fitted by an appropriate
determination of its parameters to available results from quantum mechanical
computations or from actual experiments. In this way one can model inter-
actions that incorporate different kinds of bond forces, possible constraints,
conditions on angles, etc. If the results of the simulation are not satisfactory,
the potentials have to be improved by the choice of better parameters or by
the selection of better forms of the potential functions with other or even ex-
tended sets of parameters. The construction of good potentials is still a form
of art and requires much skill, work, and intuition. Programs such as GULP
[5, 244] or THBFIT [6] can help in the creation of new forms of potentials
and in the fitting of parameters for solids and crystals.

Some Simple Potentials. The simplest interactions are those between
two particles. Potentials that only depend on the distance rij := ∥Rj −
Ri∥ between any pair of particles are called pair potentials. Here, we use
(R1, . . . ,RN) as a notation for the classical coordinates R(t). The associated
potential energy V has the form

V (R1, . . . ,RN) =
N∑

i=1

N∑

j=i+1

Uij(rij),

where Uij denotes the potential acting between the particles i and j. Exam-
ples for such pair potentials Uij between two particles are:

– The Gravitational Potential

U(rij) = −GGrav
mimj

rij
. (2.42)

13 The wave function in the electronic Schrödinger equation is still defined in a
high-dimensional space. The coordinates of the electrons are in R3K . An ana-
lytic solution or an approximation by a conventional numerical discretization
method is impossible in general. Therefore, approximation methods have to be
used that substantially reduce the dimension of the problem. Over the years,
many variants of such approximation methods have been proposed and used, such
as the Hartree-Fock method, the density functional theory, configuration inter-
action methods, coupled-cluster methods, generalized valence bond techniques,
the tight-binding approach, or the Harris functional method. An overview of the
different approaches can be found for example in [526, 528].
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– The Coulomb Potential

U(rij) =
1

4πε0

qiqj

rij
. (2.43)

– The van der Waals Potential

U(rij) = −a

(
1
rij

)6

.

– The Lennard-Jones Potential

U(rij) = αε

[(
σ

rij

)n

−
(

σ

rij

)m]
, m < n. (2.44)

Here, α is given as α = 1
n−m

(
nn

mm

) 1
n−m . This potential is parametrized

by σ and ε. The value ε describes the depth of the potential and thereby
the strength of the repulsive and attractive forces. Materials of different
strength can be simulated in this way. Increasing ε leads to stronger bonds
and therefore harder materials. The value σ parametrizes the zero crossing
of the potential. With m = 6 (as in the van der Waals force) and n = 12
the Lennard-Jones potential – as well as the resulting force – decreases very
rapidly with increasing distance. Here, the choice n = 12 does not stem
from physical considerations but merely from mathematical simplicity.
For (m, n) = (10, 12) we obtain the related potential function

U(rij) = A/r12
ij − B/r10

ij ,

which allows the empirical modeling of hydrogen bonds. The parameters
A and B depend on the kind of the particular hydrogen bond and are in
general fitted to experimental data.

– The Morse Potential

U(rij) = D(1 − e−a(rij−r0))2. (2.45)

D is the dissociation energy of the bond, a is an appropriately chosen
parameter which depends on the frequency of the bond vibrations, and r0

is a reference length.
– Hooke’s Law (Harmonic Potential)

U(rij) =
k

2
(rij − r0)2.

Note that we omitted the indices i, j in the notation for the potentials U .
These simple potentials are certainly limited in their applications. How-

ever, noble gases can be represented well this way since their atoms are only
attracted to each other by the van der Waals force. These simple potentials



30 2 From the Schrödinger Equation to Molecular Dynamics

are also used outside of molecular dynamics, as for instance in the simula-
tion of fluids on the microscale. However, more complex kinds of interactions,
such as the ones that occur in metals or molecules, can not be simulated with
such potentials in a realistic manner [209]. For this, other kinds of potential
functions are needed that include interactions between several atoms of a
molecule.

