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SUMMARY OF TWO SAMPLE TESTS

Two study designs are available to compare two treatments. In a paired design, both
treatments are applied to every randomly sampled unit. In a two-sample design, treatments
are applied to separate randomly sampled units.

Comparing two treatments in a paired design involves analyzing the mean of the
differences between the two measurements of each pair. Comparing two treatments in a
two-sample design involves analyzing the difference in means of two independent samples
of measurements.

® A test of the mean difference between two paired treatments uses the paired t-test.

® Both the confidence interval for the mean difference and the paired t-test assume that the

pairs are randomly chosen from the population and that the differences (d;) have a normal

distribution. These methods are robust to minor deviations from the assumption of
normality.

The means of a numerical variable from two separate groups or populations can be
compared with a two-sample t-test.

The two-sample t-test and the confidence intervals for the difference between the means
assume that the variable is normally distributed in both populations and that the variance
is the same in both populations. The methods are robust to minor deviations from these
assumptions.

The pooled sample variance is the best estimate of the variance within groups, assuming
that the groups have equal variance.

Welch’s approximate t-test compares the means of two groups when the variances of the
two groups are not equal.

Repeated measurements made on the same sampling unit are not independent and should
be summarized for each sampling unit before further analysis.

Indirectly comparing two groups by comparing each of them separately to the same null
hypothesized value will often lead you astray. Groups should always be compared directly
to each other.

For variables that are normally distributed, variances of two groups can be compared with
an F-test. The F-test, however, is highly sensitive to the departures from the assumption of
normal populations.

Levene’s test compares the variances of two or more groups. It is more robust than the F-
test to departures from the assumption of normality.
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Study materials:

Rosner’s chapter 9 and Whitlock’s chap. 13 (very good)

MOREOVER: As an exercise (to be recorded in the logbook) | suggest that
you look at the very good scholarly lecture by professor Francesco Pauli of
Trieste (in Italian) on the Neyman-Parson paradigm of testing hypotheses
published on you tube https://www.youtube.com/watch?v=4jv7fKjnONc
TRANSLATE TO ENGLISH (committee)

Consider the collection points of significance by Naomi Altman in Nature
Methods
https://www.nature.com/collections/gqghhgm/pointsofsignificance




THE PROBLEM OF DATA THAT VIOLATE THE REQUIREMENT OF NORMALITY

All of the methods that we have learned about so far to estimate and test population means
assume that the numerical variable has an approximately normal distribution. The two-sample
t-test requires the further assumption that the standard deviations (and variances) are the same
in the two corresponding populations. However, frequency distributions often aren’t normal,
and standard deviations aren’t always equal. More often than we would like, our study

1. Ignore the violations of assumptions. In some situations, we can use a procedure even if
its assumptions are not strictly met. Methods for estimating and comparing means often

work quite well when the assumption of normality is violated, especially if sample sizes
are large and the violations are not too drastic.

2. Transform the data. For example, taking the logarithm is one way to transform data, with
the result that the transformed data may better meet the assumptions. This procedure is
often, but not always, effective.

3. Use a nonparametric method. A nonparametric method is one of a class of methods that
do not require the assumption of normality. These methods can handle even badly
behaved data, such as outliers that don’t go away even when the data are transformed.

4. Use a permutation test. A permutation test uses a computer to generate a null distribution
for a test statistic by repeatedly and randomly rearranging the data for one of the
variables.

Michael C. Whitlock and Dolph Schluter - The Analysis of Biological Data-W. H. Freeman and
Company (2015)



The fate of log-normal world: the distribution of multiplicative noise

Log-normal distribution

In probability theory, a log-normal (or lognormal)
distribution is a continuous probability distribution of a
random variable whose logarithm is normally distributed.
Thus, if the random variable X is log-normally distributed,
then Y = In(X) has a normal distribution. Equivalently, if ¥
has a normal distribution, then the exponential function of
Y, X = exp(Y), has a log-normal distribution. A random
variable which is log-normally distributed takes only
positive real values. It is a convenient and useful model for
measurements in exact and engineering sciences as well as
medicine, economics and other fields, e.g. for energies,
concentrations, lengths, financial returns and other
amounts.

The distribution is occasionally referred to as the Galton
distribution or Galton's distribution, after Francis
Galton.l] The log-normal distribution has also been
associated with other names, such as McAlister, Gibrat and
Cobb-Douglas.[*]

A log-normal process is the statistical realization of the
multiplicative product of many independent random
variables, each of which is positive. This is justified by
considering the central limit theorem in the log domain.
The log-normal distribution is the maximum entropy
probability distribution for a random variate X for which

the mean and variance of In(X) are specified.[?]
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DETECTING NON-NORMALITY

e Histograms (looking for skewness, asymmetry)
* Normal-quantile plots (normal probability plots)
e Shapiro-Wilk test (which has optimal power)

REM more Power of the test less risk of making type Il errors

Type | and Type Il errors

There are two kinds of errors in hypothesis testing, prosaically named Type I and Type II.
Rejecting a true null hypothesis is a Type I error. Failing to reject a false null hypothesis is
a Type II error. Both types of error are summarized in Table 6.3-1.

