METABOLISMO

I farmaci introdotti nell'organismo vengono trasformati prevalentemente enzimaticamente in uno o più derivati (metaboliti)

Organi e tessuti coinvolti nel metabolismo

- fegato
- stomaco e intestino
- reni
- polmoni
- tessuto nervoso
- plasma
- cute

Ruolo fisiologico della metabolizzazione

Le biotrasformazioni hanno il ruolo di neutralizzare:

- la potenziale tossicità delle sostanze introdotte con la dieta (xenobiotici)
- l'attività biologica di sostanze endogene quali neurotrasmettitori, ormoni, nucleosidi, etc...

Questo spiega la bassa specificità degli enzimi metabolizzanti per i loro substrati Il metabolismo porta generalmente a prodotti più idrofili che vengono più rapidamente escreti per via renale perché sono:

- meno legati alle proteine plasmatiche
- meno riassorbiti a livello tubulare

Attività biologica dei metaboliti

- scompare l'attività del farmaco
- viene mantenuta la stessa attività
- compare un'attività diversa che può essere utile o causa di effetti indesiderati
- compare l'azione desiderata
 (profarmaci)

Reazione metaboliche dei Farmaci

Processi di trasformazione enzimatica e non in vari organi e tessuti

Il metabolismo può essere influenzato da vari fattori: genetici, fisiologici (età, sesso, razza), fattori farmacocinetici e farmacodinamici (dose, frequenza e via di somministrazione) e ambientali (interazione con altri farmaci ed altre sostanze)

La sede principale è il fegato

Reazioni metaboliche dei farmaci

> Reazioni di fase I o di funzionalizzazione

Viene introdotto nella molecola un nuovo gruppo funzionale o viene modificato un gruppo già presente

- ossidazione
- riduzione
- idrolisi

Reazioni metaboliche dei farmaci

> Reazioni di fase II o di coniugazione

Il farmaco o un suo metabolita della fase I viene condensato con un substrato endogeno (coniugante) per dare un glicoside, un estere, un'ammide, un etere, etc (coniugato).

- glicuranazione
- solfoconiugazione
- coniugazione ippurica
- mercapturazione
- acetilazione
- metilazione

Nelle reazioni di fase I il farmaco viene convertito in un metabolita:

- di solito più idrofilo rispetto al farmaco
- contenente un gruppo funzionale che può servire come punto d'attacco per una coniugazione di fase II
- più attivo o meno attivo, con attività diversa o completamente inattivo rispetto al farmaco

Nelle reazioni di fase II il farmaco viene convertito in un metabolita:

- di solito più idrofilo rispetto al farmaco (più lipofilo nel caso di acetilazione e metilazione)
- spesso totalmente inattivo

Reazioni di fase I o di funzionalizzazione: ossidazione

1a) Reazioni di ossidazione microsomiali

enzimi localizzati nel *reticolo endoplasmatico liscio* soprattutto degli epatociti

1b) Reazioni di ossidazione non microsomiali

enzimi localizzati nel citosol e nei mitocondri

Reazioni di fase I o di funzionalizzazione: ossidazione

1a) Reazioni di ossidazione microsomiali

Ossidazione di atomi di carbonio

- carboni esposti

saturi - attivati dalla vicinanza ad un

carbonio sp² o sp

- in α ad un eteroatomo

insaturi

- Ossidazione di atomi di azoto
- Ossidazione di atomi di zolfo
- Ossidazione di atomi di fosforo

1b) Reazioni di ossidazione non microsomiali

- Ossidazioni di alcoli ad opera della alcol deidrogenasi
- Ossidazioni di aldeidi ad opera aldeide deidrogenasi
- Deaminazione ossidativa ad opera della MAO

1. Ossidazioni

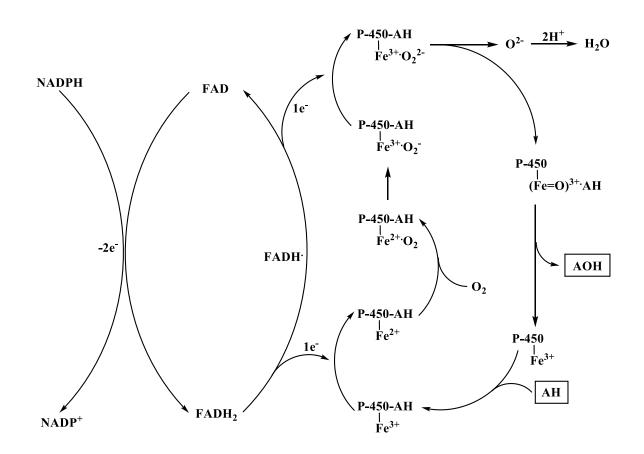
1a) Reazioni di ossidazione microsomiali

- Catalizzate da citocromi P450 (CYP450), monoossigenasi presenti nel sistema microsomiale epatico, intestinale, renale, polmonare e di altri tessuti.
- il sistema microsomiale è costituito dall'insieme di vescicole che si forma dalla frammentazione del reticolo endoplasmatico a seguito dell'omogenizzazione

- Sono emeproteine
- Il Fe oscilla tra +2 e +3

- •Utilizzano ossigeno molecolare come ossidante
- •Sono accoppiati ad una reduttasi flavinica che utilizza il NADPH come riducente (CYP450 reduttasi)

Schema generale di una reazione di ossidazione catalizzata da un citocromo P450:


Farmaco
$$-H + O_2 + NADPH + H^+$$

Enzimi citocromo

P450

Farmaco $-OH + NADPf + H_2O$

$AH + NADPH + H^+ + O_2 \rightarrow AOH + NADP^+ + H_2O$

- Il nome è dovuto al fatto che sono enzimi intracellulari e che il complesso della forma ferrosa con il monossido di carbonio ha colore rosa (pink) ed un massimo d'assorbimento a 450 nm
- Almeno 33 diversi citocromi P450 raggruppati in 4 famiglie, designate con un numero (CYP1-4), sottofamiglie, designate da una lettera, e isoforme, designate da un altro numero
- CYP3A4 è responsabile del metabolismo di molti farmaci (circa 40%)
- l'attività dei CYP varia nelle diverse popolazioni, ma anche da individuo ad individuo. Alcuni individui possono anche essere privi di particolari isoforme enzimatiche

OSSIDAZIONI MICROSOMIALI

Ossidrilazione Aromatica

$$R \longrightarrow R \longrightarrow OH$$

Ossidrilazione Alifatica

$$RCH_3 \longrightarrow RCH_2OH$$

N-Ossidazione (di Ammine Terziarie)

$$R_3N \longrightarrow R_3N \longrightarrow R_3N \longrightarrow C$$

N-Ossidrilazione (di Ammine Primarie e Secondarie)

$$RNH_2 \longrightarrow RNHOH \longrightarrow RNO$$
 $RR'NH \longrightarrow RR'NOH$

Deaminazione (di Ammine Primarie a-Sostituite)

N-Dealchilazione (di Ammine Terziarie e Secondarie)

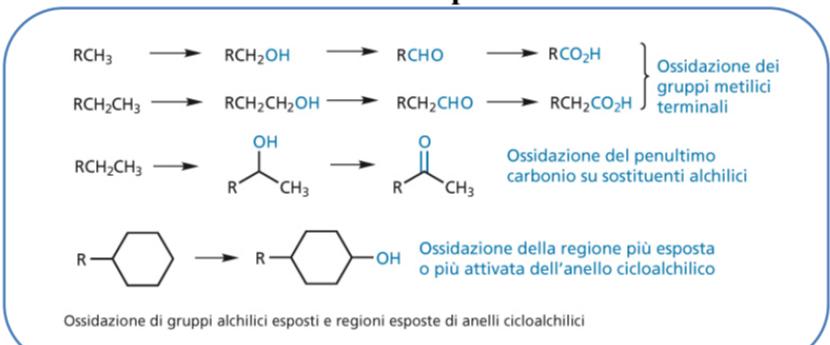
$$\begin{array}{cccc}
RNMe_2 & \longrightarrow & RN & \longrightarrow & RNHMe \\
\hline
RNHMe & \longrightarrow & RNHCH_2OH & \longrightarrow & RNH_2
\end{array}$$

O- ed S-Dealchilazione

RXMe
$$\longrightarrow$$
 RXCH₂OH \longrightarrow RXH
$$(X = O \circ S)$$

S-Ossidazione

$$RSR' \longrightarrow \begin{matrix} \\ RSR' \\ \\ OH \end{matrix} \longrightarrow \begin{matrix} \\ \\ \\ O \end{matrix}$$

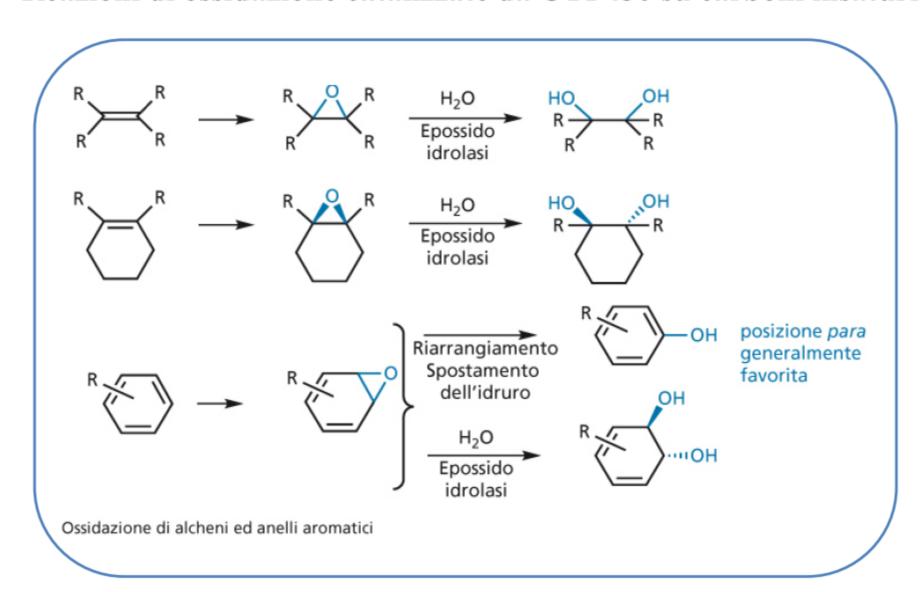

Desolforazione (di Esteri Organotiofosforici)