Since the eighties such many-body interactions have been introduced as
potential functions. The various approaches involve density and coordination
number, respectively, and exploit the idea that bonds are the weaker the
higher the local density of the particles is. This led to the development of
potentials with additional terms that most often consist of two components,
a two-body part and a part which takes the coordination number (that is,
the local density of particles) into account. Examples of such potentials are
the glue model [209], the embedded atom method [174], the Finnis-Sinclair
potential [232] and also the so-called effective-medium theory [336]. All these
approaches differ strongly in the way how the coordination number is used in
the construction of the potential. Sometimes different parametrizations are
obtained even for the same material because of the different constructions.
Special many-body potentials have been developed specifically for the study
of crack propagation in materials [593].

Still more complex potentials are needed for instance for the modeling of
semiconductors such as silicon. The potentials developed for these materials
also use the concept of coordination number and bond order, that means that
the strength of the bond depends on the local neighborhood. These potentials
share a strong connection with the glue models. Stillinger and Weber [584] use
a two-body and an additional three-body term in their potential. The family
of potentials developed by Tersoff [603] was modified slightly by Brenner [122]
and used in a similar form also in the modeling of hydrocarbons.

2.3 An Outlook on the Methods of Ab Initio Molecular
Dynamics

Until now we have employed approximation methods for the approximate
solution of the electronic Schrödinger equation only to obtain data for the
specification and fitting of analytical potential function for the methods of
classical molecular dynamics. But they can also be used in each time step
of Newton’s equation to directly compute the potential energy hypersurface
for the actual nuclear coordinates. This is the basic idea of the so-called ab
initio molecular dynamics. One solves the electronic Schrödinger equation
approximately to determine the effective potential energy of the nuclei. From
it one can compute the forces on the nuclei and move the nuclei accord-
ing to Newton’s equation of motion given these forces. This principle in its
different variants forms the basis of the Ehrenfest molecular dynamics, the
Born-Oppenheimer molecular dynamics and the Car-Parinello method.
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Ehrenfest Molecular Dynamics. We consider again equations (2.30),
(2.31) and assume that the system remains in a single adiabatic state, typi-
cally the ground state φ0. Then, one obtains

MkR̈k(t) = −∇Rk

∫
φ∗

0(R(t), r)He(R(t), r)φ0(R(t), r)dr (2.46)

= −∇RkV Ehr
e (R(t)),

i !∂φ0(R(t), r)
∂t

= Heφ0(R(t), r), (2.47)

where φR(t)(r, t) = c0(t)φ0(R(t), r) was assumed with |c0(t)|2 ≡ 1, compare
(2.32).

Born-Oppenheimer Molecular Dynamics. In the derivation of the so-
called Born-Oppenheimer molecular dynamics one uses the large difference
in masses between electrons and atomic nuclei. The ratio14 of the velocity
vK of a nucleus to the velocity of an electron ve is in general smaller than
10−2. Therefore, one assumes that the electrons adapt instantaneously to the
changed nuclear configuration and so are always in the quantum mechanical
ground state associated to the actual position of the nuclei. The movement
of the nuclei during the adaptation of the electron movement is negligibly
small in the sense of classical dynamics. This justifies to set

Ψ(R, r, t) ≈ ΨBO(R, r, t) :=
∞∑

j=0

χj(R, t)φj(R, r), (2.48)

which allows to separate the fast from the slow variables. In contrast to (2.14)
the electronic wave functions φj(R, r) depend no longer on time but depend
on the nuclear coordinates R. Using a Taylor expansion of the stationary
Schrödinger equation and several approximations that rely on the difference
in masses between electrons and nuclei, see for example Chapter 8.4 in [546],
the stationary Schrödinger equation can be separated into two equations,
the electronic Schrödinger equation and an equation for the nuclei. The first
equation describes how the electrons behave when the position of the nuclei
is fixed. Its solution leads to an effective potential that appears in the equa-
tion for the nuclei and describes the effect of the electrons on the interaction
between the nuclei. After restriction to the ground state and further approx-
imations, the Born-Oppenheimer molecular dynamics results which is given
by the equations

MkR̈k(t) = −∇Rk min
φ0

{∫
φ∗

0(R(t), r)He(R(t), r)φ0(R(t), r)dr
}

=: −∇RkV BO
e (R(t)), (2.49)

14 The ratio of the mass me of an electron and the mass MK of a nucleus is –
except for hydrogen and helium – smaller than 10−4. Furthermore, according to
classical kinetic gas theory, the energy per degree of freedom of non-interacting
particles is the same, thus it holds mev

2
e = MKv2

K .
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He(R(t), r)φ0(R(t), r) = E0(R(t))φ0(R(t), r).

