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Fundamentals on Complex Functions: 
Integration



Complex Integration

Many important properties of analytic functions are very difficult to prove 
without use of complex integration.

As in the real case, we distinguish between:

•Indefinite integrals: a function whose derivative equals a given analytic function 
in a region

•Definite integrals: these are taken over piecewise differentiable arcs and are not 
limited to analytic functions but can be defined for continuous functions:
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Definite Integral along a Piecewise Differentiable Arc

Definition:       d d
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It is readily proved that this definition does not depend on the parameterization
of the arc . In fact, changing representation through

where z(t) is a parametric representation of the arc  :  : ,z z t a t b   
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Integration over Paths: Elementary Properties

• Integration along the opposite arc:
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Integration over Paths: Elementary Properties

• Additivity:

     
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If the curves i are portions of the same 
differentiable arc, this is a property of the integral
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Otherwise, the RHS defines the meaning 
of the LHS…



Integration over Paths: Elementary Properties

• Relation with the integral w.r.t the arc length 

integral w.r.t. the arc length.
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Integration over Paths: Elementary Properties

• Definition in terms of integrals of real differential forms
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Independence of Path for Given Endpoints

Let us recall the following fundamental theorem for line integrals of (real or complex) 
differential forms:

The line integral                            , defined in W, depends only on the end points of

 if and only if there exists a function U(x,y) in W with                                         .

Theorem:

d dp x q y



,U Up q

x y
  
 

This is of course the well-known fact that a 2D vector field v with components (p,q) 
is conservative if and only if it admits a (scalar) potential U (i.e., v=U).



Independence of Path for Given Endpoints

Applying this to                                                                      we see that the integral 

depends only on the endpoints if and only if there exists F such that                               

     d d df z z f z x jf z y
 

  

hence if and only if f is the derivative of an analytic function F.

,F Ff jf
x y

  
 

(Cauchy-Riemann)F Fj
x y

  
 

i.e., iff

(in fact, it it can readily be verified that this is a compact way of writing the 
Cauchy-Riemann equations that characterize analytic functions),



Integrals over Closed Curves

Saying that an integral depends only on the end points is equivalent to saying that 
the integral over any closed curve is zero.

Hence if a continuous f is the derivative of a function F analytic in W, then for any 
closed curve  in W

 d 0f z z




and viceversa (under these conditions we shall see that f is itself analytic in W).
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Integrals over Closed Curves (cont’d)

•

In fact,                is the derivative of                                    . 

• For n=1, the integral over a closed curve is not always zero. In fact, let C be the 
circle : 
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(hence it is impossible to define a single-valued branch of   inside
an annulus                                    )1 2z a   

 log z a

Examples:
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The Index of a Point w.r.t. a Closed Path

The latter result admits the following important generalization:

Let  be a closed path, let W be the complement of  and define

Theorem:

  1 dInd
2

z
j z




 




Then                      is an integer-valued function on W which is constant in each 
component of W and which is 0 in the unbounded component of W.

 Ind z

is called the index of z with respect to . Ind z



The Index of a Point w.r.t. a Closed Path

Examples:

 1Ind 1a 

 2Ind 0a 

1a

2a

It can be shown that                         is the net increase of the argument of                   
as           describes the closed curve .

If we divide this increase by 2p we obtain the number of times  winds around a.

Hence the index is also often termed the winding number of  with respect to a.

 2 Ind a  z t a
 z t



The Local Cauchy Theorem
and its Consequences



The Local Cauchy Theorem

This is fundamental:

Suppose W is a convex open set,              ,   f is continuous in W,                             .
Then                for some                    , hence

Theorem (Cauchy-Goursat)

p  W  \f H p W
 F H Wf F 

 d 0f z z



for every closed path  in W.

We shall see that our hypothesis actually implies                     , so that the exceptional 
point p is not really exceptional.
However, the above formulation of the theorem is useful in the proof of the Cauchy 
Integral Formula…

 f H W



The Local Cauchy Integral Formula

Suppose  is a closed path in a convex open set W, and                    .
If              and             , then

Theorem (Cauchy formula in a convex set)

 f H W
z  W

     1Ind d
2

f
f z z

j z





 
 



z 

z

 t



Representability by Power Series

The Cauchy Integral Formula allows for proving the following fundamental

For every open set W, every                     is representable by power series in W. 

Theorem (representability by power series)

 f H W

In fact, from Cauchy integral formula applied to  ;D a r W
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  1

0

1 1d d
2 2

n

n
n

f
f z f

z a

aj z j
 


  
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 ;D a r  
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this geometric series converges uniformly on      because 1z a
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 
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   


 



a
z





hence the summation 
and integration can be 
interchanged:



Consequences: Analiticity of the Derivatives

This has an immediate consequence:

For every open set W, if                     then                      .  f H W  f H  W

and thus every complex differentiable (i.e., analytic) function is infinitely 
differentiable, each derivative being itself analytic.

