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1. Seismic methods

Basic principles
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Seismic waves

When a stress is applied (or released)

on a point source P the corresponding

strain propagates out of the source

both within the body (body waves) and

on surface (surface waves).

The body waves can be divided into

primary and secondary waves, while

the most studied surface waves are the

Rayleigh and Love waves.

body wavesP

surface
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Body waves - P-wave

• The wave propagates parallel to the direction of particle motion.

• Particle motion consists of alternating compression and dilation (extension).

• Material returns to its original shape after the wave passes.

This wave is called compressional, longitudinal or primary (P), 

because it represents the first arrival
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Body waves - S-wave

• The wave propagates normal to the direction of particle motion.

• Particle motion consists of alternating transverse motion.

• Material returns to its original shape after the wave passes.

This wave is called shear, transverse or secondary (S), 

because it represents the second arrival.

Transverse motion can be in the

vertical (z) direction (SV wave) or in

the horizontal (y) direction (SH wave)

SV wave SH wave
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Surface waves – Rayleigh wave

• Particle motion consists of retrograde elliptical motions in the vertical plane

and parallel to the direction of propagation.

• Amplitude decreases with depth

• Material returns to its original shape after the wave passes.
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Surface waves - Love wave

• Particle motion consists of alternating transverse motions, horizontal and 

perpendicular to the direction of propagation (transverse).

• Amplitude decreases with depth.

• Material returns to its original shape after the wave passes.
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Wave parameters

• period (T): duration of an oscillation cycle [s]

• wavelength ():  distance of an oscillation cycle [m]

• peak amplitude (A): maximum absolute value of signal

From these, we can derive:

• frequency (f):  𝑓 =
1

𝑇
[Hz]

• angular frequency ():𝜔 =
2𝜋

𝑇
= 2𝜋𝑓 [rad/s]

• velocity (v): 𝑣 =
𝜆

𝑇
= 𝜆𝑓 [m/s]

• wavenumber (k): 𝑘 =
2𝜋

𝜆
=

𝜔

𝑣
[rad/m]
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Monochromatic signal = signal with only one frequency = sinusoidal signal

In this case the signal is:

𝑢 𝑡 = 𝐴cos
2𝜋

𝑇
𝑡 = 𝐴cos 𝜔𝑡 𝑢 𝑥 = 𝐴cos ±

2𝜋

𝜆
𝑥 = 𝐴cos ±𝑘𝑥

That is, using complex notation:

𝑢 𝑡 = ℜ𝑒{𝐴e𝑖𝜔𝑡}

Since the observed signal are real-valued (e.g. displacements), in the following we 

will use a complex notation neglecting the imaginary part.

𝑢 𝑥, 𝑡 = 𝐴e𝑖(𝜔𝑡±𝑘𝑥)

For a wave propagating through space and time, the resulting signal is:

𝑢 𝑥 = ℜ𝑒{𝐴e±𝑖𝑘𝑥}

Wave parameters
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The wavefront is the surface where the elastic wave has a constant phase

The ray is the path that one parcel of the wavefront travels along.  

Spherical wavefront Plane wavefront

• Point source • Point source, far enough from the source

• Plane source with stress distributed over 

a surface

These hypothesis hold for:

Propagation
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Propagation



• geometrical spreading: the

wavefront must always contain a

constant amount of energy E0

The energy of a unit area of the

growing wave front is equal to:
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Attenuation

Elastic wave fields loose energy through Earth due to:

surface of a sphere

Therefore, the energy decreases proportionally to r2

Q. What about the wave amplitude? It decrease proportionally to…

𝐸 𝑟 =
𝐸0
4𝜋𝑟2



• geometrical spreading: the

wavefront must always contain a

constant amount of energy E0

The energy of a unit area of the

growing wave front is equal to:

Giorgio De Donno - 12

Attenuation

Elastic wave fields loose energy through Earth due to:

Therefore, the energy decreases proportionally to r2

Q. What about the wave amplitude? It decrease proportionally to…

A. Proportionally to r! Remember that E a2

surface of a sphere𝐸 𝑟 =
𝐸0
4𝜋𝑟2



• intrinsic attenuation: energy loss due

to shear heating at grain boundaries,

mineral dislocations etc.
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Attenuation

Elastic wave fields loose energy through Earth due to:

It can be evaluated though a “quality factor” (Q):

Q is a measure of the fractional loss of energy per cycle (oscillation)

of the seismic wave

high Q = little energy loss

𝑄 =
2𝜋𝐸

Δ𝐸



• scattering: most materials

contain small heterogeneities

(grains, mineral boundaries,

pore edges, cracks, etc.)
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Attenuation

Elastic wave fields loose energy through Earth due to:

Some seismic energy is scattered when it encounters these 

features: acording to Huugens’ principles the small 

heterogeneities are new sources of waves.

