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Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under
physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular
eukaryotes, and is responsible for important protein functions including regulation and signaling. Many
disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this
paper, a new predictor model based on the Bayesian classification methodology is introduced to predict
for a given protein or protein region if it is intrinsically disordered or ordered using only its primary
sequence. The method allows to incorporate length-dependent amino acid compositional differences of
disordered regions by including separate statistical representations for short, middle and long
disordered regions. The predictor was trained on the constructed data set of protein regions with
known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for
disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when
evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to
predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438].

Further strength of our approach is the ease of implementation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It is well established that proteins fold to their unique native
conformations as determined by their amino acid sequences
(Anfinsen, 1973). However, there are proteins that are unable
to maintain well-defined structures even under physiological
conditions. These proteins are often called natively unfolded
or intrinsically disordered proteins (IDPs) and assume either
partially folded or completely unfolded conformations.

IDPs are involved in numerous processes in the cell: transcrip-
tional activation, cell-cycle regulation, membrane transport, and
signalling (Wright and Dyson, 1999). Twenty-eight different
functions were found to be associated with disordered regions
(Dunker et al., 2002), which can be grouped into four broad
classes: molecular recognition, molecular assembly and/or dis-
assembly, providing sites for protein post-translational modifica-
tion and entropic chain activities.

The common occurrence of intrinsic disorder in cancer-
associated and signaling proteins (lakoucheva, 2002) suggests
their potential involvement in the pathogenesis of cancer. IDPs
also play key roles in diseases mediated by protein misfolding and
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aggregation (Bates, 2003; Kaplan et al., 2003), in cardiovascular
(Cheng et al., 2006) and autoimmune (Carl et al., 2005) diseases.

The series of papers dedicated to the functional anthology of
intrinsic disorder has been recently published (Xie et al., 2007a, b;
Vucetic et al., 2007).

A database for the deposition of disordered protein informa-
tion was developed (http://www.disprot.org), which contains 469
proteins with 1114 regions experimentally characterized as
disordered (release: 3.5, 12/22/2006). Since the experimental
methods to study protein disorder such as nuclear magnetic
resonance (NMR) and circular dichroism (CD), Raman spectro-
scopy or X-ray crystallography are expensive, there is a crucial
need for novel bioinformatics approaches that allow to learn from
a few experimentally verified examples and to predict fold
property for much larger groups of known and potential proteins.
Computer-based scanning of the protein sequence for potentially
disordered regions can also assist target selection process for
high-throughput protein structure determination by removing
disordered targets (Oldfield et al., 2005).

Various computational approaches have been already devel-
oped to predict protein disorder (see the list of references at
http://www.disprot.org/predictors.php). Nearly half of them are
based on the neural network learning model; some predictors
employ support vector machines. It was shown in several studies
that the primary structure of disordered regions is distinct from
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that of structured regions. Disordered regions usually have low
sequence complexity (Romero et al., 2001) and are enriched in
charged or polar residues and depleted in hydrophobic residues
(Hansen et al., 2006). Several prediction methods are based on the
amino acid composition (AAC) of the protein sequence, e.g. VL3 of
Obradovic et al. (2003) and DISOPRED (Ward et al., 2004). PONDR
(Romero et al., 2001) considers both AAC and physicochemical
property based attributes, including aromaticity, net charge,
flexibility, and hydropathy. DISOPRED applies 21 input parameters
per residue. The features are usually extracted from the partial
amino acid sequence within a sliding window and a binary
classifier is then built to predict the probability of a residue being
in a disordered or ordered region. The per-residue disorder
predictors, such as VL3, GlobPlot (Linding et al, 2003) and
DISOPRED, require a fixed window size to be chosen. Different
widths for the sequence window usually have to be tried.

Various predictors adopt different definitions of disorder. For
example, NORSp (Liu and Rost, 2003) focuses on long regions
having no regular secondary structure, which were not considered
to be disordered by Vucetic et al. (2005). Some predictors are
specifically designed to predict short disordered regions, while
others are tailored for long disordered regions ( > 30 residues). The
VSL2 predictor of Peng et al. (2006) models short and long
disordered regions separately and utilizes a meta predictor to
integrate the specialized predictors into the final predictor model.

Several predictors have been developed for predicting whether
or not given proteins or protein regions/domains are intrinsically
disordered (Han et al., 2005; Shimizu et al., 2007; Weathers et al.,
2004). IUPred (Dostanyi et al., 20054, b) uses the pairwise energy
content estimated from AAC to distinguish between folded and
unfolded proteins/regions. RONN (Yang, 2005) aligns a query
protein sequence to a set of prototype disordered/ordered regions
and uses the alignment scores to classify the query sequence.
FoldIndex of Prilusky et al. (2005) predicts whether a given
protein sequence is intrinsically unfolded by plotting the average
hydrophobicity of the residues in the sequence against the net
charge of the sequence as was proposed by Uversky et al. (2000).
Garbuzynskiy et al. (2004) proposed plotting of the average
hydrophobicity against the number of residues in contact.

