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Asymptotic Expansions:
Ray Optics



Motivation: Discontinuities of the Electromagnetic Field

Let S be a surface where the time-domain electromagnetic field E, H, has a
discontinuity; for instance, it is non-zero on one side of S and zero on the other
side:
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Let us consider the electromagnetic field in a free space filled with a non-
conductive, homogeneous, isotropic, non-dispersive medium:
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Motivation: Discontinuities of the Electromagnetic Field
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As in the usual derivation of the boundary conditions across interfaces between
different media, let us enforce the magnetic Gauss law to an elementary
parallelepiped dW:
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The magnetic field H is purely tangential on S.
Dually, also the electric field E is purely tangential on S.



Motivation: Discontinuities of the Electromagnetic Field

Let us now enforce the Faraday-Neumann-Lenz law to an elementary circuit dS
across the surface S:
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If the surface S were static, the RHS would be zero and one would then conclude
that also the tangential electric field is zero. Hence the total field would be zero,
against the assumption of a non-zero field on S-.
Therefore, the surface S must move, i.e., the discontinuity of the e.m. field
propagates.



Motivation: Discontinuities of the Electromagnetic Field

By letting then u be the velocity of S along n one has
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Motivation: Discontinuities of the Electromagnetic Field

The arbitrariness of t in the tangent plane allows for deducing

u n E H

and dually: u n H E

This set of relations in turn implies (proof by exercise):
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 The surface of discontinuity moves
with the velocity of light in vacuum

1
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 nH E
The fields, purely tangential to S, are
linked as in uniform plane waves

Therefore, the time-domain electromagnetic field in the vicinity of a surface
of discontinuity (wavefront) behaves locally as a uniform plane wave.
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Wavefronts, Iconal, Rays

As time flows, S moves and thus a family of surfaces arise, whose equation can
always be cast in the form

 S ctr

in terms of a suitable (real) function S(r) of the coordinates known as iconal.

The lines orthogonal to the wavefronts are termed rays.

(c velocity of light in vacuum)

S(r)=S1

rays
wavefronts

S(r)=S2

S(r)=S3



The Iconal Equation

Differentiating the equation of the wavefronts:
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On the other hand, if then
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Characteristic Equation of the Wave Equation

The iconal equation is a non-linear, first-order PDE.
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By letting , from the iconal equation it follows that   ,t S ct  r r

The characteristic equation of a linear, second-order PDE is obtained by
replacing the second derivatives with the square of the first derivatives. Hence
we see that we have obtained the characteristic equation of the wave equation

 2 2
2

2 2 0
n
c t

   


r

We have thus deduced the well-known fact that F (solution of the
characteristic equation) is constant on the surfaces of discontinuity of y
(solution of the wave equation).



High-Frequency Ansatz

Since time discontinuities correspond to high-frequency components of the
Fourier spectrum, the previous discussion should motivate the following ansatz
for approximate, high-frequency solutions of the time-harmonic Maxwell
equations:
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where are a slowly varying functions (i.e., their characteristic length
scale of variation is large w.r.t. the wavelength in the medium) independent of k0
(i.e., of frequency).

   0 ,SE r r

Such an ansatz says that, in the high-frequency limit, the field behaves locally as
a uniform plane wave.



High-Frequency Solution of Maxwell Equations

By inserting the ansatz in the source-free, time-harmonic Maxwell Equations one
readily finds:
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We now let , so terms in 1/k0 are neglected. After left-multiplying
vectorially by one has (derivation by exercise)
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Luneburg-Kline Asymptotic Series

However, for finite frequencies we are not able to appreciate the error
committed by representing the field through the above procedure. An answer to
this problem can be found by resorting to a full asymptotic expansion of the
field.

Let us do that first using the scalar approximation (much used in optics), i.e.
by considering a generic component of the e.m. field, solution of the
scalar wave equation (valid for slowly varying refraction indices):

     2 2 2
0 0 0, , 0u k k n u k  r r r

 0,u kr

In particular, let us assume that the following asymptotic expansion holds:
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Luneburg-Kline Asymptotic Series

By introducing the LK series into the scalar wave equation one has

where
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This is satisfied for any N if and only if , which yield a set
of equations for S and the Am’s.

   0 0,1,2...mQ m r

In particular, for m=0 one finds again
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The Ray Equation

Let us consider a single-valued eikonal S(r) and let us define the unit vector

   ˆ / /S S S n    s r r

and let us consider the trajectories (rays) tangent to at each r. ŝ r sr

(Whenever S is not single-valued, the region will be spanned by a multiplicity of
ray-families.)

Assuming s is the curvilinear abscissa along the ray,
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The Ray Equation

 


   
 

      
 2

/ˆ

2

d d d 1 1 1ˆ
d d d 2

n

S n S

S S

n n S S S S
s s s n n



  

  

                                 

r

rs r

r rr s r r
r r





  
2

2

2

1 1
2

S S

n n

n n
n

  

 

   
r



Let us further derive the latter equation w.r.t the curvilinear abscissa s:
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The Ray Equation
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Instead, in a non-homogeneous medium the rays are curved lines:

Frenet
equations:
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The Malus-Dupin Theorem

The ray equation expresses a necessary condition for a ray bundle to be
orthogonal to a family of wavefronts, but it does not always imply the existence
of an eikonal.

The eikonal exists only if

  ̂n r s 0

This is equivalent to assuming the dyadic to be symmetric.

