
G25.2666: Quantum Chemistry and Dynamics

Notes for Lecture 10

I. THE BORN-OPPENHEIMER APPROXIMATION

The next few lectures will treat the problem of quantum chemistry, a subfield of quantum mechanics also known as
molecular quantum mechanics. The idea of quantum chemistry is to use only the simple facts molecules and, indeed,
all of ordinary matter, can be viewed as composed only of positively charged nuclei and negatively charged electrons.
This universal description is then subject to a quantum mechanical treatment from which the properties of the system
are derived or computed.

We begin our discussion of AIMD by considering a system of N nuclei described by coordinates, R1, ...,RN ≡ R,
momenta, P1, ...,PN ≡ P, and masses M1, ..., MN , and Ne electrons described by coordinates, r1, ..., rNe

≡ r,
momenta, p1, ...,pNe

≡ p, and spin variables, s1, ..., sNe
≡ s. The Hamiltonian of the system is given by

H =
N

∑

I=1

P2
I

2MI
+

Ne
∑

i=1

p2
i

2m
+

∑

i>j

e2

|ri − rj |
+

∑

I>J

ZIZJe2

|RI − RJ |
−

∑

i,I

ZIe
2

|RI − ri|

≡ TN + Te + Vee(r) + VNN(R) + VeN(r,R)

where m is the mass of the electron, and ZIe is the charge on the Ith nucleus. In the second line, TN, Te, Vee,
VNN, and VeN represent the nuclear and electron kinetic energy operators and electron-electron, electron-nuclear,
and nuclear-nuclear interaction potential operators, respectively. Note that this Hamiltonian is universal in that
it describes all of everyday matter from biological macromolecules such as proteins, enzymes and nucleic acids, to
metals and semiconductors to synthetic materials such as plastics. Thus, if we could solve for the eigenvalues and
eigenfunctions of this Hamiltonian, we could, predict any property we wished of a given system. This fact lead the
physicist P. A. M. Dirac to comment that all of chemistry is a solved problem, at least, in principle. Of course, the
problem cannot actually be solved exactly, so approximation methods are needed and it is in the development of
approximation methods and an analysis of their accuracy that quantum chemistry is focused.

If we sought to solve the complete quantum mechanical problem, we start by seeking the eigenfunctions and
eigenvalues of this Hamiltonian, which will be given by solution of the time-independent Schrödinger equation

[TN + Te + Vee(r) + VNN(R) + VeN(r,R)] Ψ(x,R) = EΨ(x,R) (1)

where x ≡ (r, s) denotes the full collection of electron position and spin variables, and Ψ(x,R) is an eigenfunction of
H with eigenvalue E. Clearly, an exact solution of Eq. (1) is not possible and approximations must be made. We first
invoke the Born-Oppenheimer approximation by recognizing that, in a dynamical sense, there is a strong separation
of time scales between the electronic and nuclear motion, since the electrons are lighter than the nuclei by three orders
of magnitude. In terms of Eq. (1), this can be exploited by assuming a quasi-separable ansatz of the form

Ψ(x,R) = φ(x,R)χ(R) (2)

where χ(R) is a nuclear wave function and φ(x,R) is an electronic wave function that depends parametrically on the
nuclear positions.

The Born-Oppenheimer (named for its original inventors, Max Born and Robert Oppenheimer) is based on the fact
that nuclei are several thousand times heavier than electrons. The proton, itself, is approximately 2000 times more
massive than an electron. In a dynamical sense, the electrons can be regarded as particles that follow the nuclear
motion adiabatically, meaning that they are “dragged” along with the nuclei without requiring a finite relaxation
time. This, of course, is an approximation, since there could be non-adiabatic effects that do not allow the electrons
to follow in this “instantaneous” manner, however, in many systems, the adiabatic separation between electrons and
nuclei is an excellent approximation. Another consequence of the mass difference between electrons and nuclei is that
the nuclear components of the wave function are spatially more localized than the electronic component of the wave
function. In the classical limit, the nuclear are fully localized about single points representing classical point particles.
Thus, it follows that the nuclear wave function rises more steeply than the electronic wave function, which means that
∇Iχ(r) ≫ ∇Iφ(x,R), from which we may approximate
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TN (3)

psi(x, r)χ(R) = −
h̄2

2

N
∑

I=1

1

MI

[

ψ(x,R)∇2
Iχ(R) + χ(R)∇2

Iψ(x,R) + 2∇Iψ(x,R) ·∇Iφ(x,R)
]