Type I error is rejecting a true null hypothesis. The significance level a sets the probability
of committing a Type I error.

Type II error is failing to reject a false null hypothesis.

TABLE 6.3-1 Types of error in hypothesis testing.

Reality
Conclusion Ho true Hp false
Reject Hy Type | error Correct
Do not reject Hg Correct Type Il error

The significance level, a, gives us the probability of committing a Type I error. If we go
along with convention and use a significance level of a = 0.05, then we reject Hy whenever P is
less than or equal to 0.05. This means that, if the null hypothesis were true, we would reject it
mistakenly one time in 20. Biologists typically regard this as an acceptable error rate.
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What is a Rank? How to rank data?

Nonparametric tests are usually based on the ranks of the data points rather than the actual
values of the data. In other words, the data points are ranked from smallest to largest, and the
rank (first, second, third, etc.) of each data point is recorded. The actual measurements are not
used again for the test. Using ranks is what frees us from making assumptions about the
probability distribution of the measurements, because all distributions make similar predictions

about the ranks of the measurements. Non-parametric tests are particularly useful when there
are nutliers in the data set hecanse ranks are nnt nndnlv affected hv nntliers

DEFINITION 9.1 Cardinal data are on a scale where it is meaningful to measure the distance between
possible data values.

Body weight is a cardinal variable because a difference of 6 1b is twice as large as a
difference of 3 Ib.

There are actually two types of cardinal data: interval-scale data and ratio-scale
data.

DEFINITION 9.2  For cardinal data, if the zero point is arbitrary, then the data are on an interval scale; if
the zero point is fixed, then the data are on a ratio scale.

‘ Body temperature is on an interval scale because the zero point is arbitrary. For

example, the zero point has a different meaning for temperatures measured in
Fahrenheit vs. Celsius.

‘ Blood pressure and body weight are on ratio scales because the zero point is well
defined in both instances.



ORDINAL DATA, PRE_measurements

DEFINITION 9.3 Ordinal data can be ordered but do not have specific numeric values. Thus, common
arithmetic cannot be performed on ordinal data in a meaningful way.

AT THIS POINT DISCUSS ON THE IPAD THE OPERATIONAL DEFINITION OF WEIGHT:

USING A PRE-BALANCE and then ADDING A SCALE (measurement unit)

REM DATA CAN BE CARDINAL, ORDINAL, CATEGORICAL (NOMINAL)

DEFINITION 9.4 Dataare on a nominal scale if different data values can be classified into categories but
the categories have no specific ordering.



Sign test

The sign test is a nonparametric method that can be used in place of the one-sample t-test or
the paired t-test when the normality assumption of those tests cannot be met. The sign test
assesses whether the median of a population equals a null hypothesized value. Measurements
lying above the null hypothesized median are designated “+” and the numbers lying below are
scored as “—.” If the null hypothesis is correct, we expect half of the measurements to lie above
the null hypothesized median and half to lie below, except for sampling error. The P-value can
then be calculated using the binomial distribution (see Section 7.2). The sign test is simply a
binomial test in which the number of data points above the null hypothesized median is
compared with that expected when p = 1/2.

The sign test compares the median of a sample to a constant specified in the null hypothesis.
It makes no assumptions about the distribution of the measurement in the population.

Unfortunately, the sign test has very little power compared with the one-sample or paired t-
test because it discards most of the information in the data. A measurement that is
infinitesimally larger than the null hypothesized median and a data point that exceeds the
median by several million both count only as a +. Nonetheless, the sign test is a useful tool to
have in your statistical toolbox because sometimes no other test is possible.



EXAMPLE 13.4 Sexual conflict and the origin of new species

Horia Bogdan/Shutterstock.com

The process by which a single species splits into two species is still not well understood. One
proposal involves “sexual conflict” — a genetic arms race between males and females that arises

from their different reproductive roles.2 Sexual conflict can cause rapid genetic divergence
between isolated populations of the same species, leading to the formation of new species.
Sexual conflict is more pronounced in species in which females mate more than once, leading to
the prediction that they should form new species at a more rapid rate. To investigate this,
Arngvist et al. (2000) identified 25 insect taxa (groups) in which females mate multiple times,

and they paired each of these groups to a closely related insect group in which females only
mate once. Which type of insect tends to have more species? Table 13.4-1 lists the numbers of
insect species in each of the groups.