In this paper, we introduce a new prediction method, which
exploits the Bayesian classification procedure to predict disor-
dered property for a given protein or protein region from its
primary sequence. Bayesian Markov chain model-based classifica-
tion has already found its application in proteomics for the
prediction of protein subcellular locations (Bulashevska and Eils,
2006). This approach represents each class with a single
probabilistic summary. Since the AAC of disordered regions is
distinct from that of ordered, we propose to use multinomial
models for the description of class-conditional densities. The
intuition behind this approach is that each protein sequence
belonging to a certain class can be considered as a realization of
an independent random process that emits symbols from an
alphabet of 20 amino acids.

Peng et al. (2006) compared the amino acid composition of
short (4-30 residues) and long ( > 30 residues) disordered regions
to the composition of a reference ordered data set Globular-3D.
Both types of disordered regions exhibited similar overall
compositional bias that characterizes intrinsic protein disorder,
i.e. depletion of the typically buried W, C, F, I, Y, V, L and
enrichment of the typically exposed K, E, P, S, Q, R. However, some
significant differences were also found. Short disordered regions
are more depleted in C, I, V and L, while long disordered regions
are more enriched in K, E and P but are less enriched in Q and S. In
addition, long disordered regions are depleted in G and N, while
short disordered regions are enriched in G and D. In order to
incorporate length-dependent properties of disordered regions,

we model short (<30 residues), middle (31-100 residues) and
long (>100 residues) disordered regions separately.

The parameters of the multinomial models corresponding to
the four classes (short, middle, long disordered and ordered) were
estimated from the constructed training data set of disordered
and ordered regions.

In a Jack-knife test, our prediction method achieved the
predictive accuracies of 89.2% and 81.4% for disordered and
ordered regions, respectively.

2. Materials and methods
2.1. Training data set

The sequences of disordered regions for training were
extracted from DisProt (Release 3.5.2006) (Vucetic et al., 2005);
1077 disordered regions were extracted. Length distribution of the
disordered regions and the corresponding number of residues is
shown in Table 1.

The ordered sequences were extracted from PDB-SELECT-25
(2006 version) (Hobohm and Sander, 1994). The PDB-SELECT
database is a subset of the structures in the PDB that does not
contain (highly) homolog sequences. PDB-SELECT-25 shows less
than 25% sequence homology. From the PDB-SELECT-25 sequences
of 709 regions from higher resolution crystal structures (<2A)
with no missing backbone or side chain coordinates and no non-
standard amino acid residues were selected.

2.2. Multinomial models

Multinomial models assume a bag-of-amino acid sequence
representation, which considers the appearance of each amino
acid as an independent event. The order in which amino acids
occur in a given amino acid sequence is ignored; the only
information retained is a vector of counts n = (ny, ..., nyg), where
n; is the number of occurrences of amino acid i in the sequence.

We assume that the probability of a sequence s to come from a
certain class ¢ is given by a multinomial probability function
governed by its vector of parameters 0 = (0.1, ..., 0c0) € [0, 11%°:

6100 =— T 0 (1)
p(s|bc) = i
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where n=73%;n; denotes the length of the sequence. The
parameter 0, denotes the cth class-conditional probability of
amino acid i to occur in a sequence. The parameters of the model
corresponding to class c are estimated from the training regions
belonging to the class c. Thus, the parameter 0,; is calculated as

(2)
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where n.; is the number of occurrences of amino acid i in the
sequences of class c. This way of estimating parameters of the
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Table 1
Number of regions in our training data set for each of the four classes modeled by
the Bayesian multinomial classifier

Class # Regions
Short (<30) 683
Middle (31-100) 247
Long (>100) 147
Total disordered 1077
Ordered 709
Total 1786
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model is called maximum likelihood estimation, because it can be
shown that using the frequencies to calculate the probabilities
maximizes the total probability of training instances given the
model (the likelihood). For a detailed description of multinomial
models we refer the reader to the book by Durbin et al. (1998).

2.3. Bayesian multinomial classifier

Bayesian classification is a widely applied method in the
machine learning and statistical community, which is based on
Bayes’ theorem (Bayes rule). According to Bayes’ rule, the class for
an unlabeled sequence s can be inferred using the posterior
probability:

p©pGio) _  ppsic)
p(s) > pOPpGsio)”

We assume class prior probabilities p(c) to be equally dis-
tributed. We further assume that the sequences of each class are
generated from multinomial models. Thus, given the parameters
{0} of the models for each class, the term p(s|c) denoting the prior
probability of a sequence s to belong to the class ¢ can be
computed using the formula (1) for p(s|f.) from previous
subsection.

Since we model short, middle and long disordered regions
separately, the estimation of the class-conditional densities
involves four subproblems (for short, middle, long disordered
and ordered classes), in which each of the class-conditional
density is estimated based on the data belonging to the
corresponding class only.

Bayesian classifier is a probabilistic classifier, which yields for
each query instance the posterior probability for each class, a
numeric value that represents the degree to which an instance is a
member of a class. To produce a discrete output, the following
decision rule is usually applied: the class should be the one which
maximizes the posterior probability.

