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One sample vs two sample tests MOTIVATION

General reference for this topic: Rosner’s
chapter 8 and Whitlock’s chap. 12

Assumption of normality (see Whitlock chap.
13)

Two samples (cross-sectional, synchronic
studies) vs longitudinal paired tests
(longitudinal, diachronic studies)

The paired t-test (R 8.2) [paired t-test statistic,
acceptance region, p-value, interval estimation
(R.8.3)]

Two sample test for independent samples with
equal variances: acceptance region, p-value (R.
8.4), interval estimation (R.8.5)
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e Testing for the equality of variances (R section
8.6): the F distribution, The F-test

* Two sample t test for independent samples
with different variances (R. 8.7) (self study)



MOTIVATION

Biological data are often gathered to compare different group or treatment means. Do femnale
hyenas differ from male hyenas in body size? Do patients treated with a new drug live
significantly longer than those treated with the old drug? Do students perform better on tests if
they stay up late studying or get a good night’s rest? In Chapter 8, we presented methods to
compare proportions of a categorical variable between different groups. In this chapter, we

develop procedures for comparing means of a numerical variable between two treatments* or
groups. We also include methods to compare two variances. All of the methods in the current
chapter assume that the measurements are normally distributed in the populations.

We show analyses for two different study designs. In the paired design, both treatments
have been applied to every sampled unit, such as a subject or a plot, at different times or on
different sides of the body or of the plot. In the two-sample design, each group constitutes an
independent random sample of individuals. In both cases, we make use of the t-distribution to

from W&S chap.12



Paired sample versus two independent samples

There are two study designs to measure and test differences between the means of two
treatments. To describe them, let’s use an example: does clear-cutting a forest affect the
number of salamanders present? Here we have two treatments (clear-cutting/no clear-cutting),
and we want to know if the mean of a numerical variable (the number of salamanders) differs
between them. “Clear-cut” is the treatment of interest, and “no clear-cut” is the control. This is
the same as asking whether these two variables, treatment (a categorical variable) and
salamander number (a numerical variable), are associated.

We can design this kind of a study in either of two ways: a two-sample design (see the left
panel in Figure 12.1-1) or a paired design (see the right panel in Figure 12.1-1). In the two-
sample design, we take a random sample of forest plots from the population and then randomly
assign either the clear-cut treatment or the no-clear-cut treatment to each plot. In this case, we
end up with two independent samples, one from each treatment. The difference in the mean
number of salamanders between the clear-cut and no-clear-cut areas estimates the effect of

clear-cutting on salamander number.4

In the paired design, we take a random sample of forest plots and clear-cut a randomly
chosen half of each plot, leaving the other half untouched. Afterward, we count the number of
salamanders in each half. The mean difference between the two sides estimates the effect of
clear-cutting.

~

from W&S chap.12



Paired sample versus two independent samples
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Figure 12.1-1

Whitlock et al., The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 12.1-1 Alternative designs to compare two treatments. A two-sample design
is on the left; the paired design is on the right. Freestanding blocks represent sampling
units, such as plots. The red and gold areas represent different treatments (e.g., clear-
cut and not clear-cut). In the paired design (right), both treatments are applied to every
unit. In the two-sample design (left), different treatments are applied to separate units.

from W&S chap.12



Paired comparison of means

® Comparing patient weight before and after hospitalization

®m Comparing fish species diversity in lakes before and after heavy metal contamination?

m Testing effects of sunscreen applied to one arm of each subject compared with a placebo
applied to the other arm

m Testing effects of smoking in a sample of smokers, each of which is compared with a
nonsmoker closely matched by age, weight, and ethnic background

Paired measurements are converted to a single measurement by taking the difference
between them.

PAIRED TESTS AND CONFOUNDING VARIABLES...