TABLE 13.4-1 The number of species in 25 pairs of insect groups. Each pair
matches a group of insect species in which females mate only once with a
related group of insect species in which females mate multiple times.

Number of species

Taxon Multiple-mating Single-mating Above (+) or below
pair group group Difference (-) zero

A 53 10 43 +
B 73 120 -47 -
C 228 74 154 +
D 353 289 64 +
E 157 30 127 +
F 300 4 296 +
G 34 18 16 +
H 3400 3500 -100 -
I 20 1000 -980 -
J 196 486 -290 -
K 1750 660 1090 +
L 55 63 -8 -
M 37 115 -78 -
N 100 30 70 +
o} 21,000 600 20,400 +
P 37 40 -3 -
Q 7 5 2 +
R 15 7 8 +
S 18 6 12 +
T 240 13 227 +
U 15 14 1 +
Y 77 16 61 +
w 15 14 1 +
X 85 6 79 +
Y 86 8 78 +

The data are paired. Thus, for each group of insects whose females mate once, there is a
corresponding, closely related group of insect species in which females mate more than once.
For this reason, the analysis must focus on the paired differences. The differences listed in
Table 13.4-1 were calculated by subtracting the number of species in the single-mating group
from that of the correspondine multinle-matine sroun.



The data are paired. Thus, for each group of insects whose females mate once, there is a
corresponding, closely related group of insect species in which females mate more than once.
For this reason, the analysis must focus on the paired differences. The differences listed in
Table 13.4-1 were calculated by subtracting the number of species in the single-mating group
from that of the corresponding multiple-mating group.

First, examine the histogram of the differences in Figure 13.4-1. These data have one
outlier at 20,400, and we hardly need a Shapiro-Wilk test (Section 13.1) to tell us that the
measurements are not normally distributed. At the same time, there are only 25 data points,
which is too small a sample size to rely on the robustness of the paired t-test. There is no
obvious transformation that would make these data normal, so we should pursue a
nonparametric test instead. We will use the sign test to evaluate whether the median of the
difference equals zero.
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman
and Company

FIGURE 13.4-1 The distribution of differences in species number between single-
mating and multiple-mating insect groups. There is an extreme outlier at 20,400.

Our hypotheses are as follows.

Hy: The median difference in number of species between insect groups is zero.

H,: The median difference in number of species between these groups is not zero.

From this point on, the sign test is the same as the binomial test. If the null hypothesis is
correct, then we expect half the measurements to fall above zero (+) and half to fall below zero
(-). In fact, 18 out of the 25 measurements fall above zero and only seven fall below (see the
last column in Table 13.4-1).

We can use the binomial distribution to calculate the P-value for the test. What is the
probability of getting seven or fewer “—” observations out of 25 when the probability of a
observation is 0.5 under the null hypothesis? The answer is

__9



The sign test is actually a special case of the one-sample binomial test in
Section 7.9, where the hypothesis H;: p = 1/2 vs. H;: p # 1/2 was tested. In Equation
9.1 and Equation 9.2 a large-sample test is being used, and we are assuming the nor-
mal approximation to the binomial distribution is valid. Under H, p = 1/2 and E(C) =
np =n/2, Var(C) = npq = n/4, and C ~ N(n/2, n/4). Furthermore, the .5 term in computing
the critical region and p-value serves as a continuity correction and better approxi-
mates the binomial distribution by the normal distribution.

The cdf [®(x)] for a standard normal distribution

0.4 - Pr(X €£x) =®(x) =
"7 | area to the left of x

0.3}
0.2 f(x)

0.1}

0.0



The Sign Test
To test the hypothesis H: A=0 vs. H;: A# 0 with type I error = o, where the
number of nonzero d;’s = n > 20 and C = the number of d/s where d, > 0, if

then H is rejected. Otherwise, H, is accepted.
The acceptance and rejection regions for this test are shown in Figure 9.1.

Acceptance and rejection regions for the sign test

Distribution of C under H,
2, ™) distribution

n, 1 n
C> §+E +Zl_a/2\/;
Rejection region

Frequency

Value

Similarly, the p-value for the procedure is computed using the following formula.

Computation of the p-Value for the Sign Test (Normal-Theory Method)
n
C---5
p= 2x|1-® _Jzn_4_ if

c-"+5

= 2 i I
p=2x® Tnid if C<2

n
=10 if c="
P 2

This computation is illustrated in Figure 9.2.



THE BINOMIAL DISCRETE DISTRIBUTION

EQUATION 4.5 Thedistribution of the number of successes in nstatistically independent trials, where
the probability of success on each trial is p, is known as the binomial distribu-
tion and has a probability-mass function given by

Pr(X=k)=(:]p"q""‘, k=0,1,...,n

EQUATION 4.7 The expected value and the variance of a binomial distribution are np and npgq,
respectively.



FIGURE 4.4 Plot of pq versus p
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