Long non coding RNAs (IncRNAs) in motorneuron (MN) development and disease

julie.martone@uniromal.it

Stanza 30

- LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease.
- Remarkably large number of annotated IncRNAs (approximately 40%) is expressed specifically in the brain (Derrien et al., 2012)
- Ubiquitously expressed IncRNAs are generally expressed at high levels, while cell type- or tissue-specific IncRNAs, such as those in MNs, are often expressed at lower levels (Jiang, Li,, et al., 2016)
- IncRNAs have been linked to processes such as neuron development, neurite growth, synaptic transmission, memory consolidation and ageing (Mehler & Mattick, 2007; Mercer et al., 2008; Pereira Fernandes et al., 2018; Shi et al., 2017)

Motorneurons (MNs)

MNs are a group of neurons that have their cell bodies:

- in the cortex (upper MNs)
- in the brainstem and spinal cord (lower MNs) and project axons into the brainstem, spinal cord or towards peripheral muscles. These projections control essential functions such as movement, breathing and swallowing.

Brain

Cortex Corpus callosum Septum pellucidum Fornix Optic chiasma

Hypophysis

Brain stem

3rd ventricle Thalamus Hypothalamus

> Cerebellum -4th ventricle -

Spinal cord

Not surprising given their important functions, selective degeneration of MNs is a hallmark of motor neuron diseases (MNDs) such as:

amyotrophic lateral sclerosis (ALS) spinal muscular atrophy (SMA)

MN and ALS

Motor neuron development

Progenitor

Mature MN

A role for IncRNAs in the specification of neuron subtypes has been proposed.

IncRNAs and motor neuron development

Name	ncRNA	Regulation	Observation	Mechanism	References
Meg3	IncRNA	Up-regulated; spatial regulation	Regulated throughout embryonic stem cells-motor neuron (ESC-MN) differentiation; enriched in the nucleus	Epigenetic regulation of Hoxa4:Hoxc5 expression	Yen et al., (2018)
CAT7	IncRNA	Up-regulated	Regulated during early stages of human ESC-MN differentiation	Regulation of polycomb repressive complex 1 (PRC1) associated genes	Ray et al., (2016)
Hoxb5os	IncRNA	Up-regulated	Regulated throughout ESC-MN differentiation	Tbd	Rizvi et al., (2017)
Gm12688/Gm14204	IncRNA	Cell type-specific expression	Uniquely expressed in V1/V1 and V2b GABAergic interneurons	Tbd	Rizvi et al., (2017)
LncMN-1,-2,-3 and Lhx1os	IncRNA	Cell type-specific expression; up-regulated	Specifically enriched in MNs; regulated during differentiation of mouse ESC (mESC)/ human-induced pluripotent stem cells (hiPSC)-derived MNs	Tbd	Biscarini et al., (2018)
Lncrps25	IncRNA	Down-regulated	Knockdown reduces swimming activity because of defects in primary MNs	Via olig2 (Tbd)	Gao et al., (2020)
Malat1, Meg3, Rmst, Xist and Miat	IncRNA	Spatial distribution	Specifically enriched in somatodendritic/axonal fractions	Tbd	Briese et al., (2016)
c-1, c-2, c-13, c-16, c-48, c-80, c-82, c-84, c-88	circRNA	Up-regulated	Regulated during mESC/hiPSC-derived MN differentiation	Tbd	Errichelli et al., (2017)
Human circSMN	circRNA	Multiple isoforms produced	Primate specificity of SMN-derived circRNAs	Tbd	Ottesen et al., (2019)

TABLE 2 Overview of the expression and proposed function of IncRNAs in motor neuron development

Abbreviations: hiPSC, human-induced pluripotent stem cells; Meg3, maternally expressed gene 3; mESC, mouse embroynic stem cells; Tbd, to be determined.

LncRNAs have been implicated in a wide range of functions in developing MNs

Adapted from Vangoor et al. 2020; Service medical art

IncRNAs have been linked to MN disease

Name	ncRNA	Disease	Regulation	Function	References
NEAT1	IncRNA	ALS	Up-regulated at early stage	Regulates paraspeckle formation, increased NEAT1 expression leads to neurotoxicity	Clemson et al., (2009); Nishimoto et al., (2013) and Suzuki et al., (2019)
C9ORF72-AS	antisense RNA	ALS	Up-regulated	Forms RNA foci that recruit RBPs, DPR protein formation via repeat-associated non-ATG-initiated (RAN) translation leading to neurotoxicity	Cheng et al., (2019); Mizielinska et al., (2014); Mori, et al. (2013); Sareen et al., (2013); Swinnen et al., (2018) and Wen et al., (2014)
ATXN2-AS	antisense RNA	ALS	Up-regulated	Repeat expansion RNA induces neurotoxicity	Li, Sun, et al. (2016)
SMN-AS	antisense RNA	SMA	Up-regulated	Recruits polycomb repressive complex 2 (PRC2) complex to the <i>SMN</i> gene to suppress SMN expression	d'Ydewalle et al., (2017) and Woo et al., (2017)
ZEB1-AS, ZBTB11-AS	antisense RNA	ALS	Up-regulated in blood samples (peripheral blood mononuclear cells [PBMCs])	Tbd	Gagliardi, et al. (2018)
UBXN7-AS, ATG10-AS, ADORA2A-AS	antisense RNA	ALS	Up-regulated in blood samples (PBMCs)	Tbd	Gagliardi, et al. (2018)
hsa_circ_0001173, hsa_circ_0043138, hsa_circ_0088036	circRNA	ALS	Up-regulated in blood samples (PBMCs)	Biomarker potential	Dolinar et al., (2019)

