
the original strands and one newly synthesized
strand that is complementary to it. Clearly, both
strands of DNA contain the full information neces-
sary to recreate the other strand. The key processes
of DNA replication occur at a replication fork (Fig.
2.7(d)). At this point, the two old strands are separ-
ated from one another and the new strands are syn-
thesized. The main enzyme that does this job is DNA
polymerase III. This enzyme catalyzes the addition of
nucleotides to the 3′ ends of the growing strands (at
the heads of the arrows in Fig. 2.7(d)). The new
strand is therefore synthesized in the 5′ to 3′ direc-
tion (as with mRNA synthesis during transcription).
On one strand, called the leading strand, synthesis 
is possible in a continuous unbroken fashion. How-
ever, on the lagging strand on the opposite side, con-
tinuous synthesis is not possible and it is necessary
to initiate synthesis independently many times. The
new strand is therefore formed in pieces, which are
known as Okazaki fragments.

DNA polymerase III is able to carry out the addition
of new nucleotides to a strand but it cannot initiate a
new strand. This is in contrast to RNA polymerase,
which is able to perform both initiation and addition.
DNA polymerase therefore needs a short sequence,
called a primer, from which to begin. Primers are
short sequences of RNA (indicated by dotted lines in
Fig. 2.7(d)) that are synthesized by a form of RNA
polymerase called primase. The processes of DNA
synthesis initiated by primers has been harnessed to
become an important laboratory tool, the poly-
merase chain reaction or PCR (see Box 2.1).

Once the fragments on the lagging strand have
been synthesized, it is necessary to connect them
together. This is done by two more enzymes. DNA
polymerase I removes the RNA nucleotides of the
primers and replaces them with DNA nucleotides.
DNA ligase makes the final connection between the
fragments. Both DNA polymerase I and III have the
ability to excise nucleotides from the 3′ end if they do
not match the template strand. This process of error
correction is called proof-reading. This means that
the fidelity of replication of DNA polymerase is
increased by several orders of magnitude with
respect to RNA polymerases. Errors in DNA replica-
tion cause heritable point mutations, whereas errors

in RNA replication merely lead to mistakes in a sin-
gle short-lived mRNA. Hence accurate DNA replica-
tion is very important.

We called this section “closing the loop” because,
in the order that we presented things here, DNA
replication is the last link in the cycle of mechan-
isms for synthesis of the major biological macro-
molecules. There is, however, a more fundamental
sense in which this whole process is a loop. Clearly
proteins cannot be synthesized without DNA be-
cause proteins do not store genetic information.
DNA can store this information, but it cannot carry
out the catalytic roles necessary for metabolism in 
a cell, and it cannot replicate itself without the aid 
of proteins. There is thus a chicken and egg situ-
ation: “Which came first, DNA or proteins?” Many
people now believe that RNA preceded both DNA
and proteins, and that there was a period in the
Earth’s history when RNA played both the genetic
and catalytic roles. This is a tempting hypothesis,
because several types of catalytic RNA are known
(both naturally occurring and artificially synthes-
ized sequences), and because many viruses use 
RNA as their genetic material today. As with all con-
jectures related to the origin of life and very early
evolution, however, it is difficult to prove that an
RNA world once existed.

2.4 PHYSICO-CHEMICAL PROPERTIES
OF THE AMINO ACIDS AND THEIR
IMPORTANCE IN PROTEIN FOLDING

As we mentioned in Section 1.1, we have many pro-
tein sequences for which experimentally determined
three-dimensional structures are unavailable. A
long-standing goal of bioinformatics has been to pre-
dict protein structure from sequence. Some methods
for doing this will be discussed in Chapter 10 on pat-
tern recognition. In this section, we will introduce
some of the physico-chemical properties that are
thought to be important for determining the way a
protein folds.

One property that obviously matters for amino
acids is size. Proteins are quite compact in structure,
and the different residues pack together in a way
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that is almost space filling. The volume occupied by
the side groups is important for protein folding, and
also for molecular evolution. It would be difficult to
substitute a very large amino acid for a small one
because this would disrupt the structure. It is more
difficult than we might think at first to define the 
volume of an amino acid. We have a tendency to
think of molecules as “balls and sticks”, but really
molecules contain atomic nuclei held together by
electrons in molecular orbitals. However, if you
push atoms together too much, they repel and hence
it is possible to define a radius of an atom, known as a

van der Waals radius, on the basis of these repul-
sions. A useful measure of amino acid volume is to
sum the volumes of the spheres defined by the van
der Waals radii of its constituent atoms. These
figures are given in Table 2.2 (in units of Å3). There
is a significant variation in volume between the
amino acids. The largest amino acid, tryptophan,
has roughly 3.4 times the volume of the smallest
amino acid, glycine. Creighton (1993) gives more
information on van der Waals interactions and on
amino acid volumes. Since protein folding occurs in
water, another way to define the amino acid volume
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BOX 2.1
Polymerase chain reaction (PCR)

The object of PCR is to create many copies of a specified
sequence of DNA that is initially present in a very small
number of copies. The amplified section can then be

used in further experiments or for DNA sequencing. To
carry out PCR, it is not necessary to know the sequence
to be amplified, but it is necessary to know the sequence
of two short sequences at either end of the region to be
amplified. These will be used as primers and are indi-
cated by white boxes below.