Contrast this with the behavior of real functions of a real variable…



Consequences: Morera Theorem

Suppose f is a continuous complex function in an open set W such that

Theorem (Morera)

 f H W

 d 0f z z



for all closed curves . Then                       .

The Cauchy theorem has a useful converse, which is a direct consequence of 
the latter statement:

Proof: The hypothesis implies that                                       . We now know that f is 
itself analytic.

 ,f F F H  W



Consequences: Zeros of an Analytic Function

Let W be a nonempty connected open set,                    , and                   

Theorem

 f H W

    : 0Z f a f a W 

Then either                       or             has no limit point in W. In the latter case there 
corresponds to each                     a unique positive integer                      such that                      

 Z f  W
 a Z f
 Z f

 m m a

       ,
m

f z z a g z z  W

where                      and                   ; furthermore,            is at most countable. g H W   0g a   Z f

The integer m is called the order of the zero which f has at the point a.

Consequently, if and if for all z in some set which
has a limit point in W, then for all (a uniqueness theorem).

 ,f g H W    f z g z
   f z g z z  W

‘zero set’ of f



Consequences: Removable Singularities

If               and                            then f is said to  have an isolated singularity at a. \f H a Wa  W

If f can be so defined at a that the extended function is analytic in W, then the 
singularity is said to be removable.

This occurs iff f is bounded in                                                             for some r.   ; : 0D a r z z a r   

Proof:
Define and                                          in             . The boundedness
assumption implies . Since h is evidently differentiable at any other
point of W, we have so

We obtain the desired analytic extension of f by setting , for then

  0h a       2
h z z a f z  \aW
  0h a 

 h H W

        
2

, ; :
n

n
n

h z c z a z D a r z z a r



     

      2
0

, ;
n

n
n

f z c z a z D a r





  

  2f a c



Consequences: Classification of Isolated Singularities

If                 and                             , then one of the following cases must occur:

Theorem

a  W

a)  f has a removable singularity at a.
b)  There are numbers c1, c2,…, cm, where m is a positive integer and               ,

such that

has a removable singularity at a.
c)   If r>0 and                          then                          is dense in the complex plane.

 
 1

m
k

k
k

c
f z

z a





 \f H a W

0mc 

 ;D a r W   ;f D a r

In case b) f is said to have a pole of order m at a and                              is called the 
principal part of f at a.

 
1

m k
k

k
c z a






In case c) f is said to have an essential singularity at a .



The Point at Infinity of the Complex Plane

For many purposes it is useful to extend the system of complex numbers by
introduction of the symbol to represent infinity. The points in the plane
together with the point at infinity form the extended complex plane.



The notion of isolated singularity applies also to functions analytic in a
neighborhood of . Since is not defined, we treat as an
isolated singularity and, by convention, it has the same character of removable
singularity, pole, or essential singularity as the singularity of at

.

z R  f  

   1/g z f z
0z 

N

z

Z
z 

Z 

stereographic projection



Representability in Power Series: Cauchy Estimates

We now exploit the fact that the restriction of a power series                                
to a circle with center at a is a trigonometric series:

 nnc z a

     
0 0

n j n jn
n n

n n
f z c z a f a re c r e 

 

 
     

hence
 1 d

2
n j jn

nc r f a re e


 











  Fourier coefficients

 22 2

0

1 d
2

n j
n

n
c r f a re











 

   Parseval formula

Consequently, since                                  , if                                 and                        for 
all                        , then

   / !n
nc f a n   ;f H D a R  f z M

 ;z D a R
    !n

n
n Mf a
R

 Cauchy estimate



Consequences: Liouville Theorem

An immediate consequence of the Cauchy estimates is the classical

Every bounded entire function is constant

Theorem (Liouville)

Proof:
If |f(z)|<M for all z then

This is possible for all r only if cn=0 for all .

 22 22 2 2

0 0

1 d
2

n j n
n n

n n
c r f a re c r M









 

 

    

1n 
Exercise:
Show that Liouville Theorem implies that every polynomial with complex 
coefficients has at least one complex root (the Fundamental Theorem of Algebra)



Consequences: The Maximum Modulus Theorem

From

If W is a nonempty connected open set,                    , and                        . Then

Maximum Modulus Theorem

 f H W  ;D a r W

   maxf a f a re


 

equality occurring only if f is constant in W.