This  phenomenon depends on the ratio of the heterogeneity size 

to the wavelength (it must be comparable)
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Interference

Waves can interact and the resulting wave is the effect 

of the superposition of two or more wave fronts 

Radiation pattern
Interference

2 sources at d=/2

trough

ridge
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Linear elasticity

Seismic sources release energy as waves that 

causes a certain level of stress and a 

consequent strain, though not permanent for 

our low-energy applications (elastic 

behaviour)

We are here…

Hooke’s Law: Strain is directly proportional 

to the stress (linear elasticity)

xkF =

k is the spring constant 

(material property)
stress strain 

Stress Strain
𝜎 = 𝑓−1 (𝜀) 𝜀𝜎



t
STOP 
LOAD


K

𝜀 = 𝑓 (𝜎)



𝜈 = −
𝑙𝑎𝑡. 𝑠𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑛𝑔. 𝑠𝑡𝑟𝑎𝑖𝑛
= −

ൗΔ𝑑
𝑑

ൗΔ𝐿
𝐿

= −
𝜀𝑦𝑦

𝜀𝑥𝑥
= −

𝜕𝑣
𝜕𝑦
𝜕𝑢
𝜕𝑥

= −
𝜀𝑧𝑧
𝜀𝑥𝑥

= −

𝜕𝑤
𝜕𝑦
𝜕𝑢
𝜕𝑥
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Elastic parameters

𝐸 =
𝑙𝑜𝑛𝑔. 𝑠𝑡𝑟𝑒𝑠𝑠

𝑙𝑜𝑛𝑔. 𝑠𝑡𝑟𝑎𝑖𝑛
=

ൗ𝐹𝑥 𝐴

ൗΔ𝐿
𝐿

=
𝜎𝑥𝑥
𝜀𝑥𝑥

=
𝜎𝑥𝑥
𝜕𝑢
𝜕𝑥

E: Young’s modulus [Pa]

𝝂: Poisson’s ratio [dim less]

Fx

𝜀𝑦𝑦 = −
𝜈

𝐸
𝜎𝑥𝑥

𝜀𝑥𝑥 =
1

𝐸
𝜎𝑥𝑥

𝜀𝑧𝑧 = −
𝜈

𝐸
𝜎𝑥𝑥

2. Shear stress 1. Longitudinal (compression/extension) stress

d

L

Fx

x

y

𝜇 = 𝐺 =
𝑠ℎ. 𝑠𝑡𝑟𝑒𝑠𝑠

𝑠ℎ. 𝑠𝑡𝑟𝑎𝑖𝑛
=

ൗ
𝐹𝑥𝑦

𝐴
tan( 𝜃)

=
𝜎𝑥𝑦

𝛾𝑥𝑦
=

𝜎𝑥𝑥
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

𝝁: Shear modulus  [Pa]

x

y

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

Fyx

Fxy

𝛾𝑥𝑦 =
1

𝜇
𝜎𝑥𝑦

𝜎𝑥𝑦 = 𝜇𝛾𝑥𝑦

𝐮 ≡ (𝑢, 𝑣, 𝑤)Displacement
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𝐾 =
𝑣𝑜𝑙. 𝑠𝑡𝑟𝑒𝑠𝑠

𝑣𝑜𝑙. 𝑠𝑡𝑟𝑎𝑖𝑛
=

𝑃

ൗΔ𝑉
𝑉

Bulk modulus [Pa]

Elastic parameters

𝑀 = 𝐾 +
4

3
𝜇

𝑀 =
𝑙𝑜𝑛𝑔. 𝑠𝑡𝑟𝑒𝑠𝑠

𝑙𝑜𝑛𝑔. 𝑠𝑡𝑟𝑎𝑖𝑛
=

ൗ𝐹 𝐴

ൗΔ𝑙
𝑙

4. Longitudinal stress with no lateral strain

Longitudinal modulus [Pa]

FF

3. Volumetric (bulk stress)
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Linear elastic homogeneous isotropic stress-strain relationship 

xx

zx

xx

yx

yz

zx

dx

dz

dy

yx

zz

zx

zz

yz

xz x

y

z

𝜎𝑥𝑥 = 𝜆 + 2𝜇
𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕𝑤

𝜕𝑧

x-components:

𝜎𝑥𝑦 = 𝜇
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜎𝑥𝑧 = 𝜇
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥 𝝀, 𝝁:

