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Motivation and Overview of the Course



Analytical vs. Numerical

The aim of numerical analysis is to find algorithms for solving a
mathematical problem with the minimum time and with the maximum
accuracy

The aim of analytical models is to gain physical insight into the involved
wave processes



Leitmotiv

This course will provide information on important analytical tools for
the analysis of waves (not necessarily electromagnetic) with a unifying
theme: complex analysis.



Inspirational Quotes…

…entre deux vérités du domaine réel, le chemin le plus facile et le
plus court passe bien souvent par le domaine complexe.

Paul Painlevé, Analyse des travaux scientifiques (Gauthier-Villars, 1900; reprinted in Librairie Scientifique et 
Technique, Albert Blanchard, Paris, 1967, pp. 1-2; reproduced in Oeuvres de Paul Painlevé, Éditions du 
CNRS, Paris, 1972-1975, vol. 1, pp. 72-73.

Cited by Jacques Hadamard in J. Hadamard, An Essay on the Psychology of Invention in the Mathematical 
Field (Princeton U. Press, 1945; Dover, 1954; Princeton U. Press, as The Mathematician's Mind, 1996))

Paul Painlevé



Inspirational Quotes…

One of the most remarkable discoveries in elementary particle
physics has been that of the existence of the complex plane.

Julian Schwinger
Julian Schwinger, Particles, sources, and fields. Vol. 1, Reading, MA: Addison Wesley, 1970.



Representation of Time-Harmonic Quantities

Complex scalars or vectors can be used to conveniently represent time-harmonic
quantities:

- Scalar phasors

- Vector phasors
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Modulated and Transient Signals

Complex functions for the description of modulated or transient signals:

- Analytic signal

- Laplace domain
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Complex Methods for the  Analysis of Wave Objects 

- Complex analysis allows for rigorously defining wave objects,
especially (but not only) in high-frequency asymptotic regimes

- Complex methods allow for gaining physical insight and deriving
compact representations of otherwise complicated wave phenomena

Probably less well known:

edge tip or corner curvature

interface between
two media

multiply diffracted rays
for a slit



Course Syllabus

1. Fundamentals of complex function theory (September 19 and 21)
1.1 Elementary holomorphic functions, Cauchy-Riemann equations, elementary Riemann surfaces.
1.2 Complex integration, Cauchy theorem and consequences, residue calculus.

2. Asymptotic expansions and ray optics (September 26 and 28)
2.1 Introduction, asymptotic sequences, and elementary examples.
2.2 The Luneburg-Kline asymptotic expansion: Ray optics.

3. Asymptotic evaluation of integrals (October 3 and 5)
3.1 Integration by parts, Watson lemma, Laplace method, stationary-phase method.
3.2 The method of steepest descents (saddle-point method).

4. Applications: Time-harmonic waves in layered media (October 10 and 12)
4.1 Point source above a single interface: space waves, plasmon waves, Zenneck waves.
4.2 Point source above a grounded slab: lateral waves, surface waves, leaky waves.

5. Applications: Plane-wave scattering from half planes (October 17 and 19)
5.1 PEC half plane: elementary solution and Wiener-Hopf approach.
5.2 Resistive half plane: Wiener-Hopf solution and uniform asymptotic evaluation of the field.

6. Applications: Scattering from spheres (October 24 and 26)
6.1 Spherical wave functions; dipole on a PEC sphere, Watson transformation, creeping waves.
6.2 Plane-wave scattering from PEC and dielectric spheres; the rainbow and the glory.