To classify an input sequence as disordered or ordered, we sum
the posterior probabilities for short, middle and long disordered
subtypes into a single value describing the posterior probability of a
sequence to be disordered and then use the standard decision rule
to come up with a discrete output, i.e. predict one of the two classes
(disordered/ordered) showing the biggest posterior probability.

(3)

p(cls) =

2.4. Performance evaluation

The prediction performance of our predictor was validated
with Jack-knife test (or leave-one-out cross-validation) (Mardia
et al,, 1979). By Jack-knife test the learning step is performed
with all training instances except the one for which the class is to
be predicted.

The prediction quality was evaluated using the standard
measures of sensitivity (SN) and specificity (SP), where the
sensitivity, or true positive rate, is the percentage of disordered
sequences correctly predicted, and the SP, or true negative rate, is
the percentage of ordered sequences correctly predicted. We
calculate the overall accuracy (ACC) as the average of SN and SP,
which is more suitable than the percentage of all correctly
predicted sequences for data sets with imbalanced class distribu-
tions. We also show receiver operating characteristic (ROC) curve
and report area under the ROC curve (AUC) calculated using the R
package ROCR (Sing et al., 2005).

3. Results and discussion

The confusion matrix of the prediction results of our predictor
is given in Table 2.

Table 2
Confusion matrix of the results of our predictor

Predicted group

Disordered Ordered Sum
Disordered 961 116 1077
Ordered 132 577 709
Sum 1093 693 1786

Bold numbers along the major diagonal represent the numbers of correctly
predicted sequences for each class, the numbers off this diagonal represent the
errors.
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Fig. 1. ROC curve.
Table 3

Prediction accuracies of our predictor (see Performance evaluation)

SN SP ACC AUC

89.2 814 853 0.9

Fig. 1 shows the ROC curve constructed using the probabilistic
outputs of our Bayesian multinomial classifier. The corresponding
AUC value achieved was 0.9.

Table 3 summarizes the prediction accuracies achieved with
our predictor.

It is remarkable that for disordered regions our method
reaches the SN of 89.2%. This excellent performance of our
predictor concerning the sensitivity for disorder might be
explained with the potential of the multinomial modelling of
length-dependent subtypes of disordered regions. The high SN
was achieved while obtaining the high SP of 81.4%.

Compared with the semi-supervised spectral graph partition-
ing method of Shimizu et al. (2007), which has achieved the SN of
72.3% and the SP of 97.7%, our method shows the more balanced
SN and SP, though the ACC of both methods is almost the same
(around 85%).

Table 4 demonstrates the confusion matrix and the prediction
accuracies for each of the three subtypes of disordered regions.
The results reported in Table 4 suggest that short disordered
regions can be even more accurately discriminated with our
predictor than middle or long ones.
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Table 4
Prediction results for three subtypes of disordered regions

Predicted group

Disordered Ordered Sum Accuracy
Short 627 56 683 91.8
Middle 215 32 247 87.0
Long 119 28 147 81.0

Bold numbers indicate the short, middle and long disordered regions correctly
predicted as disordered.

Table 5
Comparison of the prediction accuracies of our predictor and four other algorithms
obtained for the data set of Prilusky et al. (2005)

SN SP ACC

FoldIndex 76.9 88.1 82.5
30/39 133/151

DISOPRED 56.4 98.7 77.6
22/39 149/151

PONDR 71.8 92.7 823
28/39 140/151

GlobPlot 231 98.0 60.6
9/39 148/151

Our predictor 89.7 89.4 89.6
35/39 135/151

To independently evaluate our predictor, we tested it on the
data set of 39 intrinsically unfolded and 151 folded proteins (or
domains) compiled by Prilusky et al. (2005). In Prilusky et al.
(2005) the results of Foldindex predictor on this data set were
reported and compared with the results of three other predictors
(DISOPRED, PONDR and GlobPlot). In order to compare the
methods a fold score for the entire sequence was obtained from
the scores of the individual residues by calculating the arithmetic
(for PONDR and GlobPlot) and geometric (for DISOPRED) means.
FoldIndex achieved the SN of 76.9%, which was the highest among
all four predictors. DISOPRED, PONDR and GlobPlot were very
good in correct identification of ordered regions, but their
sensitivity for disorder was less impressive. Table 5 compares
the prediction accuracies achieved with our predictor with the
results reported in Prilusky et al. (2005). For disordered sequences
our method reaches the remarkable SN of 89.7%. Our method also
shows the well balanced SN and SP. None of the four predictors
reaches our ACC of 89.6%.

4. Conclusion

We introduced a new approach for the prediction of fold
property for a given protein or protein region based on its primary
sequence information alone.

The employment of multinomial models for the description of
class-conditional distributions allows one to make better use of
sequence AAC, which is an important feature previously adopted
to discriminate between disordered and ordered sequences. The
Bayesian multinomial classifier contains multiple probabilistic
summaries for the disordered regions of different lengths, which
provide the opportunity of better representing length-dependent
compositional differences. Our predictor is applicable to the
regions of any length.

Our predictor achieved high prediction accuracies and outper-
forms several previously reported predictors.

The method can be effectively implemented and is computa-
tionally efficient.

We hope that our prediction method will provide support for
relating disorder to protein function and help to translate the new
discoveries into new druggable targets.
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