With the forces Fk(t) = MkR̈k(t) acting on the nuclei, their positions can
be moved according to the laws of classical mechanics.15

In our case, in which we consider the ground state and neglect all coupling
terms, the Ehrenfest potential V Ehr

e agrees, according to equation (2.38), with
the Born-Oppenheimer potential V BO

e . However, the dynamics is fundamen-
tally different. In the Born-Oppenheimer method, the computation of the
electron structure is reduced to the solution of the stationary Schrödinger
equation, which then is used to compute the forces acting at that time on
the nuclei so that the nuclei can be moved according to the laws of classi-
cal molecular dynamics. The time-dependency of the state of the electrons
is here exclusively a consequence of the classical motion of the nuclei and
not, as in the case of the Ehrenfest molecular dynamics, determined from
the time-dependent Schrödinger equation in the coupled system of equations
(2.46). In particular the time evolution of the state of the electrons in the
Ehrenfest method corresponds to a unitary propagation [360, 361, 375]. If the
initial state is minimal, its norm and minimality are maintained [218, 605].
This is not true for the Born-Oppenheimer dynamics in which a minimization
is needed in every time step.

A further difference of the two methods is the following: Let us assume
that particle functions ψαi are given from which, as for instance in the
Hartree-Fock method,16 with r = (r1, . . . , rK) product functions ψSD

α1...αK
,

the so-called Slater determinants,17 are formed by

ψSD
α1...αK

(r, t) =
1√
K!

det

∣∣∣∣∣∣∣∣∣∣∣∣

ψα1(r1, t) ψα1(r2, t) . . . ψα1(rK , t)
ψα2(r1, t) ψα2(r2, t) . . . ψα2(rK , t)

. . . .

. . . .

. . . .
ψαK (r1, t) ψαK (r2, t) . . . ψαK (rK , t)

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.50)

For an approximate solution of the electronic Schrödinger equation one now
expands the ground state φ0(R(t), r) with help of these products of particle
functions as

φ0(R(t), r) =
∑

α1,...,αK

γα1,...,αK (t)ψSD
α1...αK

(r, t) (2.51)

with the coefficients
15 There is also the approach to apply this method to every excited state φj without

taking interferences into account, i.e., to proceed analogously to (2.33-2.36) and
to neglect all or only certain coupling terms [304, 359].

16 In density functional theory one uses a different kind of function for the particles,
but the principle is the same.

17 This means that the spin of the particles is neglected here.



2.3 An Outlook on Methods of Ab Initio Molecular Dynamics 33

γα1,...,αK (t) :=
∫

ψ∗SD
α1...αK

(r, t)φ0(R(t), r)dr. (2.52)

Then, one has to minimize in equation (2.49) under the constraint that the
particle functions are orthonormal,

∫
ψ∗

αi
ψαj dr = δαiαj , since this is a nec-

essary requirement for the expansion (2.51). Since the time evolution of the
electrons under the Ehrenfest dynamics is a unitary propagation, the particle
functions remain orthonormal if they were orthonormal at the initial time.

Car-Parrinello Molecular Dynamics. The advantage of the Ehrenfest
dynamics is that the wave function stays minimal with respect to the current
position of the nuclei. The disadvantage is that the size of the time step is
determined by the motion of the electrons and is therefore “small”. The size
of the time step in the Born-Oppenheimer dynamics is determined by the
motion of the nuclei, on the other hand, and is therefore certainly “larger”.
The disadvantage however is that a minimization is required in each time
step. The Car-Parrinello molecular dynamics [137, 469] attempts to com-
bine the advantages of both methods and to avoid their disadvantages. The
fundamental idea is to transform the quantum mechanical separation of the
time scales of the “fast” electrons and the “slow” nuclei into a classical adi-
abatic separation of energy scales within the theory of dynamical systems
and to neglect the explicit time-dependency of the motion of the electrons
[106, 465, 466, 515].