Course Schedule and Teacher’s Contacts

The course will be held from 19 September to 26 October 2023 in the seminar room at
the second floor of the DIET department, Via Eudossiana 18, 00184 Rome, Italy, with
the following schedule:

Tuesday 10:00-13:00
Thursday 10:00-13:00

Teacher’s Contacts:

Paolo Burghignoli
Tel.: 06 44 585 404
E-mail: paolo.burghignoli@uniroma1.it
Website: https://sites.google.com/a/uniroma1.it/paoloburghignoli-eng

Classes will also be held on Google Meet at the link: https://meet.google.com/hmw-
agon-ihm



ATWP on E-Learning Sapienza

https://elearning.uniroma1.it/
login

Find the course and try to sign up…
Register to the Moodle (if you have not an account yet)



Fundamentals on Complex Functions: 
Elementary Properties of Analytic Functions



Complex Differentiation

Let W be an open set of the complex plane. If                 and if 

   
0

0

0
lim
z z

f z f z

z z




0z  W

exists, we denote this limit by                 and call it the derivative of f at z0. 0f z

Definition:

We shall be concerned with complex functions of one complex variable whose
fundamental property is that of being differentiable.

We shall see that such a simple assumption, in contrast with the case of real 
functions of one real variabe, produces a wealth of extraordinary consequences.

Jusqu’ici tout va bien… (M. Kassovitz, La Haine, 1995)



Complex Differentiation (cont'd)

The power of complex differentiability stems from the fact that the limit occurring
in the definition has to be done in the metric of the plane: in simple terms, this
means that z can approach z0 following an arbitrary path in the 2D complex plane.
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For instance, by letting

real increment:

imaginary increment:
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The Cauchy-Riemann Equations

       , ,f z f x jy u x y jv x y   

u v
x y
u v
y x

 
 

 
  



Let W be an open set  and f a continuous function in W. Let the partial derivatives

Theorem (Looman-Menchoff):

,f f
x y

 
 

exist everywhere but a countable set in W. Then

is holomorphic in W if and only if it satisfies

in W the Cauchy-Riemann equations:

We have thus proved the easy part of the following:



The Class of Holomorphic (or Analytic) Functions

If                exists for every                 , we say that f is holomorphic (or analytic) in W.

The class of all holomorphic functions in W will be denoted by              .

 0f z 0z  W

 H W

If                     and                    , then also                                                    , so that       
is a ring; the usual differentiation rules apply.

 f H W  g H W    ,f g H fg H  W  W  H W

Superpositions of holomorphic functions are holomorphic: If                     ,                    ,                                      
and if                      , then                     and the usual chain rule applies:

 f H W   1f W  W
 1g H W h g f  h H W

      0 0 0h z g f z f z  

Definition:



Elementary Analytic Functions

• For n=0,1,2,…, zn is holomorphic in the whole plane (such functions
are called entire); hence the same is true for any polynomial in z:

 : 0z z 
 1,2f H W 2f 1W  W

 1 2 1/f f H W

  1/g w w• The function 1/z is holomorphic in ; hence, taking
in the chain rule, if and has no zero in , then

    1
1 1 0...n n

n nf z P z a z a z a z a
    

   
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1 1 0
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n n
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  
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  
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Power Series in the Complex Plane

To achieve more variety, one must take limits…

Power series in the complex plane are a means for obtaining holomorphic functions, 
as shown next. Let us first recall some basics:

To each power series                              there corresponds a unique number 

• The series converges absolutely and uniformly in                 for every r<R .
• The series diverges if 

1/1 lim sup
n

n
n

c
R 



Definition:

0,R     
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n
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The ‘radius of convergence’ R is given by the root test:



Example: the Geometric Series

Definition:
0

n

n
z






The root test gives: 1/1 lim sup1 1n

nR 
 

(i.e., a=0 and cn=1)

1R 

hence the series converges (absolutely) if 1z 

and its (well known) sum is                             , holomorphic in  1
1

f z
z




 : 1z zW  

1 x
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radius of 
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The series is not convergent if 1z 



Example: the Geometric Series (cont'd)

Note that the sum of the geometric series can be represented as a sum of a power 
series also outside the disk              : 
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1 x

y
 0 0; 1D z z

1z 

the series being again a geometric series, now convergent in the disk D(z0; |1z0|)

0 01z z z  

What limits the radius of convergence is 
the point z=1, where the function f(z) is 
not holomorphic.

