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Let us start, as promised, with the definition of:

3.2 Conditional probability

Although everybody knows the formula of conditional probability, it is useful
to derive it here. The notation is P(E|H), to be read “probability of E given
H”, where H stands for hypothesis. This means: the probability that £ will

occur if one already knows that H has occurred?.

occur”. For example P(E N H) can be very small, but nevertheless P(E|H) very high:
think of the limit case

P(H)=PHNH)<PH|H) =1 :

“H given H” is a certain event no matter how small P(H) is, even if P(H) = 0 (in the
sense of Section 6.2).

From: G. D’Agostini, ArXiv preprint database: https://arxiv.org/pdf/hep-ph/9512295 .pdf



MOTIVATION OF LECTURE N. 7
PROBABILITIES II

We shall use chapter 3 by Rosner’s textbook to get down-to-Earth
and see, in concrete contexts and examples, how are used
the concepts we introduced and discussed in the last lecture:

* Uncertainty/decisions

* Events, experiment, probability

* Definitions of probabilities: classic, frequentist, subjective
* Axioms of probabilities

* Events, sets, propositions (logic)

* Venn Diagrams



DOWN_TO_EARTH MOTIVATION
Comparing Case/Controls, a general scheme

m Cancer One theory concerning the etiology of breast cancer states that women in
a given age group who give birth to their first child relatively late in life (after age 30)

are at greater risk for eventually developing breast cancer over some time period t
than are women who give birth to their first child early in life (before age 20). Be-
cause women in upper social classes tend to have children later, this theory has been
used to explain why these women have a higher risk of developing breast cancer
than women in lower social classes. To test this hypothesis, we might identify 2000
postmenopausal women from a particular census tract who are currently ages 45-54
and have never had breast cancer, of whom 1000 had their first child before the age
of 20 (call this group A) and 1000 after the age of 30 (group B). These 2000 women
might be followed for S years to assess whether they developed breast cancer during
this period. Suppose there are four new cases of breast cancer in group A and five
new cases in group B.

~ -~

Is this evidence enough to confirm a difference in risk between the two groups?
Most people would feel uneasy about concluding that on the basis of such a limited
amount of data.

From:Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015), Chapter 3.



MOTIVATION

The problem is that we need a conceptual framework to make these decisions
but have not explicitly stated what the framework is. This framework is provided by
the underlying concept of probability. In this chapter, probability is defined and
some rules for working with probabilities are introduced. Understanding probability
is essential in calculating and interpreting p-values in the statistical tests of subse-
quent chapters. It also permits the discussion of sensitivity, specificity, and predic-
tive values of screening tests in Section 3.7.

From:Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015), Chapter 3.



DEFINITION 3.1 The sample space is the set of all possible outcomes. In referring to probabilities of
events, an event is any set of outcomes of interest. The probability of an event is
the relative frequency of this set of outcomes over an indefinitely large (or infinite)
number of trials.

Aha! Rosner follows a FREQUENTIST scheme.
[llustrated by several examples: 3.2,3.3 and3.4

In real life, experiments cannot be performed an infinite number of times.

Instead, probabilities of events are estimated from the empirical probabilities

obtained from large samples (as in Examples 3.2-3.4). In other instances, theoretical-
probability models are constructed from which probabilities of many different kinds

of events can be computed. An important issue in statistical inference is to compare
empirical probabilities with theoretical probabilities—that is, to assess the goodness-
of-fit of probability models. This topic is covered in Section 10.7.



EVENTS AS SETS I

Think about playing darts!
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Figure 2: Venn diagrams and set properties.




EVENTS AS SETS 11

complete class

finite partition

Events sets

symbol
event set E
certain event sample space Q
impossible event empty set 0
implication inclusion E, CE,

(subset)

opposite event complementary set E (EUE=Q)
(complementary)
logical product (“AND”) | intersection E\ N E;
logical sum (“OR”) union E\ U E;,
incompatible events disjoint sets EiNEy,=10

EiNE; =0 (i #J)
U,'Ei=Q

Table 1: Events versus sets.