Paired designs are usually more powerful than unpaired designs, because they control for a
lot of the extraneous variation between plots or sampling units that sometimes obscures the
effects we are looking for. It is easier to see a real difference between two treatments if nearly
everything else is similar between sides of the same plot or sampling unit. Very often, though, a
paired design is just not possible.

from W&S chap.12



DEFINITION 8.1 Inatwo-sample hypothesis-testing problem, the underlying parameters of two differ-
ent populations, neither of whose values is assumed known, are compared.

Comparison means looking for differences which should be statistically tested
We can use either a LONGITUDINAL (diachronic) design or a CROSS SECTIONAL
(synchronic) study

PAIRED SAMPLES vs INDEPENDENT SAMPLES

As previously discussed in the MOTIVATION

CASE/CONTROL APPROACH



Hypertension Let’s say we are interested in the relationship between oral contra-
ceptive (OC) use and blood pressure in women.

Two different experimental designs can be used to assess this relationship. One
method involves the following design:

Longitudinal Study

(1) Identify a group of nonpregnant, premenopausal women of childbearing
age (16-49 years) who are not currently OC users, and measure their blood
pressure, which will be called the baseline blood pressure.

(2) Rescreen these women 1 year later to ascertain a subgroup who have re-
mained nonpregnant throughout the year and have become OC users. This
subgroup is the study population.

(3) Measure the blood pressure of the study population at the follow-up visit.

(4) Compare the baseline and follow-up blood pressure of the women in the
study population to determine the difference between blood pressure levels
of women when they were using the pill at follow-up and when they were
not using the pill at baseline.

From Rossner’s chap 8



Cross-Sectional Study

(1) Identify both a group of OC users and a group of non-OC users among non-
pregnant, premenopausal women of childbearing age (16-49 years), and
measure their blood pressure.

(2) Compare the blood pressure level between the OC users and nonusers.

In a longitudinal or follow-up study the same group of people is followed over time.

In a cross-sectional study, the participants are seen at only one point in time.




There is another important difference between these two designs. The longitudi-
nal study represents a paired-sample design because each woman is used as her own

control. The cross-sectional study represents an independent-sample design because
two completely different groups of women are being compared.

Two samples are said to be paired when each data point in the first sample is matched
and is related to a unique data point in the second sample.

The paired samples may represent two sets of measurements on the same people. In
this case each person is serving as his or her own control, as in Equation 8.1. The
paired samples may also represent measurements on different people who are cho-
sen on an individual basis using matching criteria, such as age and sex, to be very
similar to each other.

Two samples are said to be independent when the data points in one sample are unre-
lated to the data points in the second sample.

The samples in Equation 8.2 are completely independent because the data are ob-
tained from unrelated groups of women.



Controlling confounding factors

Which type of study is better in this case? The first type of study is probably
more definitive because most other factors that influence a woman's blood pressure
at the first screening (called confounders) will also be present at the second screen-
ing and will not influence the comparison of blood-pressure levels at the first and
second screenings. However, the study would benefit from having a control group
of women who remained non-OC users throughout the year. The control group
would allow us the chance of ruling out other possible causes of blood pressure
change besides changes in OC status. The second type of study, by itself, can only be
considered suggestive because other confounding factors may influence blood pres-
sure in the two samples and cause an apparent difference to be found where none is
actually present.

THE MORAL: EVERYBODY IS SEARCHING FOR SUGGESTIONS (CROSS SECTION STUDIES,
EXPLORATORY, NOT SO EXPENSIVE, THEN ASK A GRANT TO MAKE A MORE EXTENSIVE
DIACHRONIC LONGITUDINAL STUDY IN WHICH CONFOUNDING FACTORS ARE “CANCELLED”



84 TWO-SAMPLE t TEST FOR INDEPENDENT
SAMPLES WITH EQUAL VARIANCES

Hypertension Suppose a sample of eight 35- to 39-year-old nonprenant, premeno-
pausal OC users who work in a company and have a mean systolic blood pres-
sure (SBP) of 132.86 mm Hg and sample standard deviation of 15.34 mm Hg are
identified. A sample of 21 nonpregnant, premenopausal, non-OC users in the same
age group are similarly identified who have mean SBP of 127.44 mm Hg and sample
standard deviation of 18.23 mm Hg. What can be said about the underlying mean
difference in blood pressure between the two groups?