5'
3'

3'
5'

5'
3'

3'
5'

(b)

New strands

5'
3'

3'
5'

(c)

5'
3'

3'
5'

(a)

The long sequence of DNA containing the region of
interest is denatured by heating, and mixed with
oligonucleotides of the two primer sequences, indicated
by black boxes below. The complementary strands are
synthesized by a DNA polymerase called Taq polymerase

from the thermophilic bacterium Thermus aquaticus.
This enzyme is able to withstand the high temperatures
used in the denaturing cycles used in PCR. The primers
determine the position where the polymerase begins.
The situation now looks like this:

These molecules are again denatured and the com-
plementary strands are synthesized, and the cycle of
denaturation and DNA synthesis is carried out many

times. Included in the mixture of products are some
pieces of DNA that are bounded by the primers, like 
this:

These strands can multiply exponentially because the
products of the DNA synthesis can be used as templates
at the next cycle. After many cycles, the specified sequ-

ence dominates the population of DNA sequences, with
only negligible fractions of the longer DNA sequences
being present.
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is to consider the increase in volume of a solution
when an amino acid is dissolved in it. This is known
as the partial volume. Partial volumes are closely
correlated with the volumes calculated from the 
van der Waals radii, and we do not show them in 
the table.

Zimmerman, Eliezer, and Simha (1968) presented
data on several amino acid properties that are relev-
ant in the context of protein folding. Rather than
simply considering the volume, they defined the
“bulkiness” of an amino acid as the ratio of the side
chain volume to its length, which provides a meas-
ure of the average cross-sectional area of the side

chain. These figures are shown in Table 2.2 (in Å2).
Zimmerman, Eliezer, and Simha (1968) also intro-
duced a measure of the polarity of the amino acids.
They calculated the electrostatic force of the amino
acid acting on its surroundings at a distance of 10 Å.
This is composed of the force from the electric charge
(for the amino acids that have a charged side group)
plus the force from the dipole moment (due to the
non-uniformity of electronic charge across the amino
acid). The total force (in units scaled for convenience)
was used as a polarity index, and this is shown in
Table 2.2. The electrostatic charge term, where it ex-
ists, is much larger than the dipole term. Hence, this
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Vol. Bulk. Polarity pI Hyd.1 Hyd.2 Surface Fract. 
area area

Alanine Ala A 67 11.50 0.00 6.00 1.8 1.6 113 0.74
Arginine Arg R 148 14.28 52.00 10.76 −4.5 −12.3 241 0.64
Asparagine Asn N 96 12.28 3.38 5.41 −3.5 −4.8 158 0.63
Aspartic acid Asp D 91 11.68 49.70 2.77 −3.5 −9.2 151 0.62
Cysteine Cys C 86 13.46 1.48 5.05 2.5 2.0 140 0.91
Glutamine Gln Q 114 14.45 3.53 5.65 −3.5 −4.1 189 0.62
Glutamic acid Glu E 109 13.57 49.90 3.22 −3.5 −8.2 183 0.62
Glycine Gly G 48 3.40 0.00 5.97 −0.4 1.0 85 0.72
Histidine His H 118 13.69 51.60 7.59 −3.2 −3.0 194 0.78
Isoleucine Ile I 124 21.40 0.13 6.02 4.5 3.1 182 0.88
Leucine Leu L 124 21.40 0.13 5.98 3.8 2.8 180 0.85
Lysine Lys K 135 15.71 49.50 9.74 −3.9 −8.8 211 0.52
Methionine Met M 124 16.25 1.43 5.74 1.9 3.4 204 0.85
Phenylalanine Phe F 135 19.80 0.35 5.48 2.8 3.7 218 0.88
Proline Pro P 90 17.43 1.58 6.30 −1.6 −0.2 143 0.64
Serine Ser S 73 9.47 1.67 5.68 −0.8 0.6 122 0.66
Threonine Thr T 93 15.77 1.66 5.66 −0.7 1.2 146 0.70
Tryptophan Trp W 163 21.67 2.10 5.89 −0.9 1.9 259 0.85
Tyrosine Tyr Y 141 18.03 1.61 5.66 −1.3 −0.7 229 0.76
Valine Val V 105 21.57 0.13 5.96 4.2 2.6 160 0.86
Mean 109 15.35 13.59 6.03 −0.5 −1.4 175 0.74
Std. dev. 28 4.53 21.36 1.72 2.9 4.8 44 0.11

Vol., volume calculated from van der Waals radii (Creighton 1993); Bulk., bulkiness index (Zimmerman, Eliezer, 
and Simha 1968); Polarity, polarity index (Zimmerman, Eliezer, and Simha 1968); pI, pH of the isoelectric 
point (Zimmerman, Eliezer, and Simha 1968); Hyd.1, hydrophobicity scale (Kyte and Doolittle 1982); Hyd.2,
hydrophobicity scale (Engelman, Steitz, and Goldman 1986); Surface area, surface area accessible to water 
in unfolded peptide (Miller et al. 1987); Fract. area, fraction of accessible area lost when a protein folds (Rose 
et al. 1985).

Table 2.2 Physico-chemical properties of the amino acids.
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measure clearly distinguishes between the charged
and uncharged amino acids.