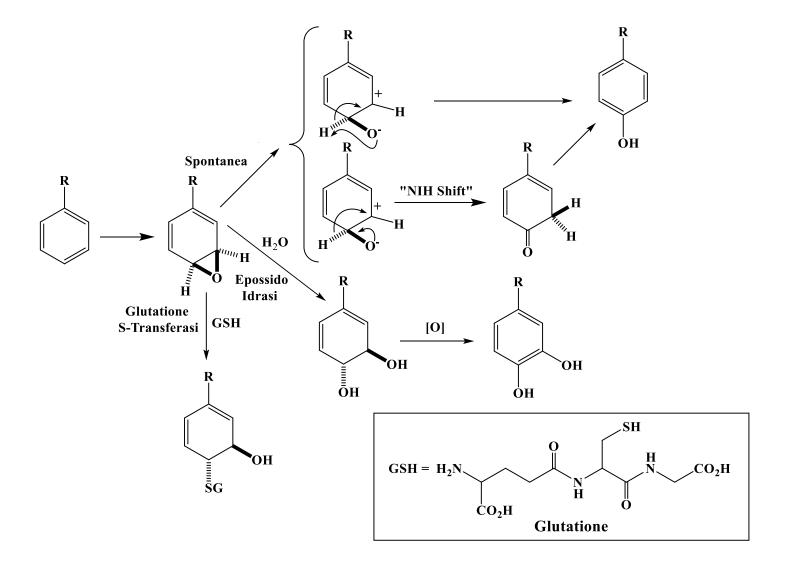
$$P=S \longrightarrow P=O$$

Reazioni di ossidazione catalizzate da CYP450 su carboni saturi

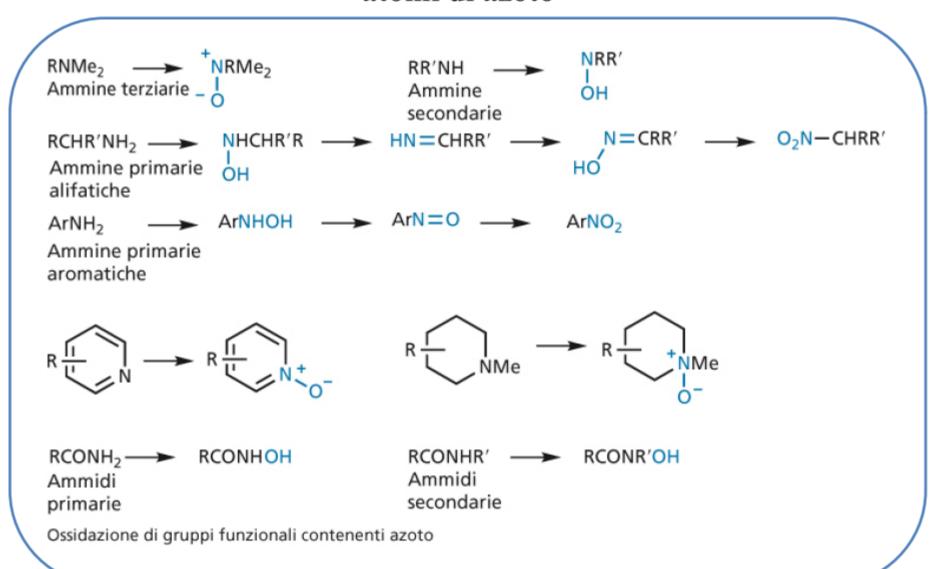
Vengono ossidati gli atomi di <u>carbonio esposti, attivati dalla vicinanza ad</u> <u>un carbonio sp² o sp¹, in α ad un eteroatomo</u>

·Ossidazione di carboni saturi esposti

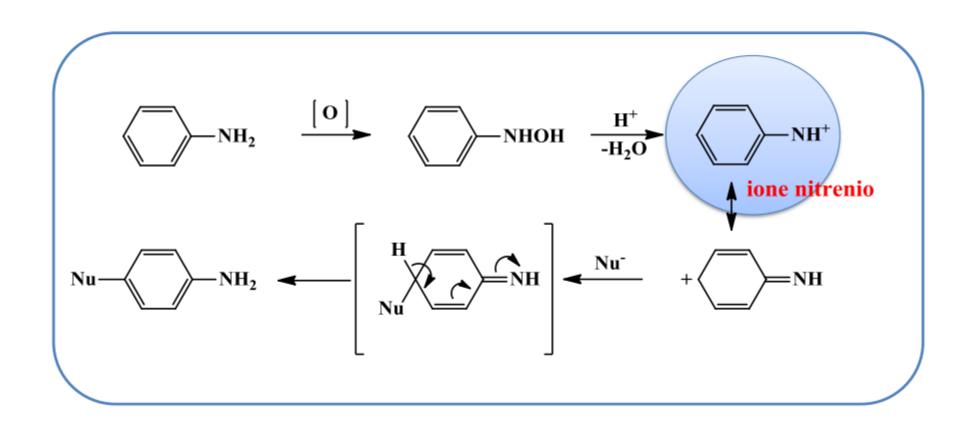

· Ossidazione di carboni saturi attivati dalla vicinanza ad un carbonio sp² o sp¹


·Ossidazione di carboni saturi in a ad un eteroatomo

$$RCH_2NR'_2 \longrightarrow [RCH(OH)NR'_2] \longrightarrow RCHO + HNR'_2$$
 $RCH_2OAr \longrightarrow [RCH(OH)OAr] \longrightarrow RCHO + HOAr$
 $RCH_2SR' \longrightarrow [RCH(OH)SR'] \longrightarrow RCHO + HSR'$


