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Outline L 12

* Estimators vs parameters

 POINT ESTIMATES VS INTERVAL ESTIMATES

* Random numbers and random samples

e Standard error of the mean

* Central limit theorem

e Interval estimation

 t-distribution (Student)

* Chi-square distribution

e Percentiles and confidence intervals

The study material for this lecture can be found in chap. 6 of Rosner’s

textbook and chap.10 and 11 of W&S



overwiew of Statistical Inference

The problem addressed in the rest of this text is that we have a data set and we
want to infer the properties of the underlying distribution from this data set. This in-
ference usually involves inductive reasoning rather than deductive reasoning; that
is, in principle, a variety of different probability models must at least be explored to see
which model best “fits” the data.

Statistical inference can be further subdivided into the two main areas of esti-
mation and hypothesis testing. Estimation is concerned with estimating the values
of specific population parameters; hypothesis testing is concerned with testing
whether the value of a population parameter is equal to some specific value. Prob-
lems of estimation are covered in this chapter, and problems of hypothesis testing
are discussed in Chapters 7 through 10.

From:Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015), chap. 6



6.2

EXAMPLE 6.8

DEFINITION 6.1

DEFINITION 6.2

THE RELATIONSHIP BETWEEN POPULATION
AND SAMPLE

Obstetrics Suppose we want to characterize the distribution of birthweights of all
liveborn infants born in the United States in 2013. Assume the underlying distribu-
tion of birthweight has an expected value (or mean) u and variance o Ideally, we
wish to estimate p and o? exactly, based on the entire population of U.S. liveborn
infants in 2013. But this task is difficult with such a large group. Instead, we decide
to select a random sample of n infants who are representative of this large group and
use the birthweights x_, ..., x from this sample to help us estimate p and o2 What
is a random sample?

A random sample is a selection of some members of the population such that each
member is independently chosen and has a known nonzero probability of being
selected.

A simple random sample is a random sample in which each group member has the
same probability of being selected.




6.3

EXAMPLE 6.12

PROBLEM->

DEFINITION 6.4

DEFINITION 6.5

RANDOM-NUMBER TABLES

In this section, practical methods for selecting random samples are discussed.

Hypertension Suppose we want to study how effective a hypertension treatment
program is in controlling the blood pressure of its participants. We have a roster of
all 1000 participants in the program, but because of limited resources only 20 can
be surveyed. We would like the 20 people chosen to be a random sample from the
population of all participants in the program. How should we select this random
sample?

A computer-generated list of random numbers would probably be used to select
this sample.

A random number (or random digit) is a random variable X that takes on the
values 0, 1, 2, . .., 9 with equal probability. Thus,

Pr(X=0)=Pr(X=1)=...=P,(X=9)=%

Computer-generated random numbers are collections of digits that satisfy the
following two properties:

(1) EachdigitO, 1, 2, ..., 9 is equally likely to occur.

(2) The value of any particular digit is independent of the value of any other digit
selected.

Table 4 in the Appendix lists 1000 random digits generated by a computer
algorithm.