≈ −
h̄2

2

N
∑

I=1

1

MI
ψ(x,R)∇2

Iχ(R) (4)

Substitution of Eq. (2) into Eq. (1) and using the approximation that the nuclear wave function χ(R) is more
localized than the electronic wave function, i.e. ∇Iχ(R) ≫ ∇Iφ(x,R), yields

[Te + Vee(r) + VeN(r,R)] φ(x,R)

φ(x,R)
= E −

[TN + VNN(R)]χ(R)

χ(R)
(5)

From the above, it is clear that the left side can only be a function of R alone. Let this function be denoted, ε(R).
Thus,

[Te + Vee(r) + VeN(r,R)]φ(x,R)

φ(x,R)
= ε(R)

[Te + Vee(r) + VeN(r,R)]φ(x,R) = ε(R)φ(x,R) (6)

Eq. (6) is an electronic eigenvalue equation for an electronic Hamiltonian, He(R) = Te + Vee(r) + VeN(r,R) which
will yield a set of normalized eigenfunctions, φn(x,R) and eigenvalues, εn(R), which depend parametrically on the
nuclear positions, R. For each solution, there will be a nuclear eigenvalue equation:

[TN + VNN(R) + εn(R)]χ(R) = Eχ(R) (7)

Moreover, each electronic eigenvalue, εn(R), will give rise to an electronic surface, and these surfaces are known as
Born-Oppenheimer surfaces. Thus, the full internuclear potential for each electronic surface is given by VNN(R) +
εn(R). On each Born-Oppenheimer surface, the nuclear eigenvalue problem can be solved, which yields a set of levels
(rotational and vibrational in the nuclear motion). This is illustrated in the figure below:
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FIG. 1.

The Born-Oppenheimer surfaces are surfaces on which the nuclear dynamics is described by a time-dependent
Schrödinger equation for the time-dependent nuclear wave function X(R, t):

[TN + VNN(R) + εn(R)] X(R, t) = ih̄
∂

∂t
X(R, t) (8)

will evolve. The physical interpretation of Eq. (8) is that the electrons respond instantaneously to the nuclear motion,
therefore, it is sufficient to obtain a set of instantaneous electronic eigenvalues and eigenfunctions at each nuclear
configuration, R (hence the parametric dependence of φn(x,R) and εn(R) on R). The eigenvalues, in turn, give a
family of (uncoupled) potential surfaces on which the nuclear wave function can evolve. Of course, these surfaces can
(and often do) become coupled by so called non-adiabatic effects, contained in the terms that have been neglected in
the above derivation.

An important assumption of the Born-Oppenheimer approximation is that there are no excitations of the electrons
among the various surfaces. Such excitations constitute non-adiabatic effects which are, therefore, neglected. As an
example of a conditions in which this approximation is valid, consider a system at temperature T . If the electrons are
in their ground state ε0(R), then, if ε1(R) denotes the first excitates state, there will be no excitations to this state if

|ε1(R) − ε0(R)| ≫ kT (9)
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for all nuclear configurations. Without complete knowledge of these surfaces, it is not possible to know a priori if this
condition will be satisfied, and there could be regions where the surfaces approach each other with an energy spacing
close to kT . If the system visits such nuclear configurations, then the Born-Oppenheimer approximation will break
down.

FIG. 2.