Dealchilazione di ammine, eteri e tioteri via ossidazione del carbonio attivato (incluso demetilazione R=H)

Reazioni di ossidazione catalizzate da CYP450 su carboni insaturi



Reazioni di ossidazione microsomiale catalizzate da CYP450 su atomi di azoto

Possibile tossicità delle amine primarie aromatiche

Reazioni di ossidazione catalizzate da CYP450 su atomi di zolfo e fosforo

Ossidazione di gruppi funzionali contenenti zolfo

$$R_3P \longrightarrow R_3P \longrightarrow 0$$

Ossidazione di gruppi funzionali contenenti fosforo

Reazioni di fase I o di funzionalizzazione: ossidazione

1a) Reazioni di ossidazione microsomiali

Ossidazione di atomi di carbonio

- carboni esposti

saturi | - attivati dalla vicinanza ad un

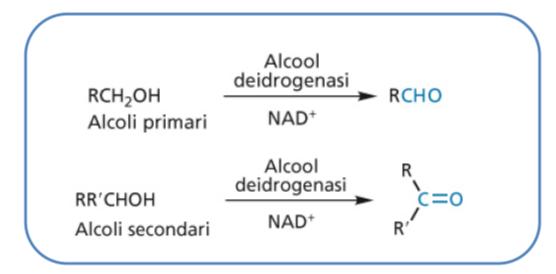
carbonio sp² o sp

- in α ad un eteroatomo

insaturi

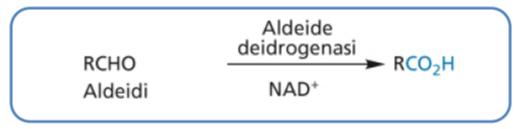
- Ossidazione di atomi di azoto
- Ossidazione di atomi di zolfo
- Ossidazione di atomi di fosforo

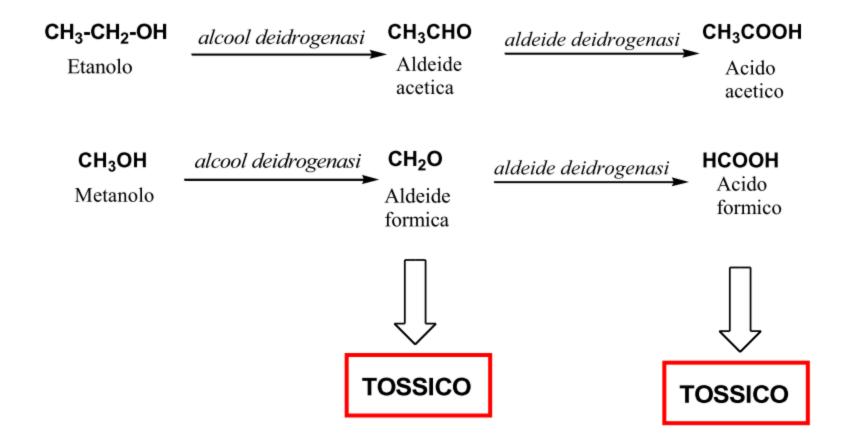
1b) Reazioni di ossidazione non microsomiali


- Ossidazioni di alcoli ad opera della alcol deidrogenasi
- Ossidazioni di aldeidi ad opera aldeide deidrogenasi
- Deaminazione ossidativa ad opera della MAO

1b) Ossidazioni non microsomiali

Catalizzate da ossidasi mitocondriali e citosoliche


 Ossidazioni di alcoli ed aldeidi ad opera di alcol deidrogenasi e di aldeide deidrogenasi


Enzimi che utilizzano il NAD^+ o $NADP^+$ come agente ossidante piuttosto che O_2

Ossida la maggior parte degli alcoli primari

Ossida solo alcuni alcoli secondari

Inibitori dell'aldeide deidrogenasi

Reazioni di fase I o di funzionalizzazione: ossidazione

1a) Reazioni di ossidazione microsomiali

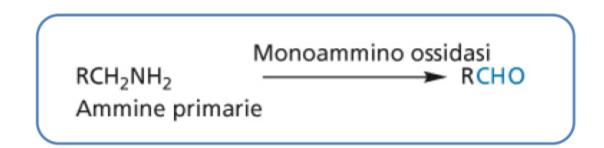
Ossidazione di atomi di carbonio

- carboni esposti

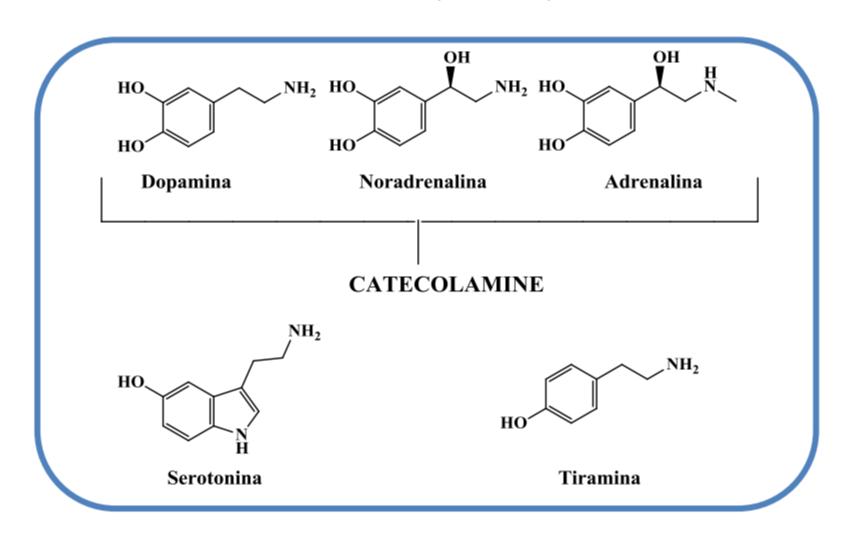
saturi | - attivati dalla vicinanza ad un

carbonio sp² o sp

- in α ad un eteroatomo


insaturi

- Ossidazione di atomi di azoto
- Ossidazione di atomi di zolfo
- Ossidazione di atomi di fosforo