Since everybody is familiar with the axioms and with the analogy events <

sets (see Tab. 1 and Fig. 2) let us remind ourselves of the rules of probability
in this form:

Axiom 1 0< P(E) <1;

Axiom 2 P(Q2) =1 (a certain event has probability 1);

Axiom 3 P(El U Ez) — P(El) + P(Ez), if El N E2 e 0

From the basic rules the following properties can be derived:

1:
2:
3:
4:

P(E) =1~ P(E);

P(0) =0;

if A C B then P(A) < P(B);

P(AUB) = P(A)+ P(B) - P(ANB).

We also anticipate here a fifth property which will be discussed in section 3.1:

5:

P(AN B) = P(A|B) - P(B) = P(A) - P(B|A).



EQUATION 3.1 (1) The probability of an event E, denoted by Pr(E), always satisfies O < Pr(E) < 1.

(2) If outcomes A and B are two events that cannot both happen at the same
time, then Pr(A or B occurs) = Pr(A) + Pr(B).

DEFINITION 3.2 Two events A and B are mutually exclusive if they cannot both happen at the same
time.

DEFINITION 3.3 The symbol { } is used as shorthand for the phrase “the event.”

DEFINITION 3.4 A u Bis the event that either A or B occurs, or they both occur.

DEFINITION 3.5 A n B is the event that both A and B occur simultaneously. A N B is depicted dia-
grammatically in Figure 3.2.

DEFINITION 3.6 A is the event that A does not occur. It is called the complement of A. Notice that
Pr(A)=1-Pr(A), because A occurs only when A does not occur. Event A is dia-
grammed in Figure 3.3.



Diagrammatic representation of A U B: (a) A, B mutually exclusive;
(b) A, B not mutually exclusive

A U B shaded

(a)

FIGURE 3.3 Diagrammatic representation of A

Various Venn diagrams AU B shaded
()

Diagrammatic representation of A

A N B shaded




Very general equations for probabilities

Multiplication Law of Probability
IfA, ..., A, are mutually independent events,
then Pr(A,nA, n...n A, )=Pr(A )xPr(A,)x..xPr(A,)

Addition Law of Probability
If A and B are any events,
then Pr(A u B) = Pr(A) + Pr(B) — Pr(A N B)

Diagrammatic representation of the addition law of probability

BeLl

s oo



Addition Law of Probability for Independent Events
If two events A and B are independent, then

Pr(AUB)=Pr(A)+Pr(B)x[1-Pr(A)]

Diagrammatic representation of the addition law
of probability for independent events

=4

[ ] ={Boccurs and A does not occur} = B N A



CONDITIONAL PROBABILITY HASTO DO WITH TP, FP, TN, EN

Suppose we want to compute the probability of several events occurring simultane-
ously. If the events are independent, then we can use the multiplication law of prob-
ability to do so. If some of the events are dependent, then a quantitative measure
of dependence is needed to extend the multiplication law to the case of dependent
events. Consider the following example:

Cancer Physicians recommend that all women over age S0 be screened for breast
cancer. The definitive test for identifying breast tumors is a breast biopsy. However,
this procedure is too expensive and invasive to recommend for all women over the
age of 50. Instead, women in this age group are encouraged to have a mammogram
every 1 to 2 years. Women with positive mammograms are then tested further with
a biopsy. Ideally, the probability of breast cancer among women who are mammo-
gram positive would be 1 and the probability of breast cancer among women who
. are mammogram negative would be 0. The two events {mammogram positive} and
TN=true negatives {breast cancer} would then be completely dependent; the results of the screening test
FN=false negatives would automatically determine the disease state. The opposite extreme is achieved
when the events {mammogram positive} and {breast cancer} are completely inde-
pendent. In this case, the probability of breast cancer would be the same regardless
of whether the mammogram is positive or negative, and the mammogram would
not be useful in screening for breast cancer and should not be used.