Assume SBP is normally distributed in the first group with mean p, and variance
of and in the second group with mean 1, and variance o3. We want to test the
hypothesis H;: u, = p, vs. H: u, # u,. Assume in this section that the underlying
variances in the two groups are the same (that is, ] =65 = ¢°). The means and
variances in the two samples are denoted by X, X,, 57, s3, respectively.

It seems reasonable to base the significance test on the difference between the
two sample means, X, —X,. If this difference is far from 0, then H_ will be rejected;




otherwise, it will be accepted. Thus, we wish to study the behavior of x; — X, under
H,. We know X, is normally distributed with mean p, and variance ¢/n, and X, is
normally distributed with mean p, and variance ¢%/n,. Hence, from Equation 5.10,
because the two samples are independent, X, — X, is normally distributed with mean
i, — 1, and variance o*(1/n, + 1/n,). In symbols,

S o 1 1
X,-X, ~N|p, —,,0%| —+—
1 2 [P«l ) (nl nzﬂ

Under H, we know that p, = u,. Thus, Equation 8.7 reduces to

)—(l —)_(2 — N|:O,0'2 (l'l' l):|
n n

If 62 were known, then X; — X, could be divided by o./1/n, +1/n, . From Equation 8.8,

and the test statistic in Equation 8.9 could be used as a basis for the hypothesis test.
Unfortunately, o in general is unknown and must be estimated from the data. How
can o be best estimated in this situation?

~ - -~



From the first and second samples, the sample variances are s? and s2,
respectively, each of which could be used to estimate o2. The average of s and
s3 could simply be used as the estimate of o2 However, this average will weight
the sample variances equally even if the sample sizes are very different from each
other. The sample variances should not be weighted equally because the variance
from the larger sample is probably more precise and should be weighted more
heavily. The best estimate of the population variance o?, which is denoted by s?, is
given by a weighted average of the two sample variances, where the weights are the
number of df in each sample.

The pooled estimate of the variance from two independent samples is given by

_ (m ‘1)5i2 +(n, ‘1)5.%
- ny +n, —2

In particular, s*> will then have n, — 1 df from the first sample and n, — 1 df from the
second sample, or

(n, =1)+(n, =1)=n; +n, -2 df

overall. Then s can be substituted for ¢ in Equation 8.9, and the resulting test sta-
tistic can then be shown to follow a t distribution with n, + n, — 2 df rather than
an N(0,1) distribution because o? is unknown. Thus, the following test procedure
is used.



Two-Sample t Test for Independent Samples with Equal Variances

Suppose we wish to test the hypothesis H: u, =, vs. H: i, # 1, with a significance
level of a for two normally distributed populations, where ¢? is assumed to be
the same for each population.

Compute the test statistic:

X1 —Xp

1 1
s ’—+—
n m
where s= \][(nl ~1)s? +(n, -1)s3 | /(m, +n,-2)

If t>ty 2102 OF L<—ty 0 21 a2

t=

then H, is rejected.

If _tn,+n2—2,l—a/2 orts tn1+n2—2,1—a/2
then H, is accepted.

The acceptance and rejection regions for this test are shown in Figure 8.3.



Similarly, a p-value can be computed for the test. Computation of the p-value
depends on whether x; <Xx,(t £0) or X, > X,(t >0). In each case, the p-value cor-
responds to the probability of obtaining a test statistic at least as extreme as the
observed value t. This is given in Equation 8.12.

Computation of the p-Value for the Two-Sample ¢t Test for Independent Samples with
Equal Variances

Compute the test statistic:

X, — X,
1 1
S [—+—
n n

where s= \/[(nl ~1)s? +(n, - 1)s§] [y +n, -2)

[ =

Ift<0, p=2x(area to the left of tunder a t, ,,, _, distribution).
Ift>0, p=2x (area to the right of tunder a t,, .,,, _, distribution).