1b) Reazioni di ossidazione non microsomiali

- · Ossidazioni di alcoli ad opera della alcol deidrogenasi
- Ossidazioni di aldeidi ad opera aldeide deidrogenasi
- Deaminazione ossidativa ad opera della MAO

- Deaminazione ossidativa ad opera delle monoamino ossidasi (MAO)
- Le MAO sono enzimi mitocondriali che utilizzano O₂ come ossidante e possiedono un gruppo prostetico flavinico
- Sono localizzate nei mitocondri di neuroni, fegato, mucosa intestinale e piastrine
- Catalizzano la **deaminazione ossidativa** di amine primarie senza sostituenti sul carbonio in α (RCH₂NH₂) e di amine secondarie N-metil sostituite (RCH₂NHCH₃)

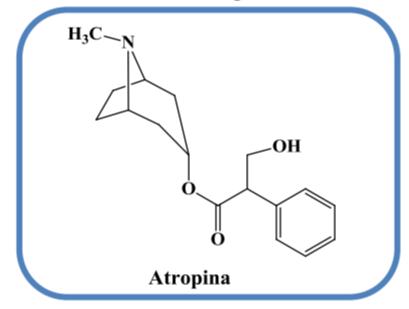
• Le **MAO** sono coinvolte nella deaminazione di neurotrasmettitori (catecolamine, serotonina) ma anche di ammine introdotte con la dieta (tiramina) o farmaci.

2) Reazioni di riduzione

- Meno comuni delle reazioni di ossidazione
- Catalizzate da enzimi microsomiali o citosolici
- Riduzione dei composti azoici ad ammine primarie

• Riduzione dei nitro derivati ad ammine primarie

$$RNO_2 \rightarrow RNH_2$$


2) Reazioni d'idrolisi

· Idrolisi di esteri catalizzata da esterasi

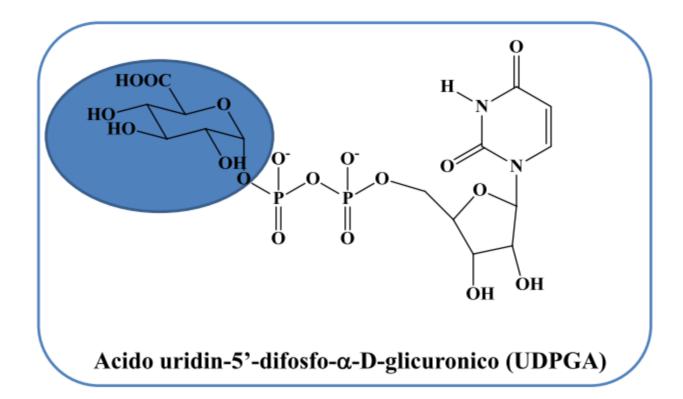
· Idrolisi di ammidi catalizzata da peptidasi

Le ammidi sono più stabili all'idrolisi rispetto agli esteri

Gli esteri stericamente impediti vengono idrolizzati più lentamente e vengono eliminati in alta percentuale come esteri

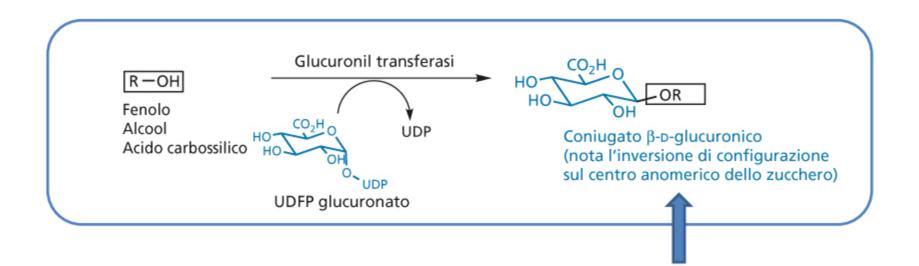
L'atropina è un alcaloide del tropano presente in diverse piante della famiglia delle Solanaceae. Circa il 50% dell'atropina viene eliminata come tale, il restante è costituito da metaboliti non idrolizzati