0z

i.e., in



Power Series in the Complex Plane (cont’d)

A function f defined in W is representable by power series in W if to every disc     
there corresponds a series

which converges to            for all                        . f z

Definition:

 ;D a r  W

 
0

n
n

n
c z a





 ;z D a r

If f is representable by power series in W then                     and       is also 
representable by power series in W :

Theorem:

     
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Power Series in the Complex Plane (cont’d)

Remark 1:

Since satisfies the same hypothesis as f does, the theorem can be applied to .

Hence f has derivative of all orders, all representable by power series:

Remark 2:

.

This means that the coefficients ck are uniquely determined for each and
that each power series in the complex plane is the Taylor series of its sum.

f  f 

           1 ... 1 , ;
n kk

n
n k

f z n n n k c z a z D a r
 


     

     ! 0,1,2,...k
kk c f a k 

a  W



The Exponential Function

This is the most important function in mathematics. It is given for every complex 
number z by

 
0

exp
!

n

n

zz
n




 

The radius of convergence is infinite, hence exp is an entire function.

The absolute convergence allows for writing

 
 

0 0 0 0 0

1 !
! ! ! !! !

n
k m n

k n k

k m n k n

a ba b n a b
k m n nk n k

   


    


 

    

hence                                                           (addition formula)      exp exp expa b a b 

Note that                       .
Furthermore, letting                        , we will write                       .

 exp 0 1
 exp 1e   exp zz e



The Exponential Function: Exercise

Prove that the following assertions are true:

0ze 1) For every complex number z we have

2) exp is its own derivative:    exp expz z 

3) The restriction of exp to the real axis is a monotonically increasing positive
function with

lim , lim 0x x
x x

e e
 

  

4) There exists a positive number  such that                      and                  if and only if 
z/(2pj) is an integer.

2
j

e j


 1ze 

5) exp is a periodic function with period 2pj

6)                    maps the real axis onto the unit circlejtt e

7) If w is a complex number and                  then                   for some z.0w  zw e



The Logarithm

By definition,                         is a root of the equation                  . zw elogz w

First of all, since               , the number 0 has no logarithm. 0ze 

For               the equation                        is equivalent to                                          .0w  x jyw e  ,x jy we w e
w

 

- The first equation has the unique solution                          (real logarithm)logx w

- As mentioned (cf. previous slide, point 6), the second equation has a unique
solution and is also satisfied by any y that differs from this
solution by an integer multiple of 2 (cf. previous slide, point 5).

0 2y  

Any nonzero complex number has infinitely many logarithms, that 
differ from each other by multiples of 2j.



The Argument of a Complex Number

The imaginary part of the logarithm is called the argument of w : 

log log argw w j w 

log arg loglog arg

arg

z j z zz j z

j z j

z e e e e
z e re 

  
 

The argument of z can be interpreted as the angle, 
in radians, between the positive real axis and the 
half line from 0 through z.


r

x

y
polar representation

jz x jy re   



Cosine and Sine Functions

The cos and sin functions are defined by

cos
2

jz jze ez


cos sinjze z j z 

sin
2

jz jze ez
j



Hence cos and sin are entire functions, which reduce to the ordinary trigonometric 
functions for real arguments (cf., by exercise, their power series representation).
Furthermore:

(Euler’s identity)

2 2cos sin 1z z 

cos sin , sin cosz z z z   

The other trigonometric functions, tan, cot, etc. are defined in the customary 
way. All of them are rational functions of      . jze



Inverse Cosine and Sine Functions

The inverse cosine function arccos is obtained by solving the equation

2cos 1
2

jz jz
jze ez w e w w

     

hence 2 2arccos log 1 log 1z w j w w j w w                    

The inverse sine function arcsin is most easily defined by

arcsin arccos
2

w w 

In the theory of complex analytic functions all elementary transcendental
functions can thus be expressed in terms of ez and its inverse logz. In other
words, there is essentially only one elementary transcendental function.