TABLE 4 Overview of the expression and proposed functions of IncRNAs in motor neuron disease

Abbreviations: ATXN2, Ataxin-2; NEAT1, nuclear-enriched abundant transcript 1; SMN, survival motor neuron; Tbd, to be determined.

IncRNAs have been linked to MN disease: three examples

Motor neuron disease

Given the prominent role for defects in RNA biology in ALS, it is not surprising that IncRNAs also contribute to the development of ALS and other MNDs.

Adapted from Vangoor et al. 2020; Service medical art

Nuclear bodies (NBs)

NBs are non-membrane bound structures in the nucleoplasm that fulfill the following requirements:

they are microscopically visible (at least during some periods of the cell cycle);
 they concentrate specific nuclear factors, namely proteins and RNAs
 they constantly exchange their components with the surrounding nucleoplasm.

Different functions of nuclear bodies

Simply forcing a local high concentration of distinct scaffolding proteins is sufficient to seed particular NBs

Architectural RNAs that seed NBs

Evolutionary conservation of motor neuron IncRNAs

Name	ncRNA	Reported species	References
Meg3, Rian and Mirg	IncRNA	All mammals	Ogata and Kagami, (2016) and Yen et al., (2018)
CAT7	IncRNA	All mammals	Ray et al., (2016)
Hoxb5os	IncRNA	Mouse and human	Papaioannou et al., (2019)
Gm12688/ Gm14204	IncRNA	Mouse, human (NA)	Rizvi et al., (2017)
LncMN–1,–2,–3 and Lhx1os	IncRNA	Mouse and human	Biscarini et al., (2018)
Lncrps25	IncRNA	<i>Danio rerio</i> and human	Gao et al., (2020) and Ulitsky et al., (2011)
Malat1	IncRNA	All mammals	Ulitsky et al., (2011)
Rmst	IncRNA	Birds and mammals	Chodroff et al., (2010)
Xist	IncRNA	All mammals	Johnsson et al., (2014)
Miat (Gomafu)	IncRNA	All mammals	Chodroff et al., (2010); Sone et al., (2007)
FUS-linked circRNAs	circRNA	Mouse and human	Errichelli et al., (2017)
SMN circRNAs	circRNA	Mouse and human	Ottesen et al., (2019)
NEAT1	IncRNA	Mouse and human	Clemson et al., (2009)
BDNFOS	IncRNA	Primates	Lipovich et al., (2012)
TFEBα	IncRNA	Human	Davis et al., (2003)
Myolinc	IncRNA	Mouse	Militello et al., (2018)
SATIII	IncRNA	Drosophila melanogaster and human	Chung et al., (2018)

Neatl

NEATI is one of the most abundant IncRNAs in the mammalian nucleus

Unlike other IncRNAs, which commonly lack sequence conservation, NEATI is relatively conserved across mammalian species, supporting its important biological function

NEATI overexpression, together with an increase in ParaSpeckles (PSs) density, has been found in ALS motor neurons, suggesting a direct contribution of NEATI in ALS disease by modulating the functions of ALS-associated RNAbinding proteins

Human structures of NEATI_I and NEATI_2 long non-coding RNAs.

Two isoforms of NEATI are transcribed from the same locus. NEATI_I utilizes a canonical polyadenylation signal (PAS) for 3' end processing. In the case of 3' end processing of NEATI_2, RNase P cleaves the 3' end of NEATI_2 by recognizing a tRNA-like structure. NEATI_2 possesses a genomically encoded oligo(A) sequence and a unique triple helical structure at the 3' end. Cleaved tRNA-like small RNA is unstable and rapidly degraded.

Neatl 2

NEATI_2 but not NEATI_I is an essential component of paraspeckles

NEAT1_2 provides a scaffold for >60 protein components and likely multiple RNA components including NEAT1_1

It is believed that NEATI_2/paraspeckles fulfil a number of functions independent of the presence of NEATI_I. Among them: i) regulation of translation via nuclear retention; ii) regulation of transcription via sequestration of transcription factors, such as SFPQ iii) modulation of pri-miRNA processing.