It can be shown that if this condition is verified at one point, then it holds
everywhere, also if the refractive index is discontinuous (e.g., on reflecting or
refracting surfaces).

This result is known as the Malus-Dupin Theorem.
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Variational Properties of the Rays

Optical path along the curve g:
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The optical path is a functional of the kind

Let us look for the conditions under which such a functional is extremal…
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Variational Properties of the Rays
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The arbitrariness of g(x) allows for concluding
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Variational Properties of the Rays
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Fermat Principle: the optical path is stationary along a ray

Let us apply this to the optical path, where    , ,F t n r r r r

The Euler-Lagrange equations then read



Consequences of the Fermat Principle

off-axis parabolic reflector

The metric properties of conical sections give rise to corresponding ray-optical
properties. For instance, we have the focusing property of a parabolic mirror:



Consequences of the Fermat Principle

These can be combined with the metric properties of the ellipse and the
hyperbola to provide composite reflector-antenna systems…

Cassegrain configuration:
parabolic reflector, hyperbolic sub-reflector



Field-Transport Equation for A0

Recall:  
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Let us now examine the first of the so-called transport equations:
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Field-Transport Equation for A0

The quantity can be considered the analogous of the Poynting vector for the

field . The field-transport equation then expresses the

conservation of the power flux:
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Caustics as Envelopes of Ray Budles

The field amplitude predicted by ray optics becomes infinite on certain surfaces
called caustics, where . These are the envelopes of the ray bundles:2S 
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Caustics: Cusps

Furthermore, at special points (cusps) of a caustic, it diverges in a manner
different than at all other points of the caustic.

caustic

cusp

P

three rays pass through P
(complex interference figure)

Nephroid caustic at bottom of tea cup
(note the presence of a cusp)



Caustics in a Homogeneous Medium

In a homogeneous medium, the caustic is the locus of the principal centers of
curvature (foci) of the wavefront (hence, it is a two-sheeted surface in general):
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Example: Omnidirectional Cylindrical Wave

Let us consider the ray-optics approximation for an omnidirectional cylindrical
wave in a homogeneous medium, i.e., a solution of the 2D Helmholtz equation
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Here the caustics are the z axis and a circle at infinity.



Example: Omnidirectional Cylindrical Wave

Let us now calculate the amplitude A0:
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Compare with the asymptotic behavior of the exact 2D omnidirectional
outgoing cylindrical wave:

(i.e., the expected amplitude spreading for a cylindrical wave)
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Example: Omnidirectional Spherical Wave

Let us now consider the ray-optics approximation for an omnidirectional spherical
wave in a homogeneous medium, i.e., a solution of the 3D Helmholtz equation
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in spherical coordinates (,q,f):
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Here the caustics both degenerate to a point (the
centre of the spherical wavefronts).



Example: Omnidirectional Spherical Wave
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Compare with the exact 3D omnidirectional outgoing spherical wave:

(i.e., the expected amplitude spreading for a spherical wave)
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Let us now calculate the amplitude A0:



Evanescent Waves and Complex Eikonals

The asymptotic L-K approach has been generalized (by L. B. Felsen) assuming a
high-frequency representation in terms of locally evanescent plane waves, by
introducing a complex eikonal:

     S R jI r r r



Evanescent Waves and Complex Eikonals

Examples of evanescent wave phenomena:



Ray Optics of Maxwell Vector Fields: Electric Field

The electric field E in a dielectric inhomogeneous medium satisfies the vector
wave equation (proof by exercise):
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We look for a ray optical representation in the form
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Ray Optics of Maxwell Vector Fields
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Comparing with the scalar treatment, we see that the vector theory reduces to the
scalar one only if the Em are perpendicular to . In general, Ex, Ey, and Ez mix
because of the terms containing ; hence, an initially linearly polarized field
does not maintain its polarization during propagation.

n
 lnn

eikonal equation

field-transport equation for E0

field-transport equation for the higher-order terms Em

Inserting the LK representation into the vector wave equation and equating to
zero the coefficients of each power of k0 one obtains (proof by exercise):



Lowest-Order Term: Polarization

In order to study the lowest-order term of the LK series, it is convenient to
replace E0(r) with E’(r):
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The lowest-order transport equation then reduces to (proof by exercise)
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Multiplying scalarly by and using the ray equation this becomesŝ
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Therefore, is constant along the ray.ˆn s E



Lowest-Order Term: Polarization (cont’d)

In particular, if E’ is perpendicular to at one point, it remains perpendicular along
the whole ray path.

ŝ

In this case, multiplying the transport equation by E’ :
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Therefore, is also constant along the ray. E E

In conclusion, E’ is a constant-amplitude vector orthogonal to along a ray if it is
such at one point of the ray.
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Asymptotic Expansion of the Magnetic Field

Inserting the LK representation of the electric field into the first Maxwell
equation one obtains
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In particular, ; hence, if E0 is orthogonal to , then , E0, and H0
are mutually orthogonal and the field is a TEM wave to the zeroth order in 1/k0.
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The Limits of Ray Optics

Some features of the GO field are clearly unphysical:

- Divergence of the amplitude on the caustics

- Abrupt transition between shadow and illuminated regions

In such regions the assumption of slow variability of the amplitude (w.r.t. the
wavelength) is not satisfied.



The Limits of Ray Optics

This also occurs in other cases:

grazing incidence on curved surfaces
incidence on sharp wedges or tips

excitation of surface, lateral waves, or leaky waves

The study of wave phenomena beyond GO is the domain of diffraction theories…
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