Consequently, |f| has no local maximum at any point of W unless f is constant.

Applying the same reasoning to the real and imaginary parts of f, one finds that 
the same conclusion also holds for an arbitrary harmonic function.

   0
1 d
2

jf a c f a re













  
one readily derives (try!) the following classical



The Global Cauchy Theorem
and the Calculus of Residues



The Global Cauchy Theorem

Let us now remove the restriction to convex regions that was imposed in the
local version of Cauchy Theorem.

To this aim, let a cycle G be the union of closed curves: 1 ... n G   

Suppose                    , where W is an arbitrary open set in the complex plane. If G is 
a cycle in W that satisfies                            for every  not in W, then

and                               .

Global Cauchy Theorem

 f H W
 Ind 0G 

       1Ind d , \
2

f
f z z z

j z



 G

G

   W G
  d 0f z z

G



If G0 and G1 are cycles in W such that                                             for every  not in W, 
then

   
0 1

Ind Ind G G

   
0 1

d df z z f z z
G G

 



The Global Cauchy Theorem

Example

1
2

Here the Global Cauchy Theorem cannot be applied to the closed paths
1 or 2, but it can be applied to the cycle as it does not
wind around any point in the complement of W.

1 2 G  

W

 d 0f z z
G



 f H W



The Global Cauchy Theorem

On the other hand

1
2

The Global Cauchy Theorem shows under what circumstances integration over a
closed path can be replaced by integration over another, without changing the
value of the integral.
In this connection, note that it can be shown that if 1 and 2 can be continuously
deformed one to another remaining within W, then for every
a not in W.

W
   

1 2

d df z z f z z
 

 

 f H W

   
1 2

Ind Ind  



Applications: the Residue Theorem

A function f is said to be meromorphic in an open set W if there is a set
such that
a) A has no limit point in W.
b)
c) f has a pole at each point of A, with principal part

AW

 \f H A W

Suppose f is a meromorphic function in W and let A be the set of its poles. If G is 
a cycle in W \ A such that                           for all a not in W . Then

Residue Theorem

     1 d Res ; Ind
2 a A

f z z f a a
j G

G

 

 Ind 0G 

 
1

m k
k

k
c z a






The number c1 is called the residue of f at a. We write: c1 = Res(f;a)



Applications: Evaluation of Definite Integrals

The theory of complex functions allows for evaluating a number of definite
integrals which otherwise could not be calculated.

First example:
Evaluate the real improper integral

sinlim d
A

jxt
A

A

x e x
x







1 1A A
x

y

AG

Since is entire,

sin sind d
A

A
jxt jzt

A
A

x zI e x e z
x z



 G

  

sin jztz e
z

Now , hence where2 sin jz jzj z e e     1 1A A AI t t    

 1 1 d
2

A

jsz

A
es z

j z


  G

 

Never do a calculation before you know the answer (J. A. Wheeler)



Applications: Evaluation of Definite Integrals

1 1A A
x

y

AG

G

G

We complete GA to a closed path in two ways, using G or G+ :

   
01 1 exp d

2
j

A s jsAe 



 
 



 

/jsze zThe function has a simple pole at z=0 with residue 1, hence

   
0

1 11 exp d
2

j
A s jsAe


 

 
  



Applications: Evaluation of Definite Integrals

Note that

so the integrals over G and G+ tend to zero as A tends to infinity for s<0 and s>0
0, respectively.

In fact, for, e.g., G+ one has:
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


The sin() function is convex in
[0,p/2]:



sin  2 


2


1

(Jordan’s inequality)
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  , 0
lim

0, 0AA

s
s

s





   

 1
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

Therefore we find

   1 1A A AI t t    and finally, remembering that
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Second example:
Evaluate the real improper integrals

2
C

0

lim cos d
A

A
I t t




 

R x

y

2
S

0

lim sin d
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


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These are the limit values of the real Fresnel integrals

  2

0

cos d
x

C x t t    2

0

sin d
x

S x t t 
as x tends to infinity.

Here we make use of the contour integral of
the function

around the boundary of a sector-shaped region
of the first quadrant of the complex plane:

2ze

2 : jtz Re 

1 : z t 
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The integral along the circular arc tends to zero as R tends to infinity. In fact,

2 2 2

2 2

/4
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0

d d dz z R te z e z R e t


 

     

But the cos() function is convex in
[0,p/2]:

(Jordan’s inequality) hence
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By Cauchy Theorem we thus have

2 2

1 3

d d 0z ze z e z
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Now,
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     (Gauss integral)
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Whereas
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So Cauchy theorem gives

C S

C S

2
0

I I

I I

 
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By separating the real and imaginary parts:
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