Complex Powers, N-th Roots

The symbol          , where a and b are arbitrary complex numbers with             ,
means

ba 0a 

logb b aa e

Therefore,          has in general infinitely many values which differ by the factorba

2 ..., 2, 1, 0,1,2,...jnbe n   

There will be a single value if and only if b is an integer n (hence         is a power 
of a or a1). 

ba



Complex Powers, N-th Roots

There will be a finite number of values if and only if b is a rational number; if the 
reduced form of b is p/q, then          has exactly q values and can be represented 
as

p
q pqa a

ba

(q-th square roots)

   1/4 /8 /2/24 j njj e e    

Example:

/8je 

5 /8je 

9 /8je 

13 /8je 

x

y



Analytic Functions as Mappings



Consequences of the Cauchy-Riemann Equations

1) Four equivalent expressions for the derivative of f:

 
 
   

2 2
2

,
,

,

u v u v u vf z
x x x y y x
u v

J u v
x y

                            


 


  u v u uf z j j
x x x y
v v v uj j
y x y y

       
   
      
   

2)  Squared absolute value of the derivative:

Jacobian determinant



Consequences of the Cauchy-Riemann Equations

In the next lesson we will see that the derivative of an analytic function is itself 
analytic.

By this fact u and v will have continuous partial derivatives of all orders and 
hence their mixed derivatives will be equal.

We then have 

2 2 2 2
2 2

2 2 2 2
0, 0u u v vu v

x y x y
          
   

3)

i.e., u and v are harmonic functions.

Since they are the real and imaginary parts of an analytic functions, each of them
is said to be the harmonic conjugate of the other.



Analytic Functions as Mappings: Lengths

Let                             be a smooth curve and                                  its image under the 
analytical map f :

x

y



 : z z t    : w f z t  

u

v



 f z

       2 2
d d

b b

a a

L x t y t t z t t      
        d d

b b

a a

L w t t f z t z t t      
Hence                provides the scaling factor for elementary lengths under the mapping 
f(z).

 f z



Analytic Functions as Mappings: Areas

Let                                                                            be a bijective analytic map:

x

y

u

v

       , ,f z f x jy u x y jv x y   

E

 f z

 E f E 

  d d
E

A E x y       2J , d d d d
E E

A E u v x y f z x y   

Hence                provides the scaling factor for elementary areas under the mapping 
f(z).

 
2

f z

x

y



Analytic Functions as Mappings: Angles

Let                                 be two arbitrary smooth curves  through                            and

their images under the analytical map f such that

x

y
1

 1,2 1,2: z z t 

u

v



 f z

      w t f z t z t        0 0 0arg arg argw t f z z t   

Two curves which form an angle at z0 are mapped upon curves forming the same 
angle: the mapping w=f (z) is said to be conformal at all points where

 0 1,2 0z z t

  1,2 1,2: w f z t  

2




2

10z

 0 0f z 

  0f z 



Examples of Conformal Maps



Invertible Maps: the Condition

If f is analytic on W and the mapping                                             is one-to-one (i.e., 
bijective) with continuous inverse, then the inverse map is also analytic.

 :f fW  W  W

In fact, it can be shown that under the stated assumptons it results
everywhere in W, hence the derivative of the inverse function is .

  0f z 
 1 / f z

Conversely, assuming                         allows for concluding that the mapping is 
bijective with continuous inverse only in some neighborhood of z0 (i.e., locally).

 0 0f z 

In fact, since

,

the conclusion follows from the standard Implicit Function Theorem.

   0 0 0 0 0

2
,f z u jv J u v   

  0f z 



Global Invertibility: What Can Go Wrong

But even if                          in all W, we cannot assert that the mapping is bijective 
with continuous inverse in the whole region (i.e., globally).