The polarity index does not distinguish between
the positively and negatively charged amino acids,
however, since both have high polarity. A quantity
that does this is the pI, which is defined as the pH of
the isoelectric point of the amino acid. Acidic amino
acids (Asp and Glu) have pI in the range 2–3. This
means that these amino acids would be negatively
charged at neutral pH due to ionization of the COOH
group to COO−. We need to put them in an acid solu-
tion in order to shift the equilibrium and balance this
charge. The basic amino acids (Arg, Lys, and His)
have pI greater than 7. All the others usually have
uncharged side chains in real proteins. They have pI
in the range 5–6. Thus, pI is a useful measure of
acidity of amino acids that distinguishes clearly be-
tween positive, negative, and uncharged side chains.

A key factor in protein folding is the “hydrophobic
effect”, which arises as a result of the unusual char-
acteristics of water as a solvent. Liquid water has
quite a lot of structure due to the formation of chains
and networks of molecules interacting via hydrogen
bonds. When other molecules are dissolved in water,
the hydrogen-bonded structure is disrupted. Polar
amino acid residues are also able to form hydrogen
bonds with water. They therefore disrupt the struc-
ture less than non-polar amino acids that are unable
to form hydrogen bonds. We say that the non-polar
amino acids are hydrophobic, because they do not
“want” to be in contact with water, whereas the
polar amino acids are hydrophilic, because they
“like” water. It is generally observed that hydro-
phobic residues in a protein are in the interior of 
the structure and are not in contact with water,
whereas hydrophilic residues are on the surface and
are in contact with water. In this way the free energy
of the folded molecule is minimized.

Kyte and Doolittle (1982) defined a hydrophobicity
(or hydropathy) scale that is an estimate of the differ-
ence in free energy (in kcal/mol) of the amino acid
when it is buried in the hydrophobic environment of
the interior of a protein and when it is in solution in
water. Positive values on the scale mean that the
residue is hydrophobic: it costs free energy to take
the residue out of the protein and put it in water.

Another version of the hydrophobicity scale was
developed by Engelman, Steitz, and Goldman (1986),
who were particularly interested in membrane pro-
teins. The interior of a lipid bilayer is hydrophobic,
because it mostly consists of the hydrocarbon tails of
the lipids. They estimated the free energy cost for
removal of an amino acid from the bilayer to water.
These two scales are similar but not identical; there-
fore both scales are shown in the table.

Another property that is thought to be relevant
for protein folding is the surface area of the amino
acid that is exposed (accessible) to water in an
unfolded peptide chain and that becomes buried
when the chain folds. Table 2.2 shows the accessible
surface areas of the residues when they occur in a
Gly–X–Gly tripeptide (Miller et al. 1987, Creighton
1993). Rose et al. (1985) calculated the average
fraction of the accessible surface area that is buried
in the interior in a set of known crystal structures.
They showed that hydrophobic residues have a
larger fraction of the surface area buried, which sup-
ports the argument that the “hydrophobic effect” is
important in determining protein structure.

2.5 VISUALIZATION OF AMINO 
ACID PROPERTIES USING PRINCIPAL
COMPONENT ANALYSIS

So far, this chapter has summarized some of the fun-
damental aspects of molecular biology that we think
every bioinformatician should know. In the rest of the
chapter, we want to introduce some simple methods
for data analysis that are useful in bioinformatics.
We will use the data on amino acid properties.

Table 2.2 shows eight properties of each amino
acid (and we could easily have included several
more columns using data from additional sources).
It would be useful to plot some kind of diagram that
lets us visualize the information in this table. It is
straightforward to take any two of the properties
and use these as the coordinates for the points in 
a two-dimensional graph. Figure 2.8 shows a plot 
of volume against pI. This clearly shows the acidic
amino acids at low pI, the basic amino acids at high
pI, and all the rest in the middle. It also shows the
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large spread of the middle group along the volume
axis. However, the figure does not distinguish
between the hydrophilic and hydrophobic amino
acids in the middle group: N and Q appear very close
to M and V, for example. We could separate these by
using one of the hydrophobicity scales on the axis
instead of pI, but then the acidic and basic groups
would appear close together because both are
hydrophilic (negative on the hydrophobicity scale).
What we need is a way of combining the informa-
tion from all eight properties into a two-dimensional
graph. This can be done with principal component
analysis (PCA).

In general with PCA, we begin with the data in the
form of an N × P matrix, like Table 2.2. The number
of rows, N, is the number of objects in our data set (in
this case N = 20 amino acids), and the number of
columns, P, is the number of properties of those
objects (in this case P = 8). Each row in the data
matrix can be thought of as the coordinates of a
point in P-dimensional space. The whole data set is a
cloud of these points. The PCA method transforms
this cloud of points first by scaling them and shifting
them to the origin, and then by rotating them in
such a way that the points are spread out as much as
possible, and the structure in the data is made easier
to see.

Let the original data matrix be Xij(i.e., Xij is the
value of the jth property of object i). The mean and
standard deviation of the properties are

and

The mean and standard deviation are listed at the
foot of Table 2.2. Since the properties all have differ-
ent scales and different mean values, the first step of
PCA is to define scaled data values by

zij = (Xij − µj)/σj

The zij matrix measures the deviation of the values
from the mean values for each property. By defin-
ition, the mean value of each column in the zij matrix
is 0 and the standard deviation is 1. Scaling the data
in this way means that all the input properties are
placed on an equal footing, and all the properties will
contribute equally to the data analysis.