TABELLA

03474
97742
16766
12568
55595

16227
84421
63016
33211
57608

18180
26623
23424
52362
37859

70291
56621
99495
16081
31169

68343
74572
27423
00396
29949

16908
11279
35241
38231
31962

66674
14908
68055
20467
64195

5.1. Numeri casuali (random numbers)

37386
46762
22766
599026
63564

79439
75331
37859
23429
63244

79246
89775
06474
81995
43512

71213
83735
722717
50472
33243

01370
56576
78653
82961
89424

26659
47506
01620
68638
59147

06714
44511
11800
87390
897179

36964
42811
56502
96966
38548

49544
57245
16955
78645
09472

44171
84160
82977
50922
83395

40332
96835
88429
33271
50278

55743
59299
48559
66373
68496

83626
06091
33325
42389
96443

64057
75738
33960
97514
15061

73661
45720
67107
82731
24622

35482
50688
56719
60782
79654

65809
74499
77781
61197
00830

03826
08775
54572
43409
98719

07740
76860
06572
22030
91082

41112
97466
12638
70150
34913

19586
80590
27519
01402
59320

46986
42533
32907
05037
31624

17379
77047
98105
52420
49174

79838
83114
07453
00567
42340

13895
97122
16643
45593
20153

44227
71913
96576
77845
53759

67190
02943
79784
75876
34868

11056
52274
07606
04023
01901

37162
23732
97853
29315
30990

32378
44767
07175
74438
60962

61962
63224
21408
63138
79688

10374
59347
61600
46849
70049

88426
86754
93610
70329
19330

07174
73402
50491
68141
25391

50968
11486
29355
33108
07506

33261
27073
13553
57121
06184

87352
21763
12867
15510
90528

06765
20148
32989
80220
54420

17763
70332
04431
12720
52856

04334
13581
96469
10456
34252

60472
76709
16925
40017
00524

76832
22981
59338
39541
40787

09643
35025
35807
01342
47727

00310
58845
40772
25353
68798

71304
40354
86679
73445
66044

60952
82476
24245
50426
05727

12968
03086
35616
49162
34885



6.5

6.10

ESTIMATION OF THE MEAN OF A DISTRIBUTION

Now that we have discussed the meaning of a random sample from a population
and have explored some practical methods for selecting such samples using computer-
generated random numbers, let’s move on to estimation. The question remains:
How is a specific random sample x,, . . ., x, used to estimate p and o7, the mean and
variance of the underlying distribution? Estimating the mean is the focus of this
section, while estimating the variance is covered in Section 6.7.

Point Estimation

A natural estimator to use for estimating the population mean p is the sample mean

X =’§;Xi/" ...making a sample of samples

What properties of X make it a desirable estimator of u? We must forget about our
particular sample for the moment and consider the set of all possible samples of
size n that could have been selected from the population. The values of X in each of
these samples will, in general, be different. These values will be denoted by xi, X2,
and so forth. In other words, we forget about our sample as a unique entity and con-
sider it instead as representative of all possible samples of size n that could have been
drawn from the population. Stated another way, x is a single realization of a random
variable X over all possible samples of size n that could have been selected from the
population. In the rest of this text, the symbol X denotes a random variable, and x
denotes a specific realization of the random variable X in a sample.

The sampling distribution of X is the distribution of values of x over all possible sam-
ples of size n that could have been selected from the reference population.

Figure 6.1 gives an example of such a sampling distribution. This is a frequency dis-
tribution of the sample mean from 200 randomly selected samples of size 10 drawn
from the distribution of 1000 birthweights given in Table 6.2, as displayed by the
Statistical Analysis System (SAS) procedure PROC CHART.

We can show that the average of these sample means (x’s), when taken over a
large number of random samples of size n, approximates p as the number of samples
selected becomes large. In other words, the expected value of X over its sampling
distribution is equal to p. This result is summarized as follows:



FIGURE 6.1  Sampling distribution of X over 200 samples of size 10 selected from the population
of 1000 birthweights given in Table 6.2 (100 = 100.0-100.9, etc.)

| The emerging Gaussian!
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EQUATION 6.1 Let X, ..., X, be arandom sample drawn from some population with mean p.
Then, for the sample mean X, E(X) = .

Note that Equation 6.1 holds for any population regardless of its underlying
distribution. In words, we refer to X as an unbiased estimator of p.



DEFINITION 6.11

Estimators

We refer to an estimator of a parameter 6 as 6. An estimator 6 of a parameter 6 is un-
biased if E(8)=0. This means that the average value of 8 over a large number of
random samples of size n is 6.

The unbiasedness of X is not sufficient reason to use it as an estimator of p. For
symmetric distributions, many unbiased estimators of p exist, including the sample
median and the average value of the largest and smallest data points in a sample.
Why is X chosen rather than any of the other unbiased estimators? The reason is
that if the underlying distribution of the population is normal, then it can be shown
that the unbiased estimator with the smallest variance is given by X. Thus, X is
called the minimum variance unbiased estimator of L.



See page 133 for
EQUATION 5.9

EQUATION 6.2

DEFINITION 6.12

Indeed, we would expect the sample means from repeated samples of size 100
to be less variable than those from samples of size 10. We can show this is true.
Using the properties of linear combinations of independent random variables given
in Equation S.9,

Jra( %)
= (—Z)Z"ZVW(X,-)

nJi=1

Var()_()= (nl_z
1

However, by definition Var(X;)= o?. Therefore,
Var(X) = (l/nz)(oz +ol+ ---+oz) = (l/nz)(noz) =o?/n

The standard deviation (sd) = v/'variance; thus, sd()_() =0 /+/n. We have the follow-
ing summary:

LetX,,..., X bearandom sample from a population with underlying mean p and
variance o2. The set of sample means in repeated random samples of size n from
this population has variance o%/n. The standard deviation of this set of sample
means is thus o/\/n and is referred to as the standard error of the mean or the
Standard error.

