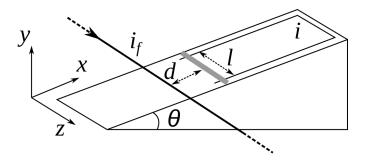

Prova scritta di Fisica II - Secondo e Terzo Canale - 5 Luglio 2023

Nome Cognome
Matricola Orale in questo appello \Box
Nota Bene: Il formulario vuole essere un supporto qualora non ricordiate alcune formule e
non abbiate tempo per ricavarle. Tenete presente che il solo scrivere la formula giusta trovata
nel formulario per rispondere ad una domanda non porta ad avere alcun punteggio in quella
domanda. Si ricorda anche che tutte le risposte vanno correttamente motivate, la sola risposta
numerica non è sufficiente per avere punti relativi alla domanda in questione.


Primo Esercizio

Il sistema mostrato in figura consiste di una sfera di raggio $R_1=1$ cm e di un guscio sferico di raggio interno $R_2=2$ cm ed esterno $R_3=3$ cm, entrambi composti di materiale non conduttore. La sfera ed il guscio sono concentrici e hanno una densità volumetrica di carica uniforme, rispettivamente $\rho_1=2.4\times 10^{-3}$ C/m³ per la sfera e ρ_2 per il guscio.

- 1. Determinare il valore di ρ_2 per cui il campo elettrico al di fuori del guscio concentrico (cioè per $r > R_3$) si annulla (5 punti).
- 2. Determinare la differenza di potenziale tra R_1 ed R_2 per il valore di ρ_2 determinato al punto precedente. Come cambia la differenza di potenziale se lo spazio tra le due sfere viene riempito da un dielettrico con costante $\kappa = 2$? (6 punti)
- 3. Calcolare il lavoro necessario per trasportare una carica di prova q = e lungo un cammino circolare di raggio $R_1 < r < R_2$, cioè un cammino che circumnavighi la sfera interna (5 punti).

Secondo Esercizio

Una spira rettangolare in cui scorre una corrente i=10 A ha un lato mobile di lunghezza l=10 cm e massa m=5 g ed è posta su di un piano inclinato di $\theta=\pi/6=30^{\circ}$. Il lato mobile (in grigio nel disegno) può scivolare senza attrito sul piano. Sul piano è presente anche un filo indefinito fisso posto a distanza d=1 cm dal lato mobile, in cui scorre una corrente in direzione \hat{z} di intensità i_f . In questa configurazione il lato mobile è fermo.

Nota Bene 1: la forza di gravità è diretta lungo $-\hat{y}$.

Nota Bene 2: trascurare le forze magnetiche tra il lato mobile e gli altri lati della spira.

- 1. Determinare il verso in cui scorre la corrente i nel lato mobile (4 punti).
- 2. Calcolare l'intensità di corrente i_f (6 punti).
- 3. Descrivere (anche senza formule) quello che succederebbe se $\theta = 0$ (6 punti).

Soluzione del primo esercizio

1. La carica contenuta nella sfera è

$$q_1 = \frac{4}{3}\pi\rho_1 R_1^3 = 10^{-8} \,\mathrm{C}.$$

Il guscio sferico contiene invece una carica $q_2 = \rho_2 V_g$, dove $V_g = \frac{4}{3}\pi (R_3^3 - R_2^3) = 8 \times 10^{-5} \text{ m}^3$ è il volume dell'oggetto. Considerando la simmetria sferica del problema, l'intensità del campo elettrico può dipendere solo dalla distanza r dal centro. Per il teorema di Gauss, affinché il campo sia nullo per $r > R_3$, la carica totale del sistema guscio+sfera deve essere nulla. Quindi imponiamo $q_2 = -q_1$, da cui otteniamo

$$\rho_2 = -\frac{q_1}{V_q} = 1.25 \times 10^{-4} \,\mathrm{C/m^3}$$

2. All'interno della cavità il campo è dato dalla carica della sfera, e quindi vale

$$E = \frac{q_1}{4\pi\epsilon_0 r^2}.$$

La differenza di potenziale richiesta è quindi

$$\Delta V = \frac{q_1}{4\pi\epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = 4.5 \times 10^3 \,\text{V}.$$

In presenza di un dielettrico la differenza di potenziale si riduce di κ , e quindi vale

$$\Delta V'_{1,2} = \frac{\Delta V}{\kappa} = 2.25 \times 10^3 \,\text{V}$$

3. Il campo elettrostatico è conservativo, quindi la sua circuitazione calcolato su di un percorso chiuso (che è proporzionale al lavoro richiesto) è sempre nulla. Di conseguenza, anche il lavoro necessario per trasportare la carica sarà nullo.

Soluzione del secondo esercizio

- 1. Affinché il lato mobile sia fermo, ci deve essere equlibrio tra le forze agenti su di esso, ovvero la forza di gravità e la forza dovuta all'interazione magnetica con il filo indefinito. Poiché la gravità tenderebbe a far avvicinare il lato mobile della spira al filo indefinito, la forza magnetica deve invece essere repulsiva. Questo avviene se le correnti sono discordi: dunque i è diretta lungo $-\hat{z}$.
- 2. Bilanciamo l'intensità della forza di gravità (o meglio, della sua componente diretta parallelamente al piano inclinato) e della forza magnetica:

$$mg\sin\theta = \frac{\mu_0 i_f il}{2\pi d}$$

Nel lato di destra, come indicato dal testo, abbiamo incluso solamente la forza magnetica repulsiva tra il lato mobile della spira e il filo rettilineo indefinito, trascurando la forza magnetica tra il lato mobile della spira e il lato fisso ad essa parellelo, situato in cima al piano inclinato.

Da quest'equazione ricaviamo i:

$$i_f = \frac{2\pi dmg\sin\theta}{\mu_0 il} = 125\,\mathrm{A}$$

3. Se $\theta=0$, la spira non è più su un piano inclinato e viene meno la forza di gravità agente sul lato mobile. Sul lato mobile della spira continua ad agira la forza magnetica dovuta al filo rettilineo, che inizialmente tenderà a far avvicinare il lato mobile della spira a quello fisso, diminuendo così l'area della spira. A questo punto possono entrare in gioco due effetti. Il primo è l'autoinduzione: per la legge di Faraday, si svilupperà una forza elettromotrice nella spira dovuta al cambiamento nel flusso del campo magnetico generato da i attraverso la spira. Il secondo è la forza repulsiva tra il lato mobile e il lato fisso della spira, che può diventare non più trascurabile nel caso il lato mobile si avvicini molto.