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OUTLINE
* proportions (and the binomial distribution)

* The Binomial distribution
* sampling the proportions: parameter estimates,

uncertainty
* Testing proportions: the binomial test

Study materials: Whitlock and Schluter chap.7

further reading: interleaf 3: why statistical significance is not the same as
biological importance?

Interleaf 4 Correlation does not require causation (see “Spuriuous
Correlations™ a nice website:
http://www.tylervigen.com/spurious-correlations




PROPORTIONS
SLA

What proportion of people with Lou Gehrig’s disease will survive at least 10 years after
diagnosis? What proportion of the North Carolina red wolf population is female? In what

fraction of years does global temperature increase? Each of these questions is about a
proportion, the fraction of the population that has a particular characteristic of interest. The
proportion of individuals sharing some characteristic in a population is also the probability that
an individual randomly sampled from that population will have that attribute. A proportion can

range from zero to one.

. . .remember the toad handedness proble
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Figure 6.2-1
Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman
and Company



The binomial distribution

Consider a measurement made on individuals that divides them into two mutually exclusive
groups, such as success or failure, alive or dead, left-handed or right-handed, or diabetic or
nondiabetic. In the population, a fixed proportion p of individuals fall into one of the two
groups (call it “success™) and the remaining individuals fall into the other group (call it
“failure). Calling one of the categories “success” and the other “failure” is a convenience, not

a value judgment..

If we take a random sample of n individuals from this population, the sampling distribution
for the number of individuals falling into the success category is described by the binomial
distribution. The term “binomial” reveals its meaning: there are only two (bi-) possible
outcomes, and both are named (-nomial) categories.

The binomial distribution provides the probability distribution for the number of
“successes” in a fixed number of independent trials, when the probability of success is the
same in each trial.



Formula for the binomial distribution

The binomial formula gives the probability of X successes in n trials, where the outcome of any
single trial is either success or failure. The binomial distribution assumes that

® the number of trials (n) is fixed,
B separate trials are independent, and
m the probability of success (p) is the same in every trial.

Under these conditions, the probability of getting X successes in n trials is

Pr[X successes) ( N )p'\'(l p)" X

Pr[X successes]=(nX)pX(1-p)n-X. X

The left side of this equation, Pr[X successes], means the “probability of X successes,”

n

where X is an integer between 0 and n. On the right-hand side, the quantity (nX)(«\') isread “n
choose X.” This represents the number of unique ordered sequences of successes and failures

that yield exactly X successes in n trials.2 The term is shorthand for

(nX)=n!X!(n-X)!’(X) = X"

where n! is called “n factorial” and refers to the product

n!znx(n_l)x(n_Z)x(n_s)x.“xle.u! nxnh-0))xn-2)x(n-3) x ... x2x1
Similarly, X! is “X factorial” and (n — X)! is “(n — X) factorial.” By definition, 0! = 1, so

(nO)( “) and (nn) ( ") are both equal to 1. Factorials get very large very fast. For example, 5! =

120, but 20! = 2,432,902,008,176,640,000. Even with a reasonably small number of trials,

calculating the binomial coefficient can require a good calculator or computer.2



Sampling distribution of the proportion

If there are X successes out of n trials in a random sample, then the estimated proportion of
successes is p”7:
X

p=Xn."
(We pronounce p™? as “p-hat.” Recall that p refers to the proportion in the population, whereas
p”? refers to the sample proportion.)

We can use the same hypothetical population of flowers, having a true proportion of p =
0.25 successes, to illustrate the sampling distribution for the sample proportion p”.7- The panel
on the top in Eigure 7.1-2 is the sampling distribution when n = 10 (a relatively small sample
size), whereas the panel on the bottom is the distribution for a larger sample size, n = 100. Both
are based on binomial distributions, but rather than showing the number of successes X, we
have divided X by n to yield p"?



This is a case of built-in self averaging

0.30 4
n=10

0.25

Probability
< (=] =
—_ — N
(=] w o
1 1 L

0.05 -

i ) T 1

n=100

T T T T T T 1
0 01 02 03 04 05 06 07 08 09 10

Proportion of successes (p)

Figure 7.1-2
Whitlock et al,, The Analysis of Biological Data, 2e, © 2015 W, H. Freeman
and Company

FIGURE 7.1-2 The sampling distribution for the proportion of successes p“? for
sample size n = 10 (top) and n = 100 (bottom). In both of these graphs, the population
proportion is p = 0.25. The distribution is narrower (smaller standard deviation) when n
is larger.



the effect of the sample size on the precision of the estimates

n [ ] ] - la I] - E -~ "). ] - [ - l
sample of size n, is p. In other words, the proportion of successes in random samples is the

same on average as the proportion of successes in the population. Therefore, p”# is an unbiased
estimate of the population proportion—on average, it gives the right answer.