In practice, the population variance o? is rarely known. We will see in Section 6.7
that a reasonable estimator for the population variance ¢ is the sample variance s?,
which leads to the following definition:

The standard error of the mean (sem), or the standard error (se), is given by o/ Jn
and is estimated by s/n. The standard error represents the estimated standard de-
viation obtained from a set of sample means from repeated samples of size n from a
population with underlying variance ¢

Note that the standard error is not the standard deviation of an individual observa-
tion X, but rather of the sample mean X. The standard error of the mean is illustrated
in Figure 6.3. In Figure 6.3a, the frequency distribution of the sample mean is plotted



FIGURE 6.3

REVIEW QUESTIONS 6B

What is a sampling distribution?
Why is the sample mean X used to estimate the population mean p?
What is the difference between a standard deviation and a standard error?

S WN =

Suppose we have a sample of five values of hemoglobin A1c (HgbA1c) obtained from
a single diabetic patient. HgbA1c is a serum measure often used to monitor compli-
ance among diabetic patients. The values are 8.5%, 9.3%, 7.9%, 9.2%, and 10.3%.

(@) What is the standard deviation for this sample?
(b) What is the standard error for this sample?

lllustration of the standard error of the mean (100 = 100.0-103.9, etc.)
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Central-Limit Theorem

If the underlying distribution is normal, then it can be shown that the sample mean
is itself normally distributed with mean p and variance o /n (see Section 5.6). In
other words, X ~N (u,oz /n) . If the underlying distribution is not normal, we would
still like to make some statement about the sampling distribution of the sample
mean. This statement is given by the following theorem:

Central-Limit Theorem

LetX,, ..., X bearandom sample from some population with mean p and vari-
ance o Then, for large n, X~N (u, o’ /n) even if the underlying distribution of
individual observations in the population is not normal. (The symbol ~ is used
to represent “approximately distributed.”)

Exercise check the central limit theorem



Why we do average measurements?

Distribution of single serum-triglyceride measurements and of means of such
measurements over samples of size n

o Distribution of means
Distribution of over samples of size n
single measurements X = N(u, o2/n)
o &
g g
= 3
o o
= =
— —
0 0
(a) Individual serum-triglyceride values (b) Mean serum triglycerides

...Getting an universal distribution to be assumed as a standard



INTERVAL ESTIMATION

We have assumed previously that the distribution of birthweights in Table 6.2
was normal with mean p and variance o2 It follows from our previous discussion of
the properties of the sample mean that X ~ N (p, o’ /n) Thus, if p and o? were known,

then the behavior of the set of sample means over a large number of samples of size
n would be precisely known. In particular, 95% of all such sample means will fall

within the interval (L —1.966/vn, p+1.960/n).

Alternatively, if we re-express X in standardized form by
X -
o \/—

then Z should follow a standard normal distribution. Hence, 95% of the Z val-
ues from repeated samples of size n will fall between -1.96 and +1.96 because
these values correspond to the 2.5th and 97.5th percentiles from a standard
normal distribution. However, the assumption that ¢ is known is somewhat
artificial, because o is rarely known in practice.

77—




t Distribution

Because o is unknown, it is reasonable to estimate o by the sample standard devia-
tion s and to try to construct CIs using the quantity ()_( - u) / (S\/ﬁ ) The problem is
that this quantity is no longer normally distributed.

This problem was first solved in 1908 by a statistician named William Gossett.
For his entire professional life, Gossett worked for the Guinness Brewery in Ireland.
He chose to identify himself by the pseudonym “Student,” and thus the distribution
of (X —u)/ (S\/I_I) is usually referred to as Student’s ¢ distribution. Gossett found
that the shape of the distribution depends on the sample size n. Thus, the ¢ distribu-
tion is not a unique distribution but is instead a family of distributions indexed by a
parameter referred to as the degrees of freedom (df) of the distribution.

IfX,..., X, ~N(0o? and are independent, then ()—( —u) / (S\/H ) is distributed
as a t distribution with (n - 1) df.