We now choose a set of vectors vj = (vj1, vj2, vj3,
. . . vjP) that define the directions of the principal
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Fig. 2.8 Plot of amino acid volume
against pI – two properties thought to
be important in protein folding.
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components. These vectors are of unit length, i.e.,
for each vector, and they are all orthogonal

to one another, i.e., when i and j are not

equal. Each vector represents a new coordinate axis
that is a linear combination of the old coordinates.
The positions of the points in the new coordinate sys-
tem are given by

The new y coordinate system is a rotation of the z
coordinate system – see Fig. 2.9.

There are still P coordinates, so we can only use
two of them if we plot a two-dimensional graph.
However, we can define the y coordinates so that as
much of the variation between the points as possible
is visible in the first few coordinates. We therefore
choose the v1k values so that the variance of the
points along the first principal component axis,

is as large as possible. (Note that the

means of the y’s are all zero because the means of the
z’s were zero.) We then choose the v2k for the second

component by maximizing the variance 

with the constraint that the second axis is orthogonal
to the first, i.e., If we wish, we can

define further components by maximizing the vari-
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ance with the constraint that each component is
orthogonal to the previous ones. Calculation of the
vjk is discussed in more detail in Box 2.2.

The results of PCA for the amino acid data in 
Table 2.2 are shown in Fig. 2.10. The first two 
principal component vectors are shown in the
matrix on p. 28. For component 1, the largest 
contributions in the vector are the negative con-
tributions from the hydrophobicity scales. Thus
hydrophobic amino acids appear on the left side 
and hydrophilic ones on the right. For component 2,
the largest contributions are positive ones from 
volume, bulkiness, and surface area. Thus large
amino acids appear near the top of the figure and
small ones near the bottom. However, all the pro-
perties contribute to some extent to each of the com-
ponents; therefore, the resulting figure is not the
same as we would have got by simply plotting
hydrophobicity against volume.

Figure 2.10 illustrates several points about the
data that seem intuitive. There is a cluster of
medium-sized hydrophobic residues, I, L, V, M, and
F. The two acids, D and E, are close, and so are the
two amides, Q and N. Two of the basic residues, R
and K, are very close, and H is fairly close to these.
The two largest residues, W and Y, are quite close to
one another. The PCA diagram manages to do a
fairly good job at illustrating all these similarities at
the same time.

The PCA calculation in this section was done
using the program pca.c by F. Murtagh (http://
astro.u-strasbg.fr/~fmurtagh/mda-sw/).
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Fig. 2.9 Schematic illustration of principal component analysis. (a) Original data. (b) Scaled and centered on the origin. 
(c) Rotated onto principal components.
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2.6 CLUSTERING AMINO ACIDS
ACCORDING TO THEIR PROPERTIES

2.6.1 Handmade clusters

When we look at a figure like 2.10, it is natural to try
to group the points into “clusters” of similar objects.
We already remarked above that I, L, V, M, and F
look like a cluster. So, where would you put clusters?
Before going any further, make a few photocopies of
Fig. 2.10. Now take one of the copies and draw rings
around the groups of points that you think should be
clustered. You can decide how many clusters you
think there should be – somewhere between four
and seven is probably about right. You can also
decide how big the clusters should be – you can put
lots of points together in one cluster if you like, or
you can leave single points on their own in a cluster
of size one. OK, go ahead!

When we presented the chemical structures of the
amino acids in Fig. 2.6, we chose four groups:

Neutral, nonpolar W, F, G, A, V, I, L, M, P
Neutral, polar Y, S, T, N, Q, C
Acidic D, E
Basic K, R, H

This is one possible clustering. We chose these four
clusters because this is the way the amino acids are
presented in most molecular biology textbooks. Try
drawing rings round these four clusters on another
copy of Fig. 2.10. The acidic and basic groups work
quite well. The neutral polar group forms a rather
spread-out cluster in the middle of the figure, but
unfortunately it has P in the middle of it. The nonpo-
lar group can hardly be called a cluster, as it takes up
about half the diagram, and contains points that are
very far from one another, like G and W. You prob-
ably think that you did a better job when you made
up your own clusters a few minutes ago.

We now want to consider ways of clustering data
that are more systematic than drawing rings on paper.
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Fig. 2.10 Plot of the amino acids on
the first two components of the
principal component analysis.

Vol Bulk. Pol. pI Hyd.1 Hyd.2 S.A. Fr.A.
Comp. 1 (0.06, −0.22, 0.44, 0.19, −0.49, −0.51, 0.10, −0.45)
Comp. 2 (0.58, 0.48, 0.10, 0.25, 0.03, −0.03, 0.56, 0.17)
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BOX 2.2
Principal component analysis in more detail

From the N × P data matrix, we can define a P × P matrix of correlation coefficients, Cjk, between the properties:

The coefficients are always in the range −1 to 1. If Cjk > 0, the two properties are positively correlated, i.e., they both
tend to be large at the same time and small at the same time. If Cjk < 0, the properties are negatively correlated, i.e.,
one tends to be large when the other is small. The correlation matrix for the amino acid data looks like this.