TP=true positives
FP=false positives

These concepts can be quantified in the following way. Let A = {mammogram‘},
B = {breast cancer}, and suppose we are interested in the probability of breast cancer
(B) given that the mammogram is positive (4). This probability can be written

Pr(A N B)/Pr(A).



DEFINITION 3.9

EQUATION 3.5

DEFINITION 3.10

The quantity Pr(A n B)/Pr(A) is defined as the conditional probability of B given A,
which is written Pr(B|A).

However, from Section 3.4 we know that, by definition of the multiplication law
of probability, if two events are independent, then Pr(A n B) = Pr(A) x Pr(B). If both
sides are divided by Pr(A), then Pr(B) = Pr(A n B)/Pr(A) = Pr(B| A). Similarly, we can
show that if A and B are independent events, then Pr(B|A) = Pr(B|A) = Pr(B). This

relationship leads to the following alternative interpretation of independence in
terms of conditional probabilities.

(1) If A and B are independent events, then Pr(BIA) = Pr(B) = Pr(BIA).

(2) If two events A, B are dependent, then Pr(BIA)# Pr(B)# Pr(BIA) and
Pr(A ~ B) # Pr(A) X Pr(B).

The relative risk (RR) of B given A is
Pr(BIA)/Pr(BIA)

Notice that if two events A, B are independent, then the RR is 1. If two events A, B
are dependent, then the RR is different from 1. Heuristically, the more the depen-
dence between events increases, the further the RR will be from 1.



REVIEW QUESTIONS 3A

What is the frequency definition of probability?

What is the difference between independent and dependent events?
What are mutually exclusive events?

What is the addition law of probability?

What is conditional probability? How does it differ from unconditional probability?
What is relative risk? How do you interpret it?

O 0 ON =



Total-Probability Rule

The conditional (Pr(BlA), Pr(B|A)) and unconditional (Pr(B)) probabilities men-
tioned previously are related in the following way:

EQUATION 3.6 For any events A and B,
Pr(B)=Pr(B| A)x Pr(A)+Pr(B| A)x Pr(A)

This formula tells us that the unconditional probability of B is the sum of the
conditional probability of B given A times the unconditional probability of A plus
the conditional probability of B given A not occurring times the unconditional prob-
ability of A not occurring.

To derive this, we note that if the event B occurs, it must occur either with A or
without A. Therefore,

Pr(B)=Pr(Bn A)+Pr(Bn A)
From the definition of conditional probability, we see that
Pr(BA)=Pr(A)x Pr(BlA)
and
Pr(B A)=Pr(A)x Pr(BlA)
By substitution, it follows that
Pr(B) = Pr(BlA)Pr(A)+ Pr(B|A) Pr(A)

Stated another way, the unconditional probability of B is a weighted average of
the probabilities of B occurring in two mutually exclusive subsets (4, A), where the
weights are the probabilities of the subsets (Pr 14), Pr(A), respectively.



In Equation 3.6 the probability of event B is expressed in terms of two mutually
exclusive events A and A. In many instances the probability of an event B can be

determined in more than two mutually exclusive subsets, denoted by A , A, ..., A,.

DEFINITION 3.11 AsetofeventsA,,..., A, is exhaustive if at least one of the events must occur.

Assume thatevents A, . .., A, are mutually exclusive and exhaustive; that is, at
least one of the events A, .. ., A, must occur and no two events can occur simultane-
ously. Thus, exactly one of the events A, . . ., A, must occur.

EQUATION 3.7 Total-Probability Rule

LetA,, ..., A be mutually exclusive and exhaustive events. The unconditional
probability of B (Pr(B)) can then be written as a weighted average of the condi-
tional probabilities of B given A,.(Pr(B|A,-)) with weights = Pr(A) as follows:

Pr(B)=gPr(B|A,-)xPr(A,-)

To show this, we note that if B occurs, then it must occur together with one and only
one of the events, A4 , . . ., A, Therefore,

Pr(B)=gPr(BmA,-)

Also, from the definition of conditional probability,

Pr(BA;)=Pr(A)xPr(Bl4)

By substitution, we obtain Equation 3.7.
An application of the total-probability rule is given in the following example:



OUTLINE.

