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Hypothesis testing: an example

To show you the basic concepts and terminology of hypothesis testing, we’ll take you through
all the steps by using an example. Our goal is to illuminate the basic process without distraction
from the details of the probability calculations. We’ll get to plenty of the details in later
chapters.

Four basic steps are involved in hypothesis testing:

1. State the hypotheses.
2. Compute the test statistic.
3. Determine the P-value.
4. Draw the appropriate conclusions.
We’ll define the new terms we just used in this section.
Example 6.2 tests a hypothesis about a proportion, but hypothesis testing can address a
wide variety of quantities, such as means, variances, differences in means, correlations, and so

on. We’ll try to emphasize the general over the specific here. Further details of how to test
hypotheses about proportions are discussed in Chapter 7.



Type | and Type Il errors

There are two kinds of errors in hypothesis testing, prosaically named Type I and Type II.
Rejecting a true null hypothesis is a Type I error. Failing to reject a false null hypothesis is
a Type II error. Both types of error are summarized in Table 6.3-1.

Type I error is rejecting a true null hypothesis. The significance level a sets the probability
of committing a Type I error.

Type II error is failing to reject a false null hypothesis.

TABLE 6.3-1 Types of error in hypothesis testing.

Reality
Conclusion Ho true Hq false
Reject Hyg Type | error Correct
Do not reject Hy Correct Type Il error

The significance level, a, gives us the probability of committing a Type I error. If we go
along with convention and use a significance level of a = 0.05, then we reject Hy whenever P is

less than or equal to 0.05. This means that, if the null hypothesis were true, we would reject it
mistakenly one time in 20. Biologists typically regard this as an acceptable error rate.



DEFINITION 7.13  The p-value for any hypothesis test is the a level at which we would be indifferent
between accepting or rejecting H, given the sample data at hand. That is, the p-value
is the a level at which the given value of the test statistic (such as ¢) is on the border-
line between the acceptance and rejection regions.

DEFINITION 7.14 The p-value can also be thought of as the probability of obtaining a test statistic
as extreme as or more extreme than the actual test statistic obtained, given that the
null hypothesis is true.

Graphic display of a p-value
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We know that under the null hypothesis, the ¢ statistic follows a £, distribution.
Hence, the probability of obtaining a ¢ statistic that is no larger than t under the null
hypothesis is Pr(t,_, <t) = p-value, as shown in Figure 7.1.



EQUATION 7.4

EQUATION 7.5

Guidelines for Judging the Significance of a p-Value

If .01 < p <.0S, then the results are significant.

If .001 < p <.01, then the results are highly significant.

If p <.001, then the results are very highly significant.

If p >.0S, then the results are considered not statistically significant (sometimes
denoted by NS).

However, if .0S < p < .10, then a trend toward statistical significance is some-
times noted.

Determination of Statistical Significance for Results from Hypothesis Tests

Either of the following methods can be used to establish whether results from

hypothesis tests are statistically significant:

(1) The test statistic t can be computed and compared with the critical value
t,, .atan a level of .05. Specifically, if Hy:p =p, vs. Hi:u <p, is being
tested and £ <t,_, o5, then H is rejected and the results are declared statisti-
cally significant (p < .05). Otherwise, H, is accepted and the results are de-
clared not statistically significant (p 2 .05). We have called this approach the

critical-value method (see Definition 7.12).

(2) The exact p-value can be computed and, if p < .0§, then H is rejected and
the results are declared statistically significant. Otherwise, if p > .05, then H
is accepted and the results are declared not statistically significant. We will
refer to this approach as the p-value method.



XAMPLE 6.39

TABLE 6.6

Hypertension An Arteriosonde machine “prints” blood-pressure readings on a tape so
that the measurement can be read rather than heard. A major argument for using
such a machine Is that the variabllity of measurements obtained by different observ-
ers on the same person will be lower than with a standard blood-pressure cuff.

Suppose we have the data in Table 6.6, consisting of systolic blood pressure (SBP)
measurements obtalned on 10 people and read by two observers. We use the differ-
ence d, between the first and second observers to assess Interobserver variability. In
particular, if we assume the underlying distribution of these differences is normal
with mean y and varlance o7, then it Is of primary Interest to estimate ¢’. The higher
o’ ls, the higher the interobserver variabllity.

SBP measurements (mm Hg) from an Arterlosonde machine obtalned
from 10 people and read by two observers

Clasarvnr
Forson (1) 1 2 Diflerunce (d)
1 194 200 -8
2 126 123 +3
3 130 128 +2
4 a8 101 -3
5 138 135 +1
8 145 145 C
7 110 111 -1
8 108 107 +1
g 102 99 +3
10 126 128 -2

We have seen previously that an unbiased estimator of the varlance o7 Is given
by the sample varlance . In this case,

Meandifference = (~6+3+----2)/10=-0.2=d
Sample varfance = §° = i(d, -dy /e

- [(-—6:0.2]2 +...+(-2+0.2)zl;',9 =8.178

How can an Interval estimate for ¢® be obtalned?



7.8

ONE-SAMPLE %2 TEST FOR THE VARIANCE
OF A NORMAL DISTRIBUTION

Hypertension Consider Example 6.39, concerning the variability of blood-pressure

measurements taken on an Arteriosonde machine. We were concerned with the

difference between measurements taken by two observers on the same person =

d =x, - x,, where x_ = the measurement on the ith person by the first observer

and x, = the measurement on the ith person by the second observer. Let's assume

this difference is a good measure of interobserver variability, and we want to com-

pare this variability with the variability using a standard blood-pressure cuff. We
have reason to believe that the variability of the Arteriosonde machine may dif-
fer from that of a standard cuff. Intuitively, we think the variability of the new




Hypothess Testng: One-Samgple Inferonce

method should be lower. However, because the new method is not as widely
used, the observers are probably less experienced In using it; therefore, the varl-
ability of the new method could possibly be higher than that of the old method.

Thus a two-sided test Is used to study this question. Suppose we know from previ-
ously published work that o’ = 35 ford, obtalned from the standard cuff. We want

If x,, ..., x_ are a random sample, then we can reasonably base the test on
s* because It Is an unblased estimator of . We know from Equation 6.15 that if
X, ...,x are arandom sample from an N(u, o) distribution, then under 4,

Therefore,
1‘5‘()(2 <x.z,-m.'z)= a2 = I’Y(xz >1}$-|_1—a:z]

Hence, the test procedure Is given as follows.

One-Sample x* Test for the Varlance of a Normal Distribution (Two-Sided
Alternative)
We compute the test statistic X = (n—1)s°/ob.

If X* <yf s a20r X > %0 1y o2 then H, Is rejected.
If 2 102 S X% S%% 11 as» then H, Is accepted.
The acceptance and rejection regions for this test are shown In Figure 7.10.

Alternatively, we may want to compute a p~value for our experiment. The computa-
tion of the p-value will depend on whether s° <o’ ors’ > o5. The rule Is given as follows.



Acceptance and rejection regions for the one-sample %? test for the variance of a
normal distribution (two-sided alternative)
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FIGURE 7.11 lllustration of the p-value for a one-sample y? test for the variance
of a normal distribution (two-sided alternative)
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