The matrix is symmetric (Cjk = Ckj) and all the diagonal elements are 1.00 by definition. The values illustrate fea-
tures of the data that are not easy to see in the original matrix. For example, volume has a strong positive correlation
with surface area and bulkiness, and a fairly weak correlation with the other properties. The two hydro-
phobicity scales have strong positive correlation with each other and also with the fractional area property, but they
have a significant negative correlation with the polarity scale.

It can be shown that the vectors vj that define the principal component axes are the eigenvectors of the correlation
matrix, i.e., they satisfy the equation:

= lnvnk

where the ln are constants called eigenvalues. The first principal component (PC) vector is the eigenvector with the
largest eigenvalue. Subsequent PCs can be listed in order of decreasing size of eigenvalue. The first two eigenvalues
in this case are l1 = 3.57 and l2 = 2.81.

The variance along the nth PC axis is equal to the corresponding eigenvalue:

We know that the variance of each of the z coordinates is 1, hence the total variance of all the coordinates is P. When
we change the coordinates to the principal components, we just rotate the points in space, so the total variance 
in the PC space is still P. The fraction of the total variance represented by the first two PCs is therefore 
(l1 + l2)/P, which in our case is (3.57 + 2.81)/8 = 0.797. This is why it is useful to look at the data on the PC plot (as
in Fig. 2.10). Roughly 80% of the variation in the positioning of the points in the original coordinates can be seen
with just two PCs. When points appear close in the two-dimensional plot of the first two PCs, they really are close in
the eight-dimensional space, because the remaining six dimensions that we can’t see do not contribute much to the
distance between the points. This means that if we spot patterns in the data in the PC plot, such as clusters of closely
spaced points, then these are likely to give a true impression of the patterns in the full data.

   

1 12 2

N
y

N
v z v z v C v vin

i
nj ij nk ik

kji
nj jk nk

kj
n nk

k
n∑ ∑∑∑ ∑∑ ∑= = = =        l l

 
v Cnj jk

j
∑

   
C

N
X X

N
z zjk

j K
ij j

i
ik k ij ik

i

  (   )(   )  = − − =∑ ∑1 1
s s

m m

Vol Bulk. Pol. pI Hyd.1 Hyd.2 S.A. Fr.A.
Vol. 1.00 0.73 0.24 0.37 −0.08 −0.16 0.99 0.18
Bulk. 0.73 1.00 −0.20 0.08 0.44 0.32 0.64 0.49
Pol. 0.24 −0.20 1.00 0.27 −0.69 −0.85 0.29 −0.53
pI 0.37 0.08 0.27 1.00 −0.20 −0.27 0.36 −0.18
Hyd.1 −0.08 0.44 −0.67 −0.20 1.00 0.85 −0.18 0.84
Hyd.2 −0.16 0.32 −0.85 −0.27 0.85 1.00 −0.23 0.79
S.A. 0.99 0.64 0.29 0.36 −0.18 −0.23 1.00 0.12
Fr.A. 0.18 0.49 −0.53 −0.18 0.84 0.79 0.12 1.00
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In fact, there is a huge number of different clustering
methods. This testifies to the fact that there are a lot
of different people from a lot of different disciplines
who find clustering useful for describing the patterns
in their data. Unfortunately, it also means that there
is not one single clustering method that everyone
agrees is best. Different methods will give different
answers when applied to the same data; therefore,
there has to be some degree of subjectivity in decid-
ing which method to use for any particular data set.

In the context of the amino acids, clustering
according to physico-chemical properties is actu-
ally quite helpful when we come to do protein
sequence alignments. We usually want to align
residues with similar properties with one another,
even if the residues are not identical. There are sev-
eral sequence alignment editors that ascribe colors
to residues, assigning the same color to clusters of 
similar amino acids. In well-aligned parts of protein
sequences, we often find that all the residues in a 
column have the same color. The coloring scheme
can thus help with constructing alignments and
spotting important conserved motifs. When we look
at protein sequence evolution (Chapter 4) it turns
out that substitutions are more frequent between
amino acids with similar properties. So, clustering
according to properties is also relevant for evolution.
In the broader context, however, clustering algo-
rithms are very general and can be used for almost
any type of data. In this book, they will come up
again in two places: in Chapter 8 we discuss distance
matrix methods for molecular phylogenetics, which
are a form of hierarchical clustering; and in Chapter
13 we discuss applications of clustering algorithms
on microarray data. It is therefore worth spending
some time on these methods now, even if you are
getting a bit bored with amino acid properties.

2.6.2 Hierarchical clustering methods

In a hierarchical clustering method, we need to
choose a measure of similarity between the data
points, then we need to choose a rule for measuring
the similarity of clusters.

We will use the scaled coordinates z as in the pre-
vious section. There is a vector zi from the origin to

each point i in the data set (see Fig. 2.11). The length
of the vector is:

We want to measure how similar the vectors are for
two points i and j. A simple way to do this is to use the
cosine of the angle θij between the vectors. If the two
vectors are pointing in almost the same direction, θij
will be small and cos θij will be close to 1. Vectors
with no correlation will have θij close to 90° and 
cos θij close to 0. Vectors with negative correlation
will have θij > 90° and cos θij < 0.