The computation of the p-value is illustrated in Figure 8.4.



Acceptance and rejection regions for the two-sample t test for independent

samples with equal variances
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Hypertension Assess the statistical significance of the data in Example 8.9.

Solution: The common variance is first estimated:

2 7(15.34)* +20(18.23)>  8293.9

27 27 307.18

or s =17.527. The following test statistic is then computed:

132.86-127.44 S5.42 _5.42

t= = = =0.74
17.527,/1/8 +1/21 17.527x0.415 7.282




Conclusions accept HO, at variance with the longitudinal study!
In this case intuition and good will should be used in order not to
accept a negative conclusion with possible heavy consequencxes for
public health

If the critical-value method is used, then note that under H,, t comes from a t,,
listribution. Referring to Table S in the Appendix, we see thatt,, ... = 2.052. Because
2.052 < 0.74 < 2.052, it follows that H, is accepted using a two-sided test at the 5%
evel, and we conclude that the mean blood pressures of the OC users and non-OC
isers do not significantly differ from each other. In a sense, this result shows the
uperiority of the longitudinal design in Example 8.5. Despite the similarity in the
nagnitudes of the mean blood-pressure differences between users and nonusers in
he two studies, significant differences could be detected in Example 8.5, in contrast
o the nonsignificant results that were obtained using the preceding cross-sectional
lesign. The longitudinal design is usually more efficient because it uses people as
heir own controls.

To compute an approximate p-value, note from Table S that t,, .. = 0.684, t,, . =

).85S. Because 0.684 < 0.74 < 0.85S, it follows that .2 <p/2 < .25 or .4 < p < .5. The
xact p-value obtained from MINITAB is p = 2 x P(t,, > 0.74) = .46.



HOMEWORK DUE WEDNESDAY 11 May 2022 in GROUPS

REVIEW QUESTIONS 8A

1 How do a paired-sample design and an independent-sample design differ?

2 A man measures his heart rate before using a treadmill and then after walking on
a treadmill for 10 minutes on 7 separate days. His mean heart rate at baseline and
10 minutes after treadmill walking is 85 and 93 beats per minute (bpm), respec-
tively. The mean change from baseline to 10 minutes is 8 bpm with a standard
deviation of 6 bpm.

(a) What test can we use to compare pre- and post-treadmill heart rate?

(b) Implement the test in Review Question BA.2a, and report a two-tailed
p-value,

(c) Provide a 90% confidence interval (Cl) for the mean change in heart rate after
using the treadmill for 10 minutes.

(d) What is your overall conclusion concerning the data?






8.6

TESTING FOR THE EQUALITY OF
TWO VARIANCES

In Section 8.4, when we conducted a two-sample t test for independent samples,
we assumed the underlying variances of the two samples were the same. We then
estimated the common variance using a weighted average of the individual sample
variances. In this section we develop a significance test to validate this assumption.
In particular, we wish to test the hypothesis H,: 67 = 65 vs. H;: 67 # 65, where the
two samples are assumed to be independent random samples from an N(u,,c?) and
N(u,,03) distribution, respectively.

sample variance of the case group is about four times as large as that of the
control group:

35.6%/17.3%2 =4.23
See the case of the rabbits...

What should we do?

What we need is a significance test to determine whether the underlying variances
are in fact equal; that is, we want to test the hypothesis H,: 67 = 65 vs. H: 67 # G5
It seems reasonable to base the significance test on the relative magnitudes of the
sample variances (slz, 53 ) The best test in this case is based on the ratio of the sample
variances (512 / s%) rather than on the difference between the sample variances (Si2 ) )
Thus, H, would be rejected if the variance ratio is either too large or too small and
accepted otherwise. To implement this test, the sampling distribution of s? /s under

the null hypothesis 67 = 65 must be determined.