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧

=

Τ1 𝐸 − Τ𝜈 𝐸 − Τ𝜈 𝐸
− Τ𝜈 𝐸 Τ1 𝐸 − Τ𝜈 𝐸
− Τ𝜈 𝐸 − Τ𝜈 𝐸 Τ1 𝐸

0

0

Τ1 𝜇 0 0

0 Τ1 𝜇 0

0 0 Τ1 𝜇

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧

=

𝜆 + 2𝜇 𝜆 𝜆
𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

0

0
𝜇 0 0
0 𝜇 0
0 0 𝜇

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧

inverting

The linear elastic homogeneous isotropic stress-strain 

relationship is defined by only two constants (Lamé parameters) 

Lamé parameters
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Wave motion ෍

𝑖

𝐹𝑥,𝑖 = 𝑚𝑎
𝑚 = 𝛿𝑉 = 𝛿𝑑𝑥𝑑𝑦𝑑𝑧

𝑎 =
𝜕2𝑢

𝜕𝑡2
= ሷ𝑢

∆𝜎𝑥𝑥= 𝜎𝑥𝑥+ − 𝜎𝑥𝑥− =
𝜕𝜎𝑥𝑥

𝜕𝑥
d𝑥

Stress increment (rate)

𝜕𝜎𝑥𝑥

𝜕𝑥
d𝑥(d𝑦dz) +

𝜕𝜎𝑥𝑦

𝜕𝑦
d𝑦(d𝑥dz) +

𝜕𝜎𝑥𝑧

𝜕𝑧
d𝑧(d𝑥dy) = 𝛿 ሷ𝑢 𝑑𝑥𝑑𝑦𝑑𝑧

𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑥𝑦

𝜕𝑦
+
𝜕𝜎𝑥𝑧

𝜕𝑧
= 𝛿 ሷ𝑢

Insert linear elasticity

𝜆
𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕

𝜕𝑥

𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝜇

𝜕

𝜕𝑥

𝜕𝑣

𝜕𝑦

+ 𝜇
𝜕

𝜕𝑥

𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑢

𝜕𝑧2
= 𝛿 ሷ𝑢

∆𝜎𝑥𝑥= 𝜆 + 2𝜇
𝜕2𝑢

𝜕𝑥2
+ 𝜆

𝜕

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕

𝜕𝑥

𝜕𝑤

𝜕𝑧
d𝑥

∆𝜎𝑥𝑦= 𝜇
𝜕

𝜕𝑥

𝜕𝑣

𝜕𝑦
+
𝜕2𝑢

𝜕𝑦2
d𝑦

∆𝜎𝑥𝑧= 𝜇
𝜕

𝜕𝑥

𝜕𝑤

𝜕𝑧
+
𝜕2𝑢

𝜕𝑧2
d𝑧

(𝜆 + 𝜇)
𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
= 𝛿 ሷ𝑢

Seismic waves

(𝜆 + 𝜇)
𝜕

𝜕𝑥
∇ ∙ 𝐮 + 𝜇∇2𝑢 = 𝛿 ሷ𝑢

1-D (scalar)
equation of motion

extension in 3-D

(𝜆 + 𝜇)𝛁 ∇ ∙ 𝐮 + 𝜇∇2𝐮 = 𝛿 ሷ𝐮

𝛿: density
V: volume

3-D (vector) 
equation of motion
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(𝜆 + 𝜇)∇2 ∇ ∙ 𝐮 + 𝜇∇2 ∇ ∙ 𝐮 = 𝛿
𝜕2

𝜕𝑡2
𝛻 ∙ 𝐮

(𝜆 + 𝜇)𝛁 ∇ ∙ 𝐮 + 𝜇∇2𝐮 = 𝛿 ሷ𝐮

1. Apply divergence (scalar) operator (∇ ∙)

(𝜆 + 2𝜇)∇2 ∇ ∙ 𝐮 = 𝛿
𝜕2

𝜕𝑡2
∇ ∙ 𝐮

2. Apply curl (vector) operator (𝛁 x)

𝜇𝛻2 𝛁 x 𝐮 = 𝛿
𝜕2

𝜕𝑡2
𝛁 x 𝐮

Sharing the same form
WAVE EQUATION 

𝜕2𝑓

𝜕𝑡2
= 𝑣2∇2𝑓

Pure volumetric 
strain (P)

Pure shear strain 
(S)

𝑣𝑃 = 𝛼 =
𝜆+2𝜇

𝛿

𝑣𝑆 = 𝛽 =
𝜇

𝛿

P-wave velocity 

S-wave velocity 

Solution for a plane P-wave in the x-dir𝑢 𝑥, 𝑡 = 𝐴e𝑖(𝜔𝑡±𝑘𝑥)