To understand the idea, we consider at first again the Ehrenfest and Born-
Oppenheimer dynamics. If restricted to the ground state φ0(R, r), the central
quantity

VEl(R) :=
∫

φ∗
0(R, r)He(R, r)φ0(R, r)dr = E0(R)

is a function of the position of the nuclei R. From the Lagrange function of
classical mechanics for the motion of the nuclei

L(R, Ṙ) =
N∑

k

1
2
MkṘ2

k − VEl(R), (2.53)

we obtain, using the appropriate Euler-Lagrange equations d
dt

∂L
∂Ṙk

= ∂L
∂Rk

,
the equation of motion (2.49)

MkR̈k(t) = −∇RkE0(R(t)). (2.54)

One can regard the energy of the ground state E0 = VEl also as a functional
of the wave function φ0. If the wave function φ0 has an expansion with now
time-dependent particle functions {ψi(r, t)}, analog to the expansion (2.51)
in (one or several) Slater determinants (2.50), VEl can also be seen as a func-
tional of the orbitals {ψi(r, t)}. The force acting on the nuclei is obtained
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in classical mechanics as the derivative of a Lagrange function with respect
to the positions of the nuclei. If one now also views the orbitals as “classi-
cal particles”,18 one can determine the forces acting on the orbitals as the
functional derivative of an appropriate Lagrange function with respect to the
orbitals. Then, a purely classical approach results in a Lagrange function of
the form [137]

LCP (R, Ṙ, {ψi}, {ψ̇i}) = (2.55)
∑

k

1
2
MkṘ2

k +
∑

i

1
2
µi

∫
ψ̇∗

i ψ̇idr − VEl(R, {ψi}) + ϕ(R, {ψi})

with the “fictitious masses” µi of the orbitals {ψi} and a general, appro-
priately chosen constraint ϕ. A simple example for such a constraint is the
orthonormality of the orbitals. This yields

ϕ(R, {ψi}) =
∑

i,j

λij

(∫
ψ∗

i ψjdr − δij

)

with the Lagrange multipliers λij . In this simple case ϕ does not depend
(plane wave basis) or does only implicitly depend (Gaussian basis) on R(t).
The respective Euler-Lagrange equations

d

dt

∂L

∂Ṙk

=
∂L

∂Rk
,

d

dt

δL

δψ̇∗
i

=
δL

δψ∗
i

(2.56)

give Newton’s equations of motion19

MkR̈k(t) = −∇Rk

∫
φ∗

0Heφ0dr + ∇Rkϕ(R, {ψi}), (2.57)

µiψ̈i(r, t) = − δ

δψ∗
i

∫
φ∗

0Heφ0dr +
δ

δψ∗
i

ϕ(R, {ψi}). (2.58)

The nuclei move according to a physical temperature proportional to the
kinetic energy

∑
k MkṘ2

k of the nuclei. In contrast, the electrons move ac-
cording to a “fictitious temperature” proportional to the fictitious kinetic
energy

∑
i µi

∫
ψ̇∗

i ψ̇idr of the orbitals.20
Let the initial state φ0 at time t0 be exactly the ground state. For a

“low temperature of the electrons” the electrons move almost exactly on the
Born-Oppenheimer surface. But the “temperature of the electrons” has to be
“high” enough so that the electrons can adjust to the motion of the nuclei.
The problem in practice is the “right temperature control”. The subsystem
of the physical motion of the nuclei described by equation (2.57) and the
18 For this, one treats the orbitals in the context of a classical field theory.
19 ψ∗

i (r, t) and ψi(r, t) are linearly independent for complex variations.
20 The physical kinetic energy of the electrons is included in E0.
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subsystem of the fictitious orbital motions described by equation (2.58) have
to be separated in such a way that the fast electronic subsystem stays “cold”
for a long time and nevertheless immediately adjusts to the slow motion
of the nuclei, while keeping the nuclei at the same time at their physical
temperature (which is much higher). In particular, there is no transfer of
energy allowed between the physical subsystem of the (“hot”) nuclei and the
fictitious subsystem of the (“cold”) electrons. It is possible to satisfy these
requirements if the force spectrum of the degrees of freedom of the electrons
f(ω) =

∫ ∞
0 cos(ωt)

(∑
i

∫
ψ̇∗

i (r, t)ψi(r, 0)dr
)

dt and that of the nuclei do not
overlap in any range of frequencies [515]. In [106] it could be shown that the
absolute error of the Car-Parrinello trajectory can be controlled relative to
the trajectory determined by the exact Born-Oppenheimer surface by using
the parameters µi.