Notice in Figure 7.1-2 how the sample size affects the width of the sampling distribution
for p”.7- When n is large (bottom panel), the sampling distribution is narrow. This effect is
quantified in the formula for the standard error of p”# (Remember from Section 4.2 that the
standard error of an estimate is the standard deviation of its sampling distribution.) The
standard error of p°? (designated by op) is
op=p(l-pn.” ¥

The sample size (n) is in the denominator of the standard error equation, so the standard
error decreases as the sample size increases. That is why the estimates from samples of size 10
in Figure 7.1-2 (top panel) are more spread out than the estimates based on 100 individuals
(bottom panel). Larger samples yield more precise estimates. The improvement in precision as
sample size increases is called the law of large numbers.



Testing a proportion: the binomial test

The binomial test applies the binomial sampling distribution to hypothesis testing for a
proportion. The types of questions it is suitable for have already been encountered in Chapter 6.
The binomial test is used when a variable in a population has two possible states (i.e., “success”
and “failure”), and we wish to test whether the relative frequency of successes in the population
(p) matches a null expectation (pg). The hypothesis statements look like this:

Hj: The relative frequency of successes in the population is p.
H : The relative frequency of successes in the population is not p.

The null expectation (pg) can be any specific proportion between zero and one, inclusive.

The binomial test uses data to test whether a population proportion (p) matches a null
expectation (pg) for the proportion.

Example 7.2 shows how to apply the binomial test to real data.



EXAMPLE 7.2 Sex and the X

A study of 25 genes involved in spermatogenesis (sperm formation) found their locations in the
mouse genome. The study was carried out to test a prediction of evolutionary theory that such

genes should occur disproportionately often on the X chromosome.# As it turned out, 10 of the

25 spermatogenesis genes (40%) were on the X chromosome (Wang et al. 2001; see Figure
7.2-1). If genes for spermatogenesis occurred “randomly” throughout the genome, then we

would expect only 6.1% of them to fall on the X chromosome, because the X chromosome
contains 6.1% of the genes in the genome. Do the results support the hypothesis that
spermatogenesis genes occur preferentially on the X chromosome?
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Figure 7.2-1
Whitlock et al., The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 7.2-1 Cartoon of the mouse genome. Each vertical line represents one of
the mouse chromosomes and indicates its length relative to the others. Each mark on
a line indicates a single gene involved in spermatogenesis. Note the abundance of



The null hypothesis is that the spermatogenesis genes would be on the X chromosome
about 6.1% of the time, if they were randomly spread around the genome. To express this in
terms of the binomial distribution, let’s call the placement of each gene in the sample a “trial,”
and if the gene is on the X chromosome we’ll call it a success. The null hypothesis is that the
probability of success (p) is 0.061. The more interesting alternative hypothesis is that the
probability of success (p) is not 0.061—that is, either spermatogenesis genes occur more
frequently than 0.061 or they occur less frequently on the X chromosome than expected by
chance.

We can write these hypotheses more formally as follows:

Hj: The probability that a spermatogenesis gene falls on the X chromosome is p = 0.061.

H,: The probability that a spermatogenesis gene falls on the X chromosome is something
other than 0.061 (p # 0.061).

Note once again the asymmetry of these two hypotheses. The null hypothesis is very
specific, while the alternative hypothesis is not specific, referring to every other possibility.
Also note that there are two ways to reject the null hypothesis: there can be an excess of
spermatogenesis genes on the X chromosome (i.e., p > 0.061) or there can be too few (i.e., p <
0.061). Too few is not inconceivable, so it should also be included in the alternative hypothesis.
Therefore, the test is two-sided.




the test statistic

The next step is to identify the test statistic that will be used to compare the observed result
with the null expectation. In the case of the binomial test, the test statistic is the observed
number of successes. For the data in Example 7.2, that would be 10 spermatogenesis genes on
the X chromosome. The null expectation is 0.061 x 25 = 1.525. On average, we expect the
fraction 0.061 of the 25 spermatogenesis genes sampled—namely, 1.525—to be located on the
X chromosome if Hy is true. Therefore, we know that in the sample more genes were found on

the X chromosome than were expected by the null hypothesis.