Seismic waves

Wave motion
3-D (vector) 

equation of motion
(coupled)
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P-wave velocity

𝑣𝑃 =
𝜆 + 2𝜇

𝛿
=

𝐸(1 − 𝜈)

𝛿(1 + 𝜈)(1 − 2𝜈)

Dimensional analysis

𝑣𝑃 =
[Pa]

[kg/m3]

1/2

=
[N/m2]

[kg/m3]

1/2

=
[
kg
m2

m
s2
]

[kg/m3]

1/2

=
[kg/ms2]

[kg/m3]

1/2

𝑣𝑃 =
kg

ms2
m3

kg

1/2

=
m2

s2

1/2

= [m/s]

2

density [kg/m3]

P-wave velocity 

[m/s]
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S-wave velocity

𝑣𝑆 =
𝜇

𝛿
=

𝐸

𝛿

1

2(1 + 𝜈)

S-wave 

velocity [m/s]

Q. Which is the S-wave velocity in water?
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S-wave velocity

Q. Which is the S-wave velocity in water?

A. The S-wave velocity in water is null!

water does not carry shear waves

Q. Why?

A. Because its shear modulus is null!

In water, the shear modulus is zero because if

you apply an arbitrary shear force F, the liquid

simply flows, and the shear strain becomes

arbitrarily large:

shear strain → ∞

𝜇 =
𝑠ℎ. 𝑠𝑡𝑟𝑒𝑠𝑠

𝑠ℎ. 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

∞
= 0

𝑣𝑆 =
𝜇

𝛿
=

0

1000kg/m3 = 0

S-wave 

velocity [m/s]

𝑣𝑠
𝑤𝑎𝑡𝑒𝑟=0

𝑣𝑆 =
𝜇

𝛿
=

𝐸

𝛿

1

2(1 + 𝜈)
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Elastic moduli from seismic velocities

Fluids do not carry shear waves. This knowledge, combined 

with earthquake observations, is what lead to the discovery 

that the earth’s outer core is a liquid rather than a solid –

“shear wave shadow”. 
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Elastic moduli from seismic velocities

𝑀 = 𝛿𝑣𝑃
2

Given the seismic velocities vP and vS, i.e. from geophysical

measurements, we can derive the elastic moduli:

𝜇 = 𝛿𝑣𝑠
2

𝐾 = 𝛿(𝑣𝑃
2 −

4

3
𝑣𝑆

2)𝜈 =
𝑣𝑃

2 − 2𝑣𝑆
2

2(𝑣𝑃
2 − 𝑣𝑆

2)

𝑣𝑆 ≈ 0.6𝑣𝑃

In a first approximation:

𝑣𝑃
𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 ≈ 1450 m/s

𝑣𝑃
𝑠𝑎𝑙𝑡𝑤𝑎𝑡𝑒𝑟 ≈ 1530 m/s

𝑣𝑃
𝑎𝑖𝑟 ≈ 330 m/s (speed of sound)
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Velocity of rocks and soils

330-700

100-500
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Velocity vs. porosity

Soils and rocks are multiphase media 

The effective velocity is the combination of the velocity of the single component

Solid

Minerals 

(often high velocity)

Liquid

Mainly water 

(P-wave velocity=1450-1530 m/s)

Gas

Mainly air

(P-wave velocity=330-340 m/s)

Velocity of the multiphase medium

Combination of the three contributions
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Velocity vs. porosity

The overall rock properties are the average of the matrix (VM) and pore

fluid (VF) properties, weighted by the porosity 

1

𝑣𝑃
=

𝜙

𝑣𝐹
+
1 − 𝜙

𝑣𝑀

Time-average (Wyllie) 

equation

(empirical)

Ex. 1: travertine having a matrix velocity of 3 km/s, a porosity of 30% (0.3) filled by fresh 

water (VF = 1.45 km/s)

1

𝑣𝑃
=

0.3

1.45
+
0.7

3
= 0.207 + 0.233 = 0.44

𝑣𝑃 =
1

0.44
= 2.27 km/s
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Velocity vs. porosity, density, pressure and saturation

Velocity vs. density
Porosity vs. 

velocity

Velocity vs. 

pressure and 

saturation

differential pressure (MN/m2)

v
el

o
ci

ty
 (

k
m

/s
)

sat
dry
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Velocity vs. depth

Seismic velocities generally 

increase with depth due to:

• increased compaction and 

consequent reduced pore space

• elastic moduli increase with 

pressure

However, near surface or 

within anthropogenic 

elements, we can have some 

velocity decrease 

(velocity inversion)

z – depth 

T – age of the rock

C – experimental constant
𝑣 = 𝐶 𝑧𝑇 Τ1 6
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