From standard geometry,

Another possible similarity measure is the correla-
tion coefficient between the z vectors:

where mi and si are the mean and standard deviation
of the elements in the ith row (see also Box 2.2, where
we define the correlation between the columns). 
Rij is in the range −1 to 1.

In what follows, we shall assume that we have
calculated an N × N matrix of similarities between
the data points that could be cos θij or Rij, or any
other measure of similarity that appears appropriate
for the data in question. We will call the similarity
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Fig. 2.11 Illustration of the data points as vectors in
multidimensional space.
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matrix Sij from now on, to emphasize that the
method is general and works the same way, which-
ever measure we use for similarity.

During the process of hierarchical clustering,
points are combined into clusters, and small clusters
are combined to give progressively larger clusters.
To decide in what order these clusters will be con-
nected, we will need a definition of similarity between
clusters. Suppose we already have two clusters A
and B. We want to define the similarity SAB of these
clusters. There are (at least) three ways of doing this:
• Group average. SAB = the mean of the similarities
Sij between the individual data points, averaged over
all pairs of points, where i is in cluster A and j is in
cluster B.
• Single-link rule. SAB = maximum similarity Sij for
any i in A and j in B.
• Complete-link rule. SAB = minimum similarity Sij
for any i in A and j in B.
The reasons for the terms “single link” and “com-
plete link” will be made more clear in Section 2.6.3.

An algorithm is a computational recipe that
specifies how to solve a problem. Algorithms come
up throughout this book, and we will discuss some
general points about algorithms in Chapter 6. For
the moment, we will present a very simple algorithm
for hierarchical clustering. This works in the same
way, whatever the definitions of similarity between
data points and between clusters. We begin with
each point in a separate cluster of its own.
1 Join the two clusters with the highest similarity to
form a single larger cluster.
2 Recalculate similarities between all the clusters
using one of the three definitions above.
3 Repeat steps 1 and 2 until all points have been
connected to a single cluster.
This procedure is called “hierarchical” because it gen-
erates a set of clusters within clusters within clusters.
For this reason, the results of a hierarchical clustering
procedure can be represented as a tree. Each branch-
ing point on the tree is a point where two smaller
clusters were joined to form a larger one. Reading
backwards from the twigs of the tree to the root tells
us the order in which the clusters were connected.

Plate 2.2(a) shows a hierarchical clustering of 
the amino acid data. This was performed using the

CLUTO package (Karypis 2002). The similarity meas-
ure used was cos θ and the group-average rule was
used for the similarity between clusters. The tree on
the left of Plate 2.2(a) shows the order in which the
amino acids were clustered. For example, L and I are
very similar, and are clustered at the beginning. The
LI cluster is later combined with V. In the meantime
M and F are clustered, and then the MF cluster is
combined with VLI, and so on. The tree indicates
what happens if the clustering is continued to the
point where there is only one cluster left. In practice,
we want to stop the clustering at some stage where
there is a moderate number of clusters left. The right
side of Plate 2.2(a) shows the clusters we get if we
stop when there are six clusters. These can be sum-
marized as follows.

Cluster 1: Basic residues K, R, H
Cluster 2: Acid and amide residues E, D, Q, N
Cluster 3: Small residues P, T, S, G, A
Cluster 4: Cysteine C
Cluster 5: Hydrophobic residues V, L, I, M, F
Cluster 6: Large, aromatic residues W, Y

The central part of Plate 2.2(a) is a representation
of the scaled data matrix zij. Red/green squares indic-
ate that the value is significantly higher/lower than
average; dark colors indicate values close to the
average. This color scheme makes sense in the con-
text of microarrays, as we shall see in Chapter 13.
We have named the clusters above according to
what seemed to be the most important feature link-
ing members of the cluster. The basic cluster con-
tains all the residues that are red on both the pI and
polarity scales. The acid and amide cluster contains
all the residues that are green on the hydrophobic-
ity scales and also on the pI scale. Note that if we 
had stopped the clustering with a larger number of
clusters, the acids and the amides would have been
in separate clusters. We called cluster 3 “small”
because the most noticeable thing is that these
residues are all green on the volume and surface
area scales. These residues are quite mixed in terms
of hydrophobicities. Cluster 4 contains only cys-
teine. Cysteine has an unusual role in protein struc-
ture because of its potential to form disulfide bonds
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between pairs of cysteine residues. For this reason,
cysteines tend to be important when they occur and
it is difficult to interchange them for other residues.
Cysteine does not appear to be particularly extreme
in any of the eight properties used here, and none of
the eight properties captures the important factor of
disulfide bonding. Nevertheless, it is interesting that
this cluster analysis manages to spot some of its
uniqueness. Cluster 5 is clearly hydrophobic, and
cluster 6 contains the two largest amino acids, which
both happen to be aromatic. It is worth noting, how-
ever, that the other aromatic residue, phenylalanine
(F), is in cluster 5. Phenylalanine has a simple hydro-
carbon ring as a side group and therefore is hydro-
phobic. In contrast, tryptophan and tyrosine are only
moderate on the hydrophobicity scales used here.