In many cases, non-adiabatic effects can be neglected, and we may consider motion only on the ground electronic
surface described by:

[Te + Vee(r) + VeN(r,R)]φ0(x,R) = ε0(R)φ0(x,R)

[TN + ε0(R) + VNN(R)] X(R, t) = ih̄
∂

∂t
X(R, t) (10)

Moreover, if nuclear quantum effects can be neglected, then we may arrive at classical nuclear evolution by assuming
X(R, t) is of the form

X(R, t) = A(R, t)eiS(R,t)/h̄ (11)

and neglecting all terms involving h̄, which yields an approximate equation for S(R, t):

HN(∇1S, ...,∇NS,R1, ...,RN ) +
∂S

∂t
= 0 (12)

which is just the classical Hamiltonian-Jacobi equation with

HN(P1, ...,PN ,R1, ...,RN ) =
N

∑

I=1

P2
I

2MI
+ VNN(R) + ε0(R) (13)

denoting the classical nuclear Hamiltonian. The Hamilton-Jacobi equation is equivalent to classical motion on the
ground-state surface, E0(R) = ε0(R) + VNN(R) given by

ṘI =
PI

MI

ṖI = −∇IE0(R) (14)

Note that the force −∇IE0(R) contains a term from the nuclear-nuclear repulsion and a term from the derivative of
the electronic eigenvalue, ε0(R). Because of the Hellman-Feynman theorem, the latter can be expressed as
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∇Iε0(R) = ⟨φ0(R)|∇IHe(R)|φ0(R)⟩ (15)

Equations (14) and Eq. (15) form the theoretical basis of the AIMD approach. The practical implementation of the
AIMD method requires an algorithm for the numerical solution of Eq. (14) with forces obtained from Eq. (15) at each
step of the calculation. Moreover, since an exact solution for the ground state electronic wave function, |φ0(R)⟩ and
eigenvalue, ε0(R) are not available, in general, it is necessary to introduce an approximation scheme for obtaining
these quantities. This is the topic of the next section.

II. PROOF OF THE HELLMAN-FEYNMAN THEOREM

Consider a system with a Hamiltonian H(λ) that depends on some parameters λ. Let |ψ(λ)⟩ be an eigenvector of
H(λ) with eigenvalue E(λ)

H(λ)|ψ(λ)⟩ = E(λ)|ψ(λ)⟩ (16)

We further assume that |ψ(λ)⟩ is normalized so that

⟨ψ(λ)|ψ(λ)⟩ = 1 (17)

The Hellman-Feynman theorem states that

dE

dλ
=

〈

ψ(λ)

∣

∣

∣

∣

dH

dλ

∣

∣

∣

∣

ψ(λ)

〉

(18)

The proof of the Hellman-Feynman theorem is straightforward. We begin with the fact that

E(λ) = ⟨ψ(λ)|H(λ)|ψ(λ)⟩ (19)

Differentiating both sides yields

dE

dλ
=

〈

ψ(λ)

∣

∣

∣

∣

dH

dλ

∣

∣

∣

∣

ψ(λ)

〉

+

〈

dψ

dλ
|H(λ)|ψ(λ)

〉

+

〈

ψ |H(λ)|
dψ

dλ

〉

(20)

Since |ψ(λ)⟩ is an eigenvector of H(λ), this can be written as

dE

dλ
=

〈

ψ(λ)

∣

∣

∣

∣

dH

dλ

∣

∣

∣

∣

ψ(λ)

〉

+ E(λ)

〈

dψ

dλ
| ψ(λ)

〉

+ E(λ)

〈

ψ |
dψ

dλ

〉

〈

ψ(λ)

∣

∣

∣

∣

dH

dλ

∣

∣

∣

∣

ψ(λ)

〉

+ E(λ)

[〈

dψ

dλ
| ψ(λ)

〉

+

〈

ψ |
dψ

dλ

〉]

However, since |ψ(λ)⟩ is normalized, we have, from the normalization condition:

⟨ψ(λ)|ψ(λ)⟩ = 1
〈

dψ

dλ
| ψ(λ)

〉

+

〈

ψ |
dψ

dλ

〉

= 0

Hence, the term in square brackets vanishes, and we have

dE

dλ
=

〈

ψ(λ)

∣

∣

∣

∣

dH

dλ

∣

∣

∣

∣

ψ(λ)

〉

(21)

which is just the Hellman-Feynman theorem.
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