The F Distribution

The distribution of the variance ratio (Slz / S%) was studied by statisticians R. A. Fisher
and G. Snedecor. It can be shown that the variance ratio follows an F distribution
under the null hypothesis that 6 = 63. There is no unique F distribution but in-
stead a family of F distributions. This family is indexed by two parameters termed
the numerator and denominator degrees of freedom, respectively. If the sizes of the first
and second samples are n, and n, respectively, then the variance ratio follows an
F distribution with n, - 1 (numerator df) and n, — 1 (denominator df), which is called
an F, _, ,, distribution.

The F distribution is generally positively skewed, with the skewness dependent
on the relative magnitudes of the two degrees of freedom. If the numerator df'is 1 or
2, then the distribution has a mode at O; otherwise, it has a mode greater than 0. The
distribution is illustrated in Figure 8.5. Table 8 in the Appendix gives the percentiles
of the F distribution for selected values of the numerator and denominator df.

Probability density for the F distribution
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SYMMETRY OF THE F PERCENTILES : F TABLES

Generally, F distribution tables give only upper percentage points because
the symmetry properties of the F distribution make it possible to derive the lower
percentage points of any F distribution from the corresponding upper percentage
points of an F distribution with the degrees of freedom reversed. Specifically, note
that under H,, S /S follows an F, , distribution. Therefore,

Pr(S3/S% 2 Eyy41-5)=p

By taking the inverse of each side and reversing the direction of the inequality,
we get

2
MESEETRIN
S Fia-p

Under H,, however, S? /S follows an F, , distribution. Therefore,
St
.Pf(g < Fdl'dZ:p] = p
It follows from the last two inequalities that

1
Fiyap,p =
dZJlel_P

This principle is summarized as follows.

Computation of the Lower Percentiles of an F Distribution

The lower pth percentile of an F distribution with d, and d, dfis the reciprocal of
the upper pth percentile of an F distribution with d, and d, df. In symbols,

Fayap,0 = Y Eay,a11-p



The 100 x pth percentile of an F distribution with d, and d, degrees of freedom is
denoted by F; , . Thus,

P’(Ell,dz £ dl,dz,p) =p
The F table is organized such that the numerator df (d,) is shown in the first row,

the denominator df (d,) is shown in the first column, and the various percentiles (p)
are shown in the second column.



The F Test

We now return to the significance test for the equality of two variances. We
want to test the hypothesis Hy: 67 =065 vs. Hy: 07 # 0. We stated that the test
would be based on the variance ratio §?/s?, which under H, follows an F dis-

tribution with n, — 1 and n, — 1 df. This is a two-sided test, so we want to reject

H, for both small and large values of SZ /8. This procedure can be made more

specific, as follows.

F Test for the Equality of Two Variances

Suppose we want to conduct a test of the hypothesis Hy: 67 = 65 vs. H;: 67 # 65 with
significance level o.

Compute the test statistic F = sZ /s3.
If F> Fnl—l,nz—l,l—alz or F< Fnl—l,nz—l,alz
then H is rejected.

If E, _1n-1,02<F<E, 13, 11-0/2

then H_ is accepted. The acceptance and rejection regions for this test are shown
in Figure 8.6.

Alternatively, the exact p-value is given by Equation 8.16.
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Acceptance and rejection regions for the F test for the equality of two variances
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Computation of the p-Value for the F Test for the Equality of Two Variances

Compute the test statistic F = s7 /s3.

IfF>1,then p=2xPr(E, , ,>F)

IfF <1,then p=2xPr(F _1<F)

m-1,ny

This computation is illustrated in Figure 8.7.



Let us consider the story in the example 8.13

Cardiovascular Disease, Pediatrics Consider a problem discussed earlier, namely the
familial aggregation of cholesterol levels. In particular, suppose cholesterol levels are
assessed in 100 children, 2 to 14 years of age, of men who have died from heart dis-
ease and it is found that the mean cholesterol level in the group (X; ) is 207.3 mg/dL.
Suppose the sample standard deviation in this group (s,) is 35.6 mg/dL. Previously,
the cholesterol levels in this group of children were compared with 175 mg/dL,
which was assumed to be the underlying mean level in children in this age group
based on previous large studies.