The question now is whether we are likely to get such an excess by chance alone if the null
hypothesis were true. To decide this we need the null distribution, the sampling distribution for
the test statistic assuming that the null hypothesis is true. As mentioned previously, the
sampling distribution for the number of successes X in a random sample of n individuals from a
population having the proportion p of successes is described by the binomial distribution.
Under the null hypothesis, the proportion is p = 0.061, so, for the above data (where n = 25
genes), the null distribution is given by

Pr| X successes| ( o ) (0.061)* (1 — 0.061)* ¥
Pr[X successes] (25X)(0 061)X(1 O 061)25-X.
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p-value

This null distribution allows us to calculate the P-value, the probability of getting a result as
extreme as, or more extreme than, 10 spermatogenesis genes on the X chromosome when the

null expectation is 1.525. Because the test is two-tailed, P is the probability of getting 10 or
more genes on the X chromosome plus the probability of similarly extreme results at the other
tail of the null distribution, corresponding to too few genes on the X chromosome. We account
for all the extreme outcomes by doubling the probability of getting 10 or more:

P=2Pr[number of successes > 10]P 2 Pr [number of successes > 10|.

The probability of getting exactly 10 out of 25 on the X chromosome, when the probability of
being on the X chromosome is 0.061, is

Pr [10 successes]=(2510)(0.061)10(1 -0.061)15 =9.07x10-7.
Pr [10 successes| (‘fg) (0.061)"°(1 — 0.061)" = 9.07 x 10°7.

The probability of getting 10 or more spermatogenesis genes on the X chromosome,
assuming the null hypothesis is true, is the sum over all of these mutually exclusive

possibilities:
Pr [number of successes >10]=Pr[10] +Pr[11] +Pr[12]+ --- +Pr[25]=9.9%10-7.
Pr [number of successes > 10| Pr(10] + Pr(11] + Pr({12] + .-+ + Pr(25

= 9.9x10
The final P-value is
P=2Pr[number of successes>10]=2(9.9x10-7)=1.98x10-6.

P = 2Pr [number of successes > 10| = 2(9.9 x 10°7) = 1,98 x 10°°,



Conclusion

This P-value? is well below the conventional significance level of a = 0.05. The probability
of getting a result as extreme as, or more extreme, than the observed result is very low if the
null hypothesis were true. Therefore, we reject the null hypothesis and conclude that there is a
disproportionate number of spermatogenesis genes on the X chromosome. Our best estimate of

the proportion of spermatogenesis genes that are located on the mouse X chromosome is
10

p"=1025=0.40," 25
which is much greater than 0.061, the proportion stated in the null hypothesis. These results
might be stated in a scientific report: “A disproportionately large proportion of spermatogenesis
genes occur on the X chromosome (0.40, SE = 0.10; binomial test, n = 25, P < 0.001).” This
statement includes the standard error of the proportion, which we show you how to calculate in
the next section.

0.40,




Problem 13 chap 7 from W&S

). We all believe that we see most of what goes on around us, at least the most obvious things.
Recently, however, psychologists have identified a phenomenon called “selective looking”
which means that, if our attention is drawn to one aspect of what we see, we can miss even
seemingly obvious features presented at the same time. In a striking demonstration of this
phenomenon, a series of randomly chosen students was shown a video of six people
throwing a basketball around, and they were asked to count how many times the people in
white shirts threw the ball (Simons and Chabris 1999). In the middle of this video,? a woman
dressed as a gorilla walked through the shot, pausing in the center to thump her chest, and
then walked out of the shot. Look at the photo, and you will realize that nothing could be
more obvious. Or was it? Of the 12 students watching the video, only five noticed the gorilla.

a. What is the best estimate from these data of the proportion of students in the population
who notice the woman in the gorilla suit?

b. What is the 95% confidence interval for the proportion of students in the population who
notice the woman in the gorilla suit?

¢ What is the best estimate from these data of the proportion of students who fail to notice
the woman in the gorilla suit?

> Photo courtesy of Daniel Simons [Simons and Chabris
(1999)] “Figure provided by Daniel Simons, www
theinvisiblegorilla.com.