Reazioni di fase II o di coniugazione

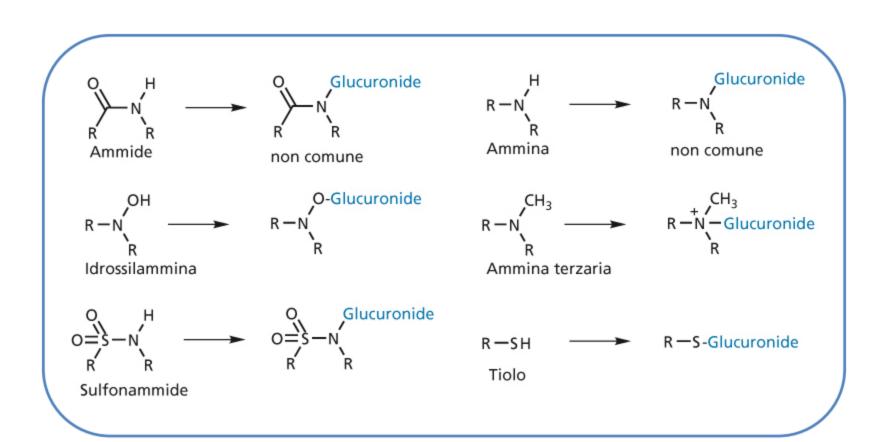

- Il farmaco o un suo metabolita della fase I viene condensato con un substrato endogeno (coniugante) per dare un coniugato
- Le funzioni che più comunemente vengono utilizzate per la coniugazione sono OH, SH, NH₂, COOH per dare un glicoside, un estere, un'ammide, un etere, etc..
- I coniugati sono di solito più idrofili rispetto al farmaco (l'acetilazione e la metilazione portano ad aumento di lipofilia) e sono facilmente escreti per via renale
- I coniugati sono spesso sono inattivi
- Le reazioni di coniugazione sono catalizzate da **transferasi** localizzate nei microsomi e nel citosol in diversi tessuti (fegato, polmoni, tratto gastrointestinale, SN, reni...)
- Le diverse transferasi possono competere per la stessa funzione e quindi si possono originare diversi coniugati da ciascun farmaco

Reazioni di coniugazione

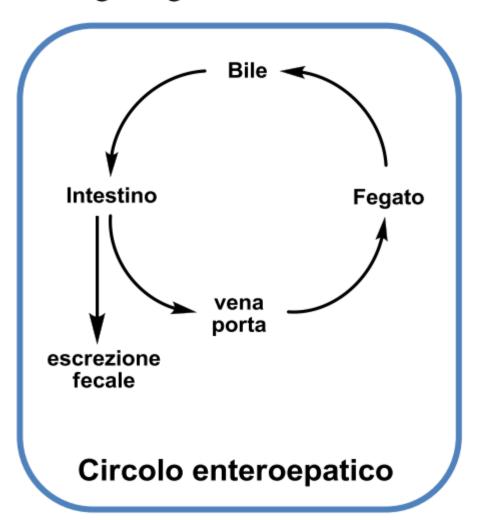
- 1. Glicuranazione
- 2. Solfoconiugazione
- Coniugazione con amminoacidi (coniugazione ippurica)
- 4. Mercapturazione
- 5. Acetilazione
- 6. Metilazione


1. Glicuronazione

- Consiste nel trasferimento di una molecola di acido glucuronico dall'UDPGA all'accettore
- La più comune delle reazioni di coniugazione catalizzata dalle UDP-glucoronil transferasi (UGT), enzimi microsomiali presenti soprattutto nel fegato

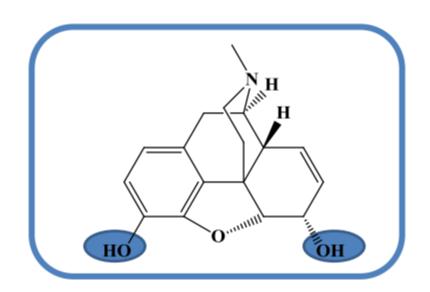

• Possono essere coniugati gruppi OH, COOH, NHOH per dare O-glucuronidi, ma anche gruppi NH₂, CONH₂, SO₂NH₂ e SH per dare N-glucuronidi e S-glucuronidi

Glucuronazione di alcoli, fenoli, acidi carbossilici



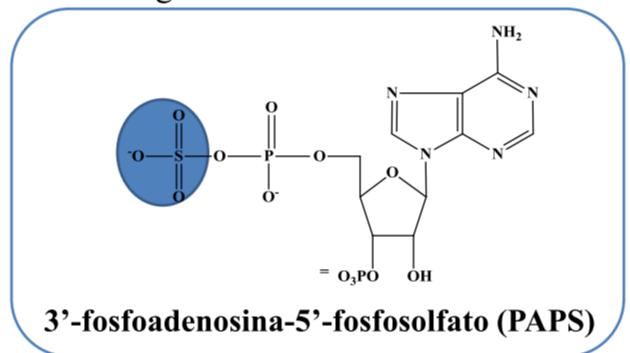
GLICURONAZIONE

Gluronazione di ammine, ammidi, solfonammidi, idrossilammine e tioli


- i glucoronidi sono notevolmente più idrofili dei coniuganti di partenza
- vengono generalmente eliminati attraverso le urine