* Events, trials, uncertainty, probabilities

* There are only conditional probabilities: P(HII)

« Relevance of Bayes’ theorem: (subjective/objective)

* Shift from frequentist to bayesian methods

e Jorge Lopez Puga, Martin Krzywinski & Naomi Altman, Bayes’ Theorem

e Nature Methods , 12,277 (2015).

e FEikosograms (RW Oldford)
https://cran.r-project.org/web/packages/eikosograms/vignettes/Introduction.html

* Probability distributions: discrete/continuous
* Entropy of a probability distribution

* Study reference: Bernard Rossner, Fundamentals of Biostatistics par 3.7



3 Basic definitions

Let us consider just finite sets of events, this is, conceptually, not a big
limitation. All the events we shall consider can be , formally, as subsets
of a reference container set {2, which contains every possible outcome of an
experiment; e.g.

(2 = {head, tail}

in the case of the toss of a coin. x € (2 means “z is an element of (2”7, or
“r is an event, a subset belonging to (2”. We shall associate to each event
x € Q) a probability p(x), that is a positive measure normalized to 1. In the
discrete case, whre Q2 is made by IV events the set of the p(z) is a set of N
non negative numbers p(z) > 0 (each one associated to one of the x € Q)
and such that tali che ) _,p(z) = 1. In the simple case of a tossed coin
we just have two possible events: z = head e z = tail and the probability
distribution is p(head) = 1/2, p(tail) = 1/2 (for a fair coin).



Here are some elementary properties that can be derived using Venn
diagrams of the type shown in figure 2.

p(4) >0 , p@) =0 , p(Q)=1

p(AU B) = p(A) +p(B) — p(AN B)
ANB=0 = p(AUB) =p(A) + p(B)

Given a set of N events in Q: {A;, Ay, ..., Ax} they are mutually ezclu-
sive if the occurrence of one of them precludes the occurence of the rest of
the others. In particular, if the N mutually exclusive events are a partition
of Q then P(A;) = 1 — P(UA;), withj # ¢). N events in Qare independent
if the occurrence of each one of them does not interfere with the occurrence
of the others; in this case P(M;A;) = [[; P(A:). Two events that are not
independent are said to be correlated and to express the degree of this cor-
relation one introduces conditional probabilities. Correlated events have,
quite intuitively, a non empty intersection. Let us then denote with p(A|B)
the probability of the occurrence of A, provided that B occurred, that is
the conditional probability of A given B. We can consistently express the
intersection of two correlated events A and B as:

p(AN B) = p(B)p(A|B)

that is, the probability of the co-occurrence of the correlated events A and B
is given by the probability of A times the conditional probability of A given
B. One has also:

p(AN B) = p(A)p(B|4)

, it is worth noting also that:

_p(AnB) p(B)p(A|B)
PBIA =" =7 )

and then, in general one has:
p(B|A) # p(A|B);

they are equal just in the case when p(A) = p(B). If the occurrence of A is
independent from the occurrence of B, then one has p(A|B) = p(A) and the
co-occurrenece of uncorrelated events A and B is just:

p(AN B) = p(A)p(B)

-



Let us make this point clear: if A and B are correlated events then
p(AN B) = p(B)p(A|B) whereas p(AN B) = p(B)p(A) when A and B
are independent .

Now let us go back to the reference ensemble €2 that can be used to express
the probability of a generic event, using a base of events, that is a partition.
A partition or base of 2 is a collection of M mutually exclusive events H;
(¢=1,...,M) such as H; N H; = 0 when i # j) and such as their union
reconstructs the whole Q (U,_; H; = Q). Using a partition the probability
of a generic event A can be expressed as the sum of the probabilities of its
intersections with the base events (figura 3):

p(A) =) p(AN H)

i=1

Warning: the degree of correlation of two events g(A,B)=P(AIB)/P(A)
1S a symmetric notion, whereas

causal relations require asymmetry
Correlation is required for Causation but is not sufficient for