A better experimental design would be to select a group of control children whose
fathers are alive and do not have heart disease and who are from the same census tract
as the case children, and then to compare their cholesterol levels with those of the case
children. If the case fathers are identified by a search of death records from the census
tract, then researchers can select control children who live in the same census tract as the
case families but whose fathers have no history of heart disease. The case and control
children come from the same census tract but are not individually matched. Thus, they
are considered as two independent samples rather than as two paired samples. The cho-
lesterol levels in these children can then be measured. Suppose the researchers found
that among 74 control children, the mean cholesterol level (372) is 193.4 mg/dL with
a sample standard deviation (s,) of 17.3 mg/dL. We would like to compare the means

of these two groups using the two-sample ¢ test for independent samples given in
Equation 8.11, but we are hesitant to assume equal variances because the



sample variance of the case group is about four times as large as that of the
control group:

35.62/17.3% = 4.23

What should we do?

What we need is a significance test to determine whether the underlying variances
are in fact equal; that is, we want to test the hypothesis Hy: 67 = 63 vs. Hy: 67 # 03.
It seems reasonable to base the significance test on the relative magnitudes of the
sample variances (sf, s%) The best test in this case is based on the ratio of the sample
variances (312 / s?’;) rather than on the difference between the sample variances (Si2 - 53 )
Thus, H, would be rejected if the variance ratio is either too large or too small and
accepted otherwise. To implement this test, the sampling distribution of s? /s under
the null hypothesis 67 = 65 must be determined.



Cardiovascular Disease, Pediatrics Test for the equality of the two variances given
in Example 8.13.

Solution: F=s7/s5 =35.6%/17.3* =4.23

Because the two samples have 100 and 74 people, respectively, we know from
Equation 8.1S that under H, F ~ F, ... Thus, H is rejected if

99,73°

F>Fy973 975 Or F <Fy973 025



Note that neither 99 df nor 73 df appears in Table 8 in the Appendix. One approach
is to obtain the percentiles using a computer program. In this example, we want to
find the value ¢, = F and ¢, =F, such that

99,73,.025 99,73,.975°

Pr(Foo73<¢,)=.025 and Pr(Fy 3 2¢,)=.975

We can use the gf function of R for this purpose. We have:
¢, = qf(0.025, 99, 73),
¢, =qf(0.975, 99, 73).

The result is shown as follows:

> gf(0.025, 99, 73)

[1] 0.65476

> gf (0.975, 99, 73}

[1] 1.549079.

Thus, ¢, = 0.65S, ¢, =1.549. Because F = 4.23 > ¢, it follows that p < 0.0S. Alternatively,
we could compute an exact p-value. This is given by:

p=2xPr(F,,, >4.23) =2 x [1 - pf(4.23, 99, 73)]. The result is shown as follows:
> p.value < -2 * (1 - pf(4.23, 99, 73))
> p.value

[1] 8.839514e-10



CONCLUSION & REMARK

Thus, the p-value = 8.8 x 10 indicates that the variances are significantly different.
Therefore, the two-sample t test with equal variances given in Section 8.4 cannot be
used, because this test depends on the assumption that the variances are equal.

A question often asked about the F test is whether it makes a difference which
sample is selected as the numerator sample and which is selected as the denominator
sample. The answer is that, for a two-sided test, it does not make a difference because
of the rules for calculating lower percentiles given in Equation 8.14. A variance ratio > 1
is usually more convenient, so there is no need to use Equation 8.14. Thus, the larger
variance is usually put in the numerator and the smaller variance in the denominator.



You can Find a discussion of the themes presented today also in the notebook
Associated to lecture n. 11 by R. Di Leonardo.



FIGURE 8.13
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