At the top of Plate 2.2(a), there is another tree
indicating a clustering of the eight properties. This is
done so that the properties can be ordered in a way
that illustrates groups of properties that are corre-
lated. The tree shows very similar information to 
the correlation matrix given in Box 2.2, i.e., volume
and surface area are correlated, the two hydropho-
bicity scales are correlated with the fractional area
scale, etc.

2.6.3 Variants on hierarchical clustering

Take another copy of Fig. 2.10 and draw rings
around the six clusters specified by the hierarchical
method. These clusters seem to make sense, and
they are probably as good as we are likely to get with
these data as input. They are not the only sensible set
of clusters, however, and the details of the clusters
we get depend on the details of the method.

First, the decision to stop at six clusters is subject-
ive. If we use the same method (cos θ and group
average) and stop at seven, the difference is that the
acids are separated from the amides. If we stop at
five, cysteine is joined with the hydrophobic cluster.

A second point to consider is the rule for similarity
between clusters. In hierarchical clustering methods,
we could in principle plot the similarity of the pair of
clusters that we connect at each step of the process
as a function of the number of steps made. This level
begins at one, and gradually descends and the clusters

get bigger and the similarity between the clusters
gets lower. In the group-average method, the sim-
ilarity of the clusters is the mean of the similarities of
the pairs of points in the cluster. Therefore, roughly
half of the pairs of points will have similarities
greater than or equal to the similarity level at which
the connection is made. When the single-link rule is
used, the level at which the connection is made is the
similarity of the most similar pair of points in the two
clusters connected. This means that clusters can be
very spread out. Two points in the same cluster may
be very different from one another as long as there is
a chain of points between them, such that each link
in the chain corresponds to a high similarity pair. In
contrast, the complete-link rule will only connect a
pair of clusters when all the pairs of points in the two
clusters have similarity greater than the current
connection level. Thus each point is completely
linked to all other points in the cluster. In our case,
using cos θ, the single-link rule and stopping at six
clusters yields the same six clusters as with the
group-average rule, except that WY is linked with
VLIMF and QN is split from DE. Using cos θ with 
the complete-link rule gives the same as the group-
average method, with the exception that C is linked
with VLIMF and TP is split from SGA.

These are relatively minor changes. We also tried
using the correlation coefficient as the similarity
measure instead of cos θ, and this gave a more
significant change in the result. With the group-
average rule we obtained: EDH; QNKR; YW; VLIMF;
PT; SGAC. These clusters seem less intuitive than
those obtained with the cos θ measure, and also
appear less well defined in the PCA plot. The correla-
tion coefficient therefore seems to work less well on
this particular data set. The general message is that
it is worth considering several different methods on
any real data, because differences will arise.

So far we have been treating the data in terms of
similarities. It is also possible to measure distances
between data points that measure how “far apart”
the points are, rather than how similar they are. We
already have points in our P-dimensional space
defined by the z coordinates (Fig. 2.11). Therefore
we can straightforwardly measure the Euclidean
distance between these points:
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We can use the matrix of distances between points
instead of the matrix of similarities. The only differ-
ence in the hierarchical clustering procedure is
always to connect the pair of clusters with the small-
est distance, rather than the pair with the highest
similarity. Group-average, single-link, and complete-
link methods can still be used with distances. Even
though the clustering rule is basically the same,
clustering based on distances and similarities will
give different results because the data are input to
the method in a different way – the distances are not
simple linear transformations of the similarities.

One of the first applications of clustering tech-
niques, including the ideas of single-link, complete-
link, and group-average clusters, was for construction
of phylogenetic trees using morphological charac-
ters (Sokal and Sneath 1963). Distance-matrix 
clustering methods are still important in molecular
phylogenetics. In that case, the data consist of
sequences, rather than points in Euclidean space.
There are many ways of defining distances between
sequences (Chapter 4), but once a distance matrix
has been defined, the clustering procedure is the
same. In the phylogenetic context, the group-
average method starting with a distance matrix 
is usually called UPGMA (see Section 8.3).

2.6.4 Non-hierarchical clustering methods

All the variants discussed above give rise to a nested
set of clusters within clusters that can be represented
by a tree. There are other types of clustering method,
sometimes called “direct” clustering methods,
where we simply specify the number, K, of clusters
required and we try to separate the objects into K
groups without any notion of a hierarchy between
the groups. Direct clustering methods require us to
define a function that measures how good a set of
clusters is. One function that does this is

Here, A labels the cluster, and we are summing over
all clusters A = 1,2 . . . K. The notation i,j ∈A means
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1 2 that we are summing over all pairs of objects i and 
j that are in cluster A. We called this function I2, 
following the notation in the manual for the CLUTO
software (Karypis 2002). Given any proposed division
of the objects into clusters, we can evaluate I2. We
can then choose the set of clusters that maximizes I2.

There are many other optimization functions that
we might think of to evaluate the clusters. Basically,
we want to maximize some function of the similarit-
ies of objects within clusters or minimize some func-
tion of the similarities of objects in different clusters.
I2 is the default option in CLUTO, but several other
functions can be specified as alternatives. Note that
if a cluster has n objects, there are n2 pairs of points 
in the cluster. The square root in I2 provides a way 
of balancing the contributions of large and small 
clusters to the optimization function. Using the I2
optimization function on the amino acid data with 
K = 6 gives the clusters: KRH; EDQN; PT; CAGS;
VLIMF; WY. This is another slight variant on the one
shown in Plate 2.2(a), but one that also seems to
make sense intuitively and when drawn on the prin-
cipal components plot.

