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Marine seismic methods – Sub-bottom profiler (SBP)
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Marine seismic methods – Sub-bottom profiler (SBP)
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Marine seismic methods – Sub-bottom profiler (SBP)

Source: Chirp vibrating source

fsweep = 2-8 KHz                                                               Tiber River – Capo due Rami (Rome)
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Transducer 
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P1≡(x1,z1) 
(sounding)

P2≡(x2,z2) 

𝑧𝑖 =
𝑣𝑤𝑡𝑣,𝑖

2
 𝑖 = 1,2, … , 𝑁𝑆 

t=0, x=0
(start of survey)

t=t, x=x

P3≡(x3,z3) 

t=2t, x=2x

Depth of sea floor
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t

Trace at x=0

school of fish
(scattering)

sea floor
(reflection)

𝑣𝑤 =
𝐾𝑤

𝛿𝑤

𝑡𝑣

acoustic wave velocity 

(water)

𝑣𝑤

𝑣𝑠𝑢𝑏−𝑏𝑜𝑡𝑡𝑜𝑚

𝑁𝑆: number of soundings

• hp.1. 𝑣𝑤 constant

• hp.2. sea floor plane and parallel 

to water’s surface

• hp.3. smooth sea florr (no effect of 

roughness and/or grain size)
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P1≡(x1,z1) 
(sounding)

P2≡(x2,z2) 

𝑧𝑖 =
𝑣𝑤𝑡𝑣,𝑖

2
 𝑖 = 1,2, … , 𝑁𝑆 

t=0, x=0
(start of survey)

t=t, x=x

P3≡(x3,z3) 

t=2t, x=2x
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𝑁𝑆: number of soundings

• hp.1. 𝑣𝑤 constant

• hp.2. sea floor plane and parallel 

to water’s surface

• hp.3. smooth sea floor (no effect of 

roughness and/or grain size)
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100 m
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𝑣𝑤 = 𝑓(𝑃)

𝑣𝑤 = 𝑓(𝑇, 𝑃, 𝑆)
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(point source and 
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x

z

water’s surface

P1≡(x1,z1) 
(expected sounding)

t=0, x=0
(start of survey)

t=t, x=x t=2t, x=2x

𝑣𝑤

𝑣𝑠𝑢𝑏−𝑏𝑜𝑡𝑡𝑜𝑚

• hp.1. 𝑣𝑤 constant

• hp.2. sea floor plane and parallel 

to water’s surface

• hp.3. smooth sea floor (no effect of 

roughness and/or grain size)

P1≡(x1±x/2,z1) 
(real sounding)



beam width
xx: footprint



50% of 

max. 

power

∆𝑥𝑖

2
= 𝑧𝑖 tan

𝜃

2
≅ 𝑧𝑖

𝜃

2

∆𝑥𝑖≅ 𝑧𝑖𝜃

𝜃 ≈ 50
𝜆

𝐿

𝐿

for a linear 

transducer 

side 

lobe

main 

lobe

Linear Transducer 
(Source/Receiver)

12 ÷ 500 kHz
source frequency f

RESOLUTION
∆𝑥 ≤ 𝑑𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑂𝐾

∆𝑥 > 𝑑𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑁𝑂

𝜆 =
𝑣𝑤

𝑓 Assuming:

𝑣𝑤 = 1500 m/s

𝑓 = 12 ÷ 500 kHz

𝝀 = 3 mm - 15 cm



𝛾 = attenution coefficient 
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t=0, x=0
(start of survey)

t=t, x=x t=2t, x=2x

𝑣𝑤

𝑣𝑠𝑢𝑏−𝑏𝑜𝑡𝑡𝑜𝑚

• hp.1. 𝑣𝑤 constant

• hp.2. sea floor plane and parallel 

to water’s surface

• hp.3. smooth sea floor (no effect of 

roughness and/or grain size)

P1≡(x1±x/2,z1) 
(real sounding)



x

Linear Transducer 
(Source/Receiver)