5 Bayes’ Theorem

Let us consider the methodological setting. Suppose you have a fact, an
event to consider, £ that you want to explain, to interpret, not making use
of senses nor by concotting opoinions, but in a possibly transparent way,
based on a quantitative analysis. Consider the "total” reference event of
the calculus of probability (2, we have introduced above. Then introduce a
proper partition made by parts {H;} of 2, to be used as a causative base to
interpret E. In other words we want to determine the relative correlation of
each one of the mutually exclusive H; events in the partition with the event
E. We shall express these correlation through conditional probabilities: of
the form: p(H;|E). Let us start again from the general formula defining
conditional probabilities, using events E and H;: p(H;|E)p(E) = p(ENH;) =
p(E|H;)p(H;) and then, isolating p(H;|E). we get:

p(H;)p(E|H;)
p(E)

which is equal to: ’%ﬁ%}, having used the projection of p(E) over the

base {H;}, that is: p(E) =} . p(E N H;).

p(Hi)p(E|H;)
> p(H;)p(E|H;)

p(Hi|E) =

Introducing the normalization aka partition function: Z =}, p(H;)p(E|H;),
we eventually get Bayes’ formula in compact form:

p(H|E) = -, p(H)p(E|H)



Introducing the normalization aka partition function: Z =} p(H;)p(E|H;),
we eventually get Bayes’ formula in compact form:

p(H|E) = -, p(H)p(E|H)



Eikosograms (RW Oldford )

Marginal, conditional and joint probabilities

Marginal (individual) Conditional Joint
Independent events
005 10 P(C) P(H) P(HIC) P(CIH) P(C,H)
-
Toss 0.5
H i i
—0
CC C 0.5 0.5 P(C) x P(H) = 0.25
on Dependent events
005 10 P(Co) P(H) P(HICp)  P(ColH) P(Co.H)
T 0.75 -
Toss | 0.5 % - E %
" . P(CblH) x P(H)  P(HICp) x P(C)
Cp C 0.5 0.625 0.6 0.375
Coin

Figure 1 | Marginal, joint and conditional probabilities for independent

and dependent events. Probabilities are shown by plots3, where columns
correspond to coins and stacked bars within a column to coin toss outcomes,
and are given by the ratio of the blue area to the area of the red outline. The
choice of one of two fair coins (C, C') and outcome of a toss are independent
events. For independent events, marginal and conditional probabilities

are the same and joint probabilities are calculated using the product of
probabilities. If one of the coins, C,, is biased (yields heads (H) 75% of the
time), the events are dependent, and joint probability is calculated using
conditional probabilities. From: N. Altman’s Bayes” Theorem



a Bayes theorem

P(CplH) = PHIC,) x P(Cy) PHICp) = P(CplH) x
Posterior Prior Posterior Prlor
0.6 0.75 0.5 0.625 0.75 0.6 0.625
b Updating priors and iterative estimation of probabilities
P(Cy) P(Cp|H) P(Cp|H)
Prior Posterior Prlor Posterior
: Update
H prior H
e — —

0.5

Figure 2 | Graphical interpretation of Bayes’ theorem and its application
to iterative estimation of probabilities. (a) Relationship between
conditional probabilities given by Bayes’ theorem relating the probability
of a hypothesis that the coin is biased, P(C,), to its probability once the
data have been observed, P(C,|H). (b) The probability of the identity of
the chosen coin can be inferred from the toss outcome. Observing a head
increases the chances that the coin is biased from P(C,) = 0.5 to 0.6, and
further to 0.69 if a second head is observed.




a Marker b Disease prediction C Disease prediction
probabilities with one observation with two observations

1 100% 100%

909
P(Marker) P(Disease) 75; P(Disease) 75?
- 509 509
41

0
Marker AB AB AB Disease XYZ XYZ Marker
Disease X Y Z Marker A Di
isease
P(State) 60% 30% 10% P(Marker) 41% 27% Prlor o Marker present oY o N

Figure 3 | Disease predictions based on presence of markers.