Another well-known form of direct clustering,
known as K-means (Hartigan 1975), treats the data
in the form of distances instead of similarities. In this
case, we define an error function E and choose the
set of clusters that minimizes E. Let µAj be the mean
value of zij for all objects i assigned to cluster A. The
square of the distance of object i from the mean point
of the cluster to which it belongs is

and the error function is

In direct clustering methods, we have a well-
defined function that is being optimized. However,
we do not have a well-defined algorithm for finding
the set of clusters. It is necessary to write a computer
program that tries out very many possible solutions
and saves the best one that it finds. Typically, we
might begin with some random partition of the data
into K clusters and then try moving one object at a
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time into a different cluster in such a way as to make
the best possible improvement in the optimization
function. If there is no movement of an object that
would improve the optimization function, then we
have found at least a local optimum solution. If the
process is repeated several times from different start-
ing positions, we have a good chance of finding the
global optimum solution.

For the hierarchical methods in the previous 
section, the algorithm tells us exactly how to form
the clusters, so there is no trial and error involved.
However, there is no function that is being optimized.
Exactly the same distinction will be made when we
discuss phylogenetic methods in Chapter 8: distance
matrix methods have a straightforward algorithm
but no optimization criterion, whereas maximum-
parsimony and maximum-likelihood methods have
well-defined optimization criteria, but require a trial-
and-error search procedure to locate the optimal
solution.

There are many issues related to clustering that
we have not covered here. Some methods do not fit
into either the hierarchical or the direct clustering
categories. For example, we can also do top-down
clustering where we make successive partitions of
the data, rather than successive amalgamations, 
as in hierarchical methods. It is worth stating an
obvious point about all the clustering methods dis-
cussed in this chapter: clusters are defined to be non-

overlapping. An object cannot be in more than one
cluster at once. When we run a clustering algo-
rithm, we are forcing the data into non-overlapping
groups. Sometimes the structure of the data may not
warrant this, in which case we should be wary of
using clustering methods or of reading too much
into the clusters produced. Statistical tests for the
significance of clusters are available, and these
would be important if we were in doubt whether a
clustering method was appropriate for our data.

To illustrate the limitations of non-overlapping
clusters, we tried to plot a Venn diagram illustrating
as many relevant properties of amino acids as pos-
sible: see Plate 2.2(b). These properties do overlap.
For example, several amino acids are not strongly
polar or nonpolar, and are positioned in the overlap
area. There are aromatic amino acids on both the
polar and nonpolar sides, so the aromatic ring over-
laps the others. This diagram is surprisingly hard to
draw (this is at least the fourth version we tried!).
There were some things in earlier versions that got
left out of this one, for example tyrosine (Y) is some-
times weakly acidic (so should it be in a ring with D
and E?) and histidine is only weakly basic (so should
we move it into the polar neutral area?). The general
message is that clusters are useful, but they have
limitations, and we should keep this in mind when
clustering more complex data sets, such as the
microarray data discussed in Chapter 13.
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SUMMARY
DNA is composed of sequences of four types of
nucleotide building blocks known as A, C, G, and T. It is
the molecule that stores the genetic information of the
cell. It usually exists as a double helix composed of two
exactly complementary strands. RNA is also composed
of four nucleotide building blocks, but U is used instead
of T. RNA molecules are usually single stranded and fold
to form complex stem-loop secondary structures by
base pairing between short sections of the same strand.
Proteins are polymers composed of sequences of 20
types of amino acid linked by peptide bonds.

The process of synthesis of RNA using a DNA strand as
a template is called transcription. It is carried out by RNA
polymerase. The process of protein synthesis using

mRNA as a template is called translation. It is carried out
by the ribosome. Protein-coding DNA sequences store
information in the form of groups of three bases called
codons. Each codon codes for either an amino acid or a
stop signal. The mapping from codons to amino acids is
known as the genetic code. During translation, the anti-
codon sequences in tRNA molecules pair with the codon
sequences in the mRNA. Each tRNA is charged with a
specific amino acid, and this amino acid gets transferred
from the tRNA to the growing protein chain due to the
catalytic activity of the ribosome.

Amino acids vary greatly in size, charge, hydrophobic-
ity, and other physical properties. Principal component
analysis (PCA) is a way of visualizing the important fea-
tures of multidimensional data sets, such as tables of
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amino acid properties. PCA chooses coordinates that are
linear combinations of the original variables in such a
way that the maximum variability between the data
points is explained by the first few coordinates.
Clustering analysis is another way of looking for patterns
in complex data sets. A large variety of clustering meth-
ods is possible, including hierarchical and direct cluster-
ing. These methods give slightly different answers;

hence some thought is required in order to interpret the
resulting clusters and to decide which method is most
appropriate for a given data set. Clustering and PCA are
applied to the amino acid data in this chapter because
they reveal interesting properties of the amino acids and
also because the methods are general and are useful in
many areas, such as microarray data analysis, as we shall
discuss in Chapter 13.
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