Q. Is the energy 
sufficient to reach 
the bottom?

A. Yes, if the signal 
amplitude at the bottom 
is at least equal to the 
37% of the original 
amplitude

𝐴 𝑧𝑏𝑜𝑡𝑡𝑜𝑚 ≥ 37%𝐴0 → 𝑂𝐾

𝐴 𝑧𝑏𝑜𝑡𝑡𝑜𝑚 < 37%𝐴0 → 𝑁𝑂

We have intrinsic 
attenuation with depth 

(exponential)

A 

z

A 𝑧 = exp(−𝛾𝑧)

DOI

𝐴𝑚𝑖𝑛 = Τ1 e ≅ 0.37 

e = exp 1 = Euler′s number

𝛾 ∝ 𝑓2
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t=t, x=x t=2t, x=2x

𝑣𝑤

𝑣𝑠𝑢𝑏−𝑏𝑜𝑡𝑡𝑜𝑚

• hp.1. 𝑣𝑤 constant

• hp.2. sea floor plane and parallel 

to water’s surface

• hp.3. smooth sea floor (no effect of 

roughness and/or grain size)



x

Linear Transducer 
(Source/Receiver)

𝑨 𝒛𝒃𝒐𝒕𝒕𝒐𝒎 ≥ 𝟑𝟕%𝑨𝟎 → 𝑶𝑲

𝐴 𝑧𝑏𝑜𝑡𝑡𝑜𝑚 < 37%𝐴0 → 𝑁𝑂
DOI

RESOLUTION
∆𝒙 ≤ 𝒅𝒐𝒃𝒋𝒆𝒄𝒕 → 𝑶𝑲

∆𝑥 > 𝑑𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑁𝑂
Only if both conditions are 

satisfied a transducer is 

effective for the target 

detection



12- 24 kHz 50 kHz 100 kHz 200 kHz 400 kHz
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Comparison between different frequencies and vessels

SONAR methods - Resolution
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Resolution : 5 m

Example of comparison between different resolutions

Resolution : 2 mResolution : 1 m

Resolution: 0.5 mResolution : 0.1 m

SONAR methods - Resolution
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Single-Beam (SBES)

SBES method has a poor lateral coverage (across-track)

Q. How the 100% lateral coverage can be accomplished?
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sea floor

water’s surface

e

dGR

𝜆~𝑒

Roughness e

Grain coarseness dGR 

𝜆~𝑑𝐺𝑅

If

and/or

Scattering

Signals coming laterally can 

be back-scattered to the 

transducer 

𝝀 = 3 mm - 15 cm

reflected

back-scattered

along-track(x)

𝜃𝑥~50
𝜆

𝐿𝑥

𝜃𝑦~50
𝜆

𝐿𝑦

Ex.1

𝐿𝑥 = 1 m
𝐿𝑦 = 1 cm

𝜆 = 3 cm

𝜃𝑥~50
0.03

1
= 1.5°

𝜃𝑦~50
0.03

0.01
= 150°

sea floor

z
A linear transducer 

ensonifies also a wide 

angle laterally (y-dir)

For a linear transducer

x
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Roughness  and coarseness 

Direct inspections



SONAR methods – From Single- to Multi-Beam

16

Single-Beam 

(SBES)

Multi-Beam 

(MBES)

Q. Can the back-scattered echoes coming from lateral directions (y-dir) 

be detected? 