The Hellmann-Feynman Theorem. In the molecular dynamics methods
described above the force acting on a nucleus has to be determined according
to the equations (2.46), (2.49) and (2.57). A direct numerical evaluation of
the derivative

Fk(R) = −∇Rk

∫
φ∗

0Heφ0dr,

for instance using a finite difference approximation, is too expensive on the
one hand and too inaccurate for dynamical simulations on the other hand. It
is therefore desirable to evaluate the derivative analytically and to apply it
directly to the different parts of He. This is made possible by the following
approach: Let q be any coordinate (Rk)i, i ∈ {1, 2, 3} of any component Rk

of R. Keep now all other components of R and the other two coordinates of
Rk fixed and only allow q to vary. Then, the electronic Hamilton operator
He(R, r) = H(q) depends on q (besides r) according to equation (2.13) via the
operators VeK(R, r) and VKK(R). By the stationary electronic Schrödinger
equation

H(q)φ0(q) = E0(q)φ0(q) (2.59)

therefore also the state of the electrons φ0 (beside r) and the energy E0

depend on q. If the electronic state is assumed to be normalized, that is, it
satisfies

∫
φ∗

0φ0dr = 1, then a translation by q results in a force F (q) of21

−F (q) =
dE0(q)

dq
=

∫
φ∗

0(q)
dH(q)

dq
φ0(q)dr. (2.60)

The justification for this result is provided by the Hellmann-Feynman
Theorem:22 Let φj(q) be the normalized eigenfunction of a self-adjoint op-
21 An analogous results holds for the excited states φj with the associated eigen-

values Ej(q) and the associated Schrödinger equation H(q)φj(q) = Ej(q)φj(q).
22 The so-called Hellmann-Feynman theorem for quantum mechanical forces was

proven originally in 1927 by Ehrenfest [204], it was discussed later by Hellman
[311] and was rediscovered independently by Feynmann [225] in 1939.
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erator H(q) associated to the eigenvalue Ej(q) and q a real parameter, then
it holds that

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr. (2.61)

This can be shown as follows: Using the product rule one obtains

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr +
∫

dφ∗
j (q)
dq

H(q)φj(q)dr +
∫

φ∗
j (q)H(q)

dφj(q)
dq

dr.

The φj(q) are eigenfunctions associated to the eigenvalue Ej(q), therefore it
holds that

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr +

Ej(q)
∫

dφ∗
j (q)
dq

φj(q)dr + Ej(q)
∫

φ∗
j (q)

dφj(q)
dq

dr

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr + Ej(q)
d

dq

∫
φ∗

j (q)φj(q)dr

and now the normalization condition for φj implies the theorem.
This allows a simple numerical computation of the forces between different

bound atoms. Because of

Fk(R) = −∇Rk

∫
φ∗

0Heφ0dr = −
∫

φ∗
0∇RkHeφ0dr (2.62)

and
∇RkHe = ∇Rk(Vee + VeK + VKK) = ∇Rk(VeK + VKK)

one obtains the force on the kth nucleus as

Fk(R) = −
∫

φ∗
0∇Rk(VeK + VKK)φ0dr

= −
∫

φ∗
0∇RkVeKφ0dr −∇RkVKK (2.63)

=
e2

4πϵ0

⎛

⎝
∫

φ∗
0φ0

K∑

i=1

N∑

j=1

∇Rk

Zj

|| Rj−ri ||
dr −∇Rk

N∑

i<j

ZiZj

|| Ri − Rj ||

⎞

⎠ .

The derivatives now act directly on the potential functions VKK and VeK

and can be computed analytically. The force Fk = Fk(R) on the kth nucleus
therefore results from the Coulomb forces (from the potential VKK) acting
between the nuclei and an additional effective force caused by the electrons.
This effective force has the form of a Coulomb force induced by a hypo-
thetical electron cloud with a density given by the solution of the electronic
Schrödinger equation. In this way, the influence of the electrons on the nuclei
is taken into account.