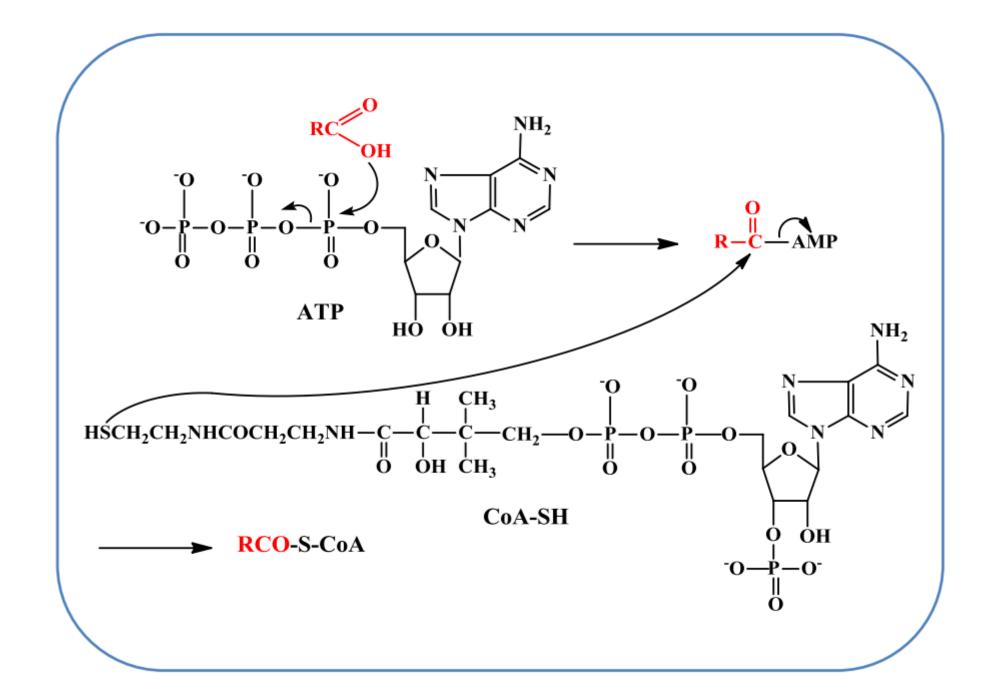
• possono essere secreti con la bile nell'intestino (PM > 300). In questo caso, le β-glicuronidasi intestinali possono idrolizzarli e il farmaco libero può essere riassorbito

• generalmente i glicuronidi sono inattivi

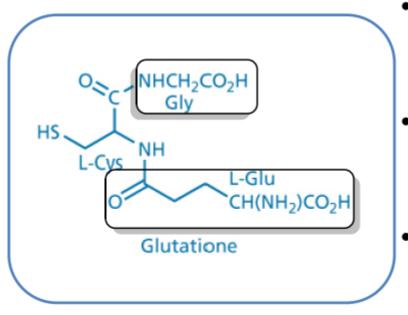

Eccezione: morfina

2 glucoronidi per reazione dell'OH fenolico in posizione 3 o di quello alcolico in 6. Quest'ultimo ha attività analgesica superiore a quella della morfina stessa

2. Solfoconiugazione


- Consiste nel trasferimento del gruppo SO₃- dalla 3'fosfoadenosina-5'-fosfosolfato (PAPS) all'accettore
- Meno comune della glucuronazione
- Catalizzata dalle solfotransferasi, enzimi citosolici presenti soprattutto nel fegato

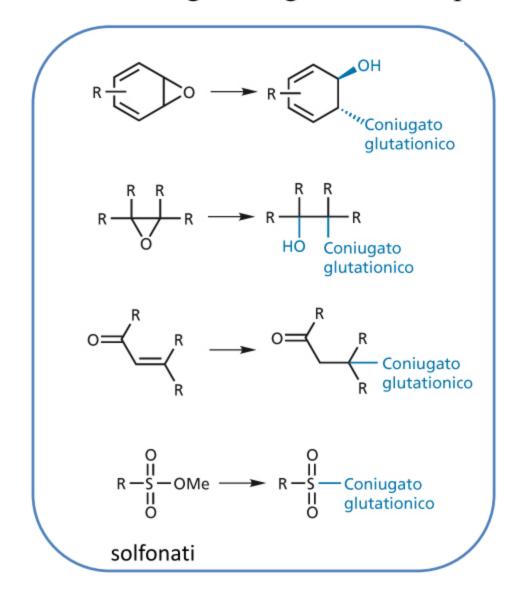
• Vengono solfoconiugati soprattutto gruppi OH per dare **solfati** ionizzati a pH fisiologico (ROSO₃-), ma anche gruppi amminici primari e secondari, e SH per dare **solfammati** (RR'NSO₃-) e **tiosolfati** (RSSO₃-)


3. Coniugazione con aminoacidi (coniugazione ippurica)

Gli acidi carbossilici possono essere coniugati con aminoacidi come glicina e glutamina ad opera di enzimi mitocondriali