(a) Independent conditional probabilities of observing each marker (A, B)
given a disease (X, Y, Z) (e.g., P(A|Y) = 0.9). (b) Posterior probability of
each disease given a single observation that confirms the presence of one
of the markers (e.g., P(Y|A) = 0.66). (c) Evolution of disease probability
predictions with multiple assays. For a given disease, each path traces (left
to right) the value of the posterior that incorporates all the assay results up
to that point, beginning at the prior probability for the disease (blue dot).
The assay result is encoded by an empty (marker absent) or a solid (marker
present) dot. The red path corresponds to presence of A and B. The highest
possible posterior is shown in bold.




The relevance of Bayes theorem: see DILL &
BROMBERG: EXAMPLE1.11 ...BIOINFORMATIC CONTEXT

S OIIU f1 y JUM W e e

:, EXAMPLE 1.11 Applying Bayes’ rule: Predicting protein properties. Bayes’
rule, a combination of Equations (1.11) and (1.15), can help you compute hard-
to-get probabilities from ones that are easier to get. Here’s a toy example. Let’s
figure out a protein’s structure from its amino acid sequence. From modern
genomics, it is easy to learn protein sequences. It’s harder to learn protein
structures. Suppose you discover a new type of protein structure, call it a heli-
coil h. It's rare; you've searched 5000 proteins and found only 20 helicoils, so
p(h) =0.004. If you could discover some special amino acid sequence feature,
call it sf, that predicts the h structure, you could search other genomes to find
other helicoil proteins in nature. It's easier to turn this around. Rather than
looking through 5000 sequences for patterns, you want to look at the 20 heli-
coil proteins for patterns. How do you compute p (sf | h)? You take the 20 given
helicoils and find the fraction of them that have your sequence feature. If your
sequence feature (say alternating glycine and lysine amino acids) appears in 19
out of the 20 helicoils, you have p(sf | h) = 0.95. You also need p(sf|h), the
fraction of non-helicoil proteins (let’s call those h) that have your sequence fea-
ture. Suppose you find p (sf | ) = 0.001. Combining Equations (1.1 1) and (1.15)
gives Bayes’ rule for the probability you want:

_pGsflph) _ p(sflh)p(h)
phish == ) p(sf|h)p(h) +p(stlh)p(h)
(0.95)(0.004) = .0.70. (x:1.0)

~ 10.95)(0.004) + (0.001) (0.996)

In short, if a protein has the sf sequence, it will have the h structure about 80%
of the time.



Realistic example of bayesian methodology

Journal of Theoretical Biology 254 (2008) 799- 803
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ABSTRACT

Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under
physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular
eukaryotes, and is responsible for important protein functions including regulation and signaling. Many
disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this
paper, a new predictor model based on the Bayesian classification methodology is introduced to predict
for a given protein or protein region if it is intrinsically disordered or ordered using only its primary
sequence. The method allows to incorporate length-dependent amino acid compositional differences of
disordered regions by including separate statistical representations for short, middle and long
disordered regions. The predictor was trained on the constructed data set of protein regions with
known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for
disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when
evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to
predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438].
Further strength of our approach is the ease of implementation.

© 2008 Elsevier Ltd. All rights reserved.




Indicators to evaluate methods

TP TP
TP+ FN N,

Sensitivity (or recall) : S, (1)
is the number of correctly identified disordered proteins normalized to the total
number of disordered proteins in the sample

TN TN

TN +FP N, )

Specificity : S, =

is the ratio between the number correctly identified ordered proteins and the total
number of ordered proteins in the sample;

FP
Rate of false positives : f, = TN < FP 1-5, (3)

is the ratio between the number of ordered proteins predicted as disordered and the
total number of ordered proteins in the sample;

S, +5,
2

Accuracy : ACC = (4)
that is the average between sensitivity and specificity. It measures the overall
performance of the predictor. Then,

TP TP
TP+ FP  n,

(5)

Precision (or selectivity) : Pr =
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