In fact, what can happen is depicted in the figure:

  0f z 

It is helpful to think the image of the whole region as a transparent film which 
partly covers itself. This simple idea was used by Riemann for introducing the 
concept of Riemann surfaces…

The mappings of the subregions W1, W2
are one-to-one, but the images overlap.

1W 1W

2W 2W

1 2W  W  W



Example: the Function 2w z

u

v

The simplest Riemann surface is connected with the mapping                  , n>1.
Let us first consider the case n=2: 

nw z

 22 2 2j jw z re r e   

0   

2   

The image of each colored region is the whole 
w plane ‘cut’ along the real positive axis

2w z

A region which is mapped in a one-to-one manner onto the whole plane, except 
for one or more cuts, is called a fundamental region.

x

y



The Square-Root Function z w

 2 22
j nj nw z r e z w r e
  

            

u

v

z w

n even

n odd

The cut is called a branch cut, as it allows for defining single-valued branches of
the square-root function.

0   

2   
x

y



The Square-Root Function z w

u

v

2 2
   , ,

2 2
  

   
           

z w

n even

n odd

REMARK
Of course, there is nothing special in the positive real axis: the branch cut can be 
made along any line joining 0 and infinity.

This is equivalent to choosing different fundamental regions.
For example:

0
0 0

x
x

y

    
principal branch:

x

y



The Square-Root Function: Riemann Surface

…the resulting domain of the square-root function is the Riemann surface 
associated with the considered map.

The square-root function is two-valued, but it can be considered one-valued if its
domain is made of two copies of the complex plane, both cut along the chosen
branch cut and glued in such a way that the resulting function is continuous…

‘upper’ Riemann sheet

‘lower’ Riemann sheet



The Square-Root Function: Branch Points

The point w = 0 is special: it connects all the copies of the complex plane
(technically, the Riemann sheets) that constitute the Riemann surface, and a
closed curve must wind twice around it before it closes.

Such a point is called a branch point.

REMARK
In more general cases a branch point need not connect all sheets: if it connects h
sheets it is a branch point of order h1.

u

v

branch cut

branch point



The Function 2 2
0w z z 

w z 

branch cut

branch point

y 

x 

Re 0
Im 0

z
z
 
 

2 2 2
0 0z z z z z z     

The branch point z’ =0 is mapped to the pair of branch points 0z z 

branch points

y

x

0z

0z



The Function 2 2
0w z z 

Re 0
Im 0

z
z
 
 

2 2 2 2
0 0

0 0

0
0

x y x y
x y xy

   
 

     2 22 2 2 2 2 2
0 0 0 0 0 0 02z z z x jy x jy x y x y j x y xy            

branch cuts

y

x

0z

0z
2 2 2 2

0 0x y x y  

0 0xy x y

The branch cut along the positive real axis is mapped to a pair of hyperbolic
branch cuts:



The Function wz e

u

v

wz e
v   

3v  
y

x

3 v    

,j w u jv uz re e e e r e v      

fundamental regions

branch cut

branch point



The Function logw z

u

v

v   

3v  
y

x

3 v    

 log log 2w z r j n    

n=0
branch cut

branch point

n=1

n=2

n=1

n=2

logw z

v   principal branch:



The Function logw z

The Riemann surface has now an
infinite number of sheets.

In this case the branch point w=0
does not belong to the Riemann
surface.

Plot3D[{Im[Log[x + I y]], Im[Log[x + I y]] + 2 Pi, Im[Log[x + I y]] - 2 Pi},
{x, -range, range}, {y, -range, range},
BoxRatios -> {1, 1, 1.5},
PlotRange -> All,
PlotPoints -> 50,
Mesh -> 30,
MeshFunctions -> {Im[Log[#1 + I #2]] &, Re[Log[#1 + I #2]] &},
ImageSize -> Large,
ColorFunction -> mycolor

]

Plot of Im[logz]



The Function arccosw z

u

v

cosz w

y

x

cos cos cosh sin sinhz w u v j u v  

 2

2arccos log 1w z j z z        

1

1
2

fundamental regions
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