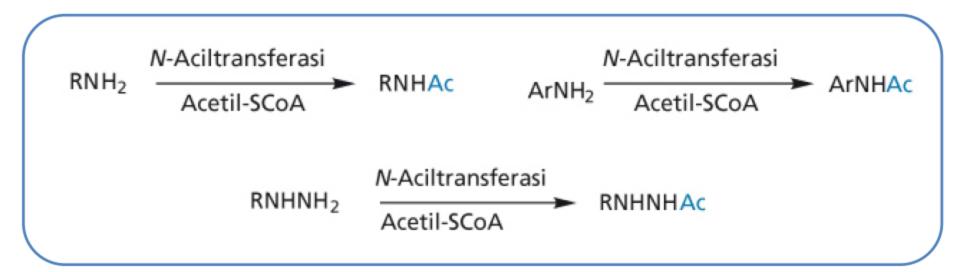
Esempi

4. Mercapturazione (coniugazione con il glutatione)

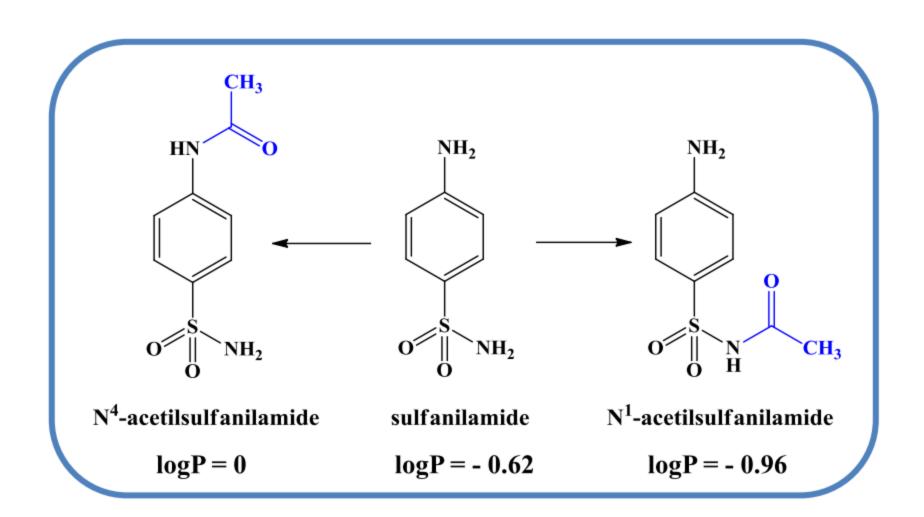


- Il glutatione (γ-L-glutamil-Lcisteinilglicina, GSH) è un tripeptide
- E' un buon agente coniugante grazie alle proprietà nucleofile del suo gruppo SH
- Può intervenire anche in reazioni di ossidoriduzione in dipendenza del suo stato redox (GSH o GSSG)

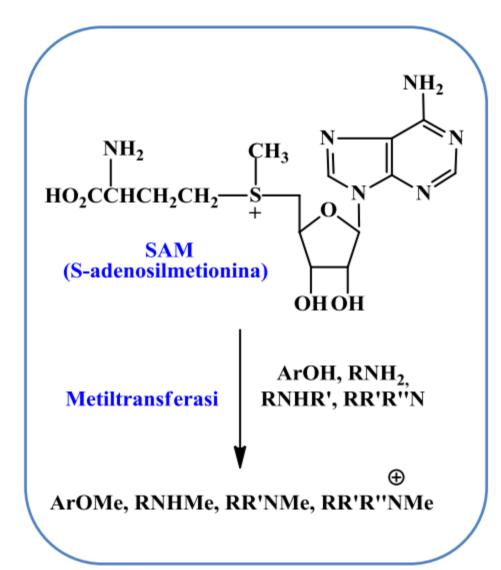
- La coniugazione con GSH avviene prevalentemente nel fegato e nel rene ed è catalizzata dall'enzima citosolico glutatione S-transferasi
- Il coniugato glutationico viene generalmente trasformato in acido mercapturico tramite due peptidasi (glutamil transferasi e cisteinil glicinasi) e successiva acetilazione del gruppo amminico ad opera di una N-acetil transferasi


MERCAPTURAZIONE

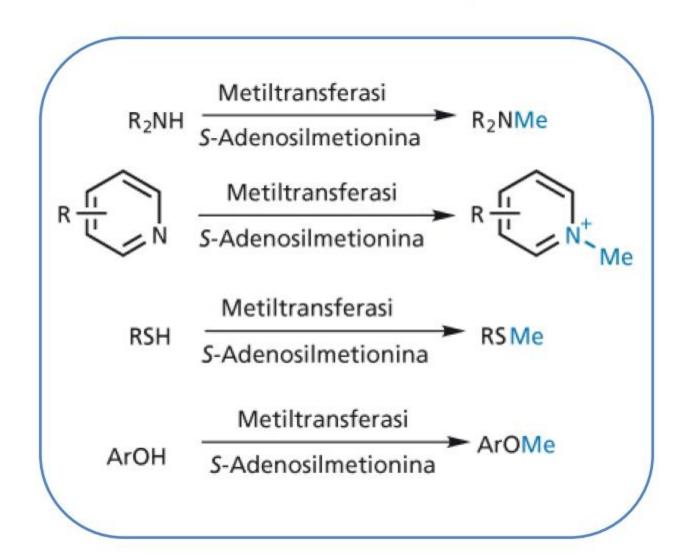
Formazione di coniugati tra glutatione e specie elettrofile



5. Acetilazione


- Catalizzata da N-acetiltransferasi che utilizzano l'acetil-S-CoA
- Vengono acetilati gruppi NH₂ di ammine primarie alifatiche e aromatiche ma anche di idrazine (RNHNH₂), idrazidi (RCONHNH₂) e solfonammidi (RSO₂NH₂)
- il coniugato che si forma è meno idrofilo del prodotto di partenza

N-Acetil metaboliti della sulfanilamide



6. Metilazione

- Catalizzata da
 metiltransferasi che
 utilizzano come agente
 metilante la S adenosilmetionina
 (SAM)
- Vengono metilate ammine primarie, secondarie e terziarie, eterociclici azotati, fenoli, tioli e tiofenoli.
- La metilazione diminuisce la polarità del farmaco a meno che non si formino sali quaternari

Reazioni di metilazione di ammine, tioli e fenoli