If yes, when moving I can achieve a good coverage also for lateral zones…



SONAR methods

17

i

y

x

z

Reflection

Back-scattering (morphology & granulometry)

Back-scattered signal at i

Δ𝑡𝑛,𝑖 = 𝑛Δ𝑡𝑖 =
𝑛ri
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=
𝑛𝑑 sin 𝜑𝑖
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After applying the delay time (for each angle 𝝋𝒊) 

BEAMFORMING: 100% constructive interference - 

one stacked trace from each beam angle 𝜑𝑖

Delay time for i-th angle and n-th sensor:

A

t

i

A. Yes, with a Mills’ cross

S

R

R
∆𝑡𝑖

y

S

R
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t

stacking
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f = 12-500 kHz

izi

Di

𝑅𝑖 =
𝑣𝑤 𝑇𝑂𝐴𝑖

2
 

𝐷𝑖 = 𝑅𝑖 sin𝑖 
𝑧𝑖 = 𝑅𝑖 cos𝑖 

SONAR methods

Reflection

Back-scattering (morphology & granulometry)

Back-scattered signal at 

Slant range 

and its 

projections

For each angle 𝝋𝒊, we pick the 

Time Of Arrival (TOA)
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1. positioning LAT/LONG/HEIGTH via GNSS system with differential correction (e.g.,

RTK, DGPS)

2. motion of the ship (roll, pitch and heave) through an inertial sensor (IMU)

3. orientation (yaw) by a gyrocompass

4. tide correction (tide station)

5. direct measurement of the ultra-shallow water velocity (continuous) and of the

whole velocity profile vw(z) (at some stations)

Positioning and corrections

y

z

source
receiver

heave

yaw

pitch

roll

SONAR methods - Instruments

Then, D and z have to be positioned and corrections are needed 
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SONAR methods - Instruments
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f = 12-500 kHz

Reflection

Back-scattering

Back-scattered signal at 

zi

SONAR methods

i

Di



SBES
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MBES

SONAR methods – SBES vs. MBES
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Lake

Sea River

SONAR methods - Applications



• Environmental engineering

✓Mapping and monitoring marine habitat (i.e. Posidonia Oceanica - Neptune grass)

✓Mapping and monitoring underwater waste disposal

✓Assisting simulation of sea level rise for climate change studies

✓Mapping and monitoring pollutant (solids) or suspensions or fluid emissions

✓Mapping and monitoring saline intrusion

• Civil engineering

✓Mapping and monitoring utilities (cables, pipelines, etc.)

✓Mapping and monitoring coastal structures and infrastructures (ports, dams, etc.)

• Geology

✓Geomorphology

✓Mapping and monitoring volcanoes

✓Mapping and monitoring landslides or tsunami

✓Mapping and monitoring seabed lithotypes (rock, sand, silt)

• Cartography

✓ Bathymetry

✓ Sea maps

• Archaeology

✓ Underwater bodies or remains
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SONAR methods – Applications



SONAR methods – Marine habitat (Posidonia O.)
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a)

b)



SONAR methods – Waste disposal
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waste

waste
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Water 

Column 

Data (WCD) 

to detect 

saline 

intrusion at 

the Po River 

mouth

SONAR methods – Saline intrusion
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Upwelling flows of hydrothermal fluids at the Zannone Island

SONAR methods – Hydrothermal fluids



SONAR methods – Pipelines
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2014 Lipari Island



2014 Lipari Island
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Pipelines

SONAR methods – Pipelines
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Sea (MBES) - shore (Drone) high-resolution data for climate change simulation

Simulation of sea level rise at a local scale- Marina Lunga Lipari (today)

SONAR methods – Climate change
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SONAR methods – Climate change

Sea (MBES) - shore (Drone) high-resolution data for climate change simulation

Simulation of sea level rise at a local scale - Marina Lunga Lipari (2100)
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SONAR methods – Submerged strctures
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Tiber River: MBES e Laser Scan data 

SONAR methods – Bridges



SONAR methods – Dredging
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Differential bathymetry

MBES 2010 – MBES 2008
MBES 2008

MBES to detect signatures on sea bottom caused by dredging activities
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Monitoring the 

Cirò Marina port 

(canyons 

triggering slope 

instability)

SONAR methods – Coastal engineering
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Monitoring the Reggio Calabria airport (canyons)

SONAR methods – Coastal engineering
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Resolution: 5 cm

Archaeological remains at the 

Tiber River (Rome)

SONAR methods – Archaeology
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