Once again, Student’s t distribution is not a unique distribution but is a family of
distributions indexed by the degrees of freedom d. The t distribution with d degrees
of freedom is sometimes referred to as the t, distribution.

The 100 x uth percentile of a t distribution with d degrees of freedom is denoted by
t,, thatis,

Prty<tg,)=u

What does t,, ,, mean?

Solution: t,, . is the 95th percentile or the upper Sth percentile of a t distribution

with 20 degrees of freedom.

It is interesting to compare a t distribution with d degrees of freedom with an
N(O, 1) distribution. The density functions corresponding to these distributions are
depicted in Figure 6.6 for the special case where d = 5.

Notice that the t distribution is symmetric about O but is more spread out than
the N(O, 1) distribution. It can be shown that for any a, where o > .5, t,, .18 always

l-a



FIGURE 6.6 Comparison of Student’s t distribution with 5 degrees of freedom with an N(0, 1)
distribution

Frequency

Value
= = N(O, 1) distribution
=== =t distribution



6.7 ESTIMATION OF THE VARIANCE OF A DISTRIBUTION

Point Estimation

In Chapter 2, the sample variance was defined as
1
s? = —1 3 (x - %)
-1 i=1

This definition is somewhat counterintuitive because the denominator would be
expected to be n rather than n — 1. A more formal justification for this definition is
now given. If our sample x, . . ., x, is considered as coming from some population
with mean p and variance ¢?, then how can the unknown population variance o?
be estimated from our sample? The following principle is useful in this regard:

6.10 Let X, ..., X, be a random sample from some population with mean p and
variance ¢% The sample variance $? is an unbiased estimator of ¢ over all
possible random samples of size n that could have been drawn from this
population; that is, E(S?) = ¢

Therefore, if repeated random samples of size n are selected from the population,
as was done in Table 6.3, and the sample variance s? is computed from each sample,
then the average of these sample variances over a large number of such samples of size
n is the population variance o?. This statement holds for any underlying distribution.

tends to underestimate the underlying variance o® by a factor of (n — 1)/n. This factor
is considerable for small samples but tends to be negligible for large samples. A more
complete discussion of the relative merits of different estimators for o® is given in [3].



DEFINITION 6.14

DEFINITION 6.15

To obtain an interval estimate for o? a new family of distributions, called
chi-square (x?) distributions, must be introduced to enable us to find the sampling
distribution of §? from sample to sample.

IfG=2n:X,-2

i=1
where X, ..., X ~N(0,1)

and the X;’s are independent, then G is said to follow a chi-square distribution
with n degrees of freedom (df’). The distribution is often denoted by X

The chi-square distribution is actually a family of distributions indexed by the
parameter n referred to, again, as the degrees of freedom, as was the case for the ¢t
distribution. Unlike the t distribution, which is always symmetric about O for any
degrees of freedom, the chi-square distribution only takes on positive values and is
always skewed to the right. The general shape of these distributions is indicated in
Figure 6.8.

For n =1, 2, the distribution has a mode at O [3]. For n = 3, the distribution has
a mode greater than O and is skewed to the right. The skewness diminishes as n
increases. It can be shown that the expected value of a x2 distribution is 7 and the
variance is 2n.

The uth percentile of a x5 distribution (i.e., a chi-square distribution with d df) is de-
noted by xﬁ,u, where Pr(y3 < x‘z,'u) = u. These percentiles are shown in Figure 6.9 for a
chi-square distribution with 5 df and appear in Table 6 in the Appendix.



FIGURE 6.8

General shape of various y? distributions with d df
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FIGURE 6.9 Graphic display of the percentiles of a y? distribution

AS
See table 6 in the appendix

0 | I ]
0 10 X2, 20
Value
Table 6 is constructed like the t table (Table S), with the degrees of freedom (d)
indexed in the first column and the percentile (1) indexed in the first row. The main
difference between the two tables is that both lower (u < 0.5) and upper (u > 0.5) per-
centiles are given for the chi-square distribution, whereas only upper percentiles are

given for the t distribution. The t distribution is symmetric about 0, so any lower
percentile can be obtained as the negative of the corresponding upper percentile.
Because the chi-square distribution is, in general, a skewed distribution, there is no
simple relationship between the upper and lower percentiles.