PSs cellular functions

Figure 3. Graphical summary of PSs cellular functions. Upper, right panel: PSs as a gene expression regulator through the A to I editing process and the consequent nuclear retention of different mRNAs. Lower, right: PSs as molecular sponges for RNA binding proteins and PSPs. Upper, left: PSs as regulator of miRNA biogenesis by regulating the assembling of the microprocessor complex involved in processing of miRNA. Lower, left: PSs as possible structural scaffold for cellular DNA damage response systems.

Since NEATI_I is expressed in multiple cell types devoid of paraspeckles *in vivo*, including neurons, it is clear that it also has a variety of NEATI_2/paraspeckle-independent functions.

Paraspeckles are stress-responsive nuclear bodies, in that NEATI_2 upregulation and the increase in the size/number of paraspeckles accompany a number of physiological and pathological stressful conditions, such as differentiation and inhibited proteasome function

NEATI fine-tunes the function of multiple neurodegeneration-associated pathways, including critical ones, such as inflammation and neuronal apoptosis.

RNA-FISH using DIG-labeled NEAT1_2 probe indicates that NEAT1_2 IncRNA often appears in the nuclei of human motor neurons in sporadic ALS cases. Right panel shows the profile image of fluorescence intensity of NEAT1_2 IncRNA and TDP-43 along the arrow in the nucleus. Most NEAT1_2 signals overlapped with parts of aggregated TDP-43 in the nucleus (arrowheads). Dotted lines represent the outline of the nucleus. B. No NEAT1_2 expression is detected in most motor neurons in control cases. Dotted lines represent the outline of the nucleus.

Stage 0	TDP-43 is normally distributed within the well-marginated nucleus.
Stage I	The nucleus degradated, and TDP-43 was also seen in the cytoplasm.
Stage II	The nuclear TDP-43 was so cleared that it was not recognized.The plasma membrane was still retained.
Stage III	The plasma membrane disappeared.

Table 2 Pathological staging of motor neurons in ALS according to TDP-43 distribution

Table 1

NEAT1 expression in the CNS of patients and rodent models of neurodegenerative diseases.

Disease	NEAT levels (and how measured)	Where measured	Proposed role	Proposed mechanism(s)	References
Amyotrophic lateral sclerosis (ALS)	Up (qRT-PCR, in situ hybridisation). Confirmed NEAT1_2 upregulation.	Human: spinal motor neurons and glia <u>Rodent:</u> N/A	Protective	 Compensatory increase in NEAT1 expression and paraspeckle assembly due to compromised function of TDP-43 in miRNA biogenesis. Inflammatory response (activation of type I interferon signalling in TDP- 43 depleted cells). 	[<u>30,109</u>]

Protein components of paraspekles (NEAT1 interactors)

Table 2

Protein components of paraspeckles (NEAT1 interactors) genetically linked to ALS/FTD.

Protein	Importance for	Regulation of NEAT1_2	Role in ALS	Role in other neurodegenerative diseases
	paraspeckle assembly	levels		
FUS	Essential, >75% loss upon	No or minimal	>50 mutations in fALS and sALS; FUS proteinopathy in these cases	FTD (FTLD-FUS) [145]
	knockdown [<u>37,45</u>]		[143,144]	
TDP-43	Depletion enhances	Yes (more NEAT1_2 upon	>60 mutations in fALS and sALS; TDP-43 proteinopathy in cases with	FTD (FTD-TDP) [<u>146];</u> AD [<u>147]</u>
	paraspeckle assembly [30]	TDP-43 depletion)	TARDBP and C9ORF72 mutations and in 95% of all sALS cases	
			[<u>110,144,146</u>]	
TAF15	Important, 30-75% loss	No	6 mutations in 6 unrelated sALS cases and 2 mutations - in 2 fALS cases	FTD (FTD-FUS) [<u>150</u>]
	upon knockdown [<u>37]</u>		[148,149]	
EWS	Important, 30-75% loss	Yes	2 mutations in 2 unrelated sALS cases [151]	FTD (FTD-FUS) [<u>150]</u>
	upon knockdown [<u>37]</u>			
hnRNPA1	Important, 30-75% loss	No	2 mutations in fALS cases; 2 rare variants [152,153]	Multisystem proteinopathy (MSP) [152]
	upon knockdown [<u>37]</u>			
CREST ^a	ND	ND	4 mutations in 4 unrelated sALS cases [154,155]	N/A
MATR3	Depletion enhances	Yes (more NEAT1_2 upon	~10 mutations in fALS and sALS cases [157,158]	Initially diagnosed myopathy with vocal cord
	paraspeckle assembly [156]	MATR3 depletion)		paralysis, diagnosis changed to 'ALS' [159]
SFPQ	Essential, >75% loss upon	Yes	2 mutations in 2 sALS cases [160]	N/A
	knockdown [<u>37]</u>			

^aneurospecific, effect on paraspeckles in stable cell lines could not be tested.

The RBPs TAR DNA-binding protein 43 (TDP-43) and FUS are normally located in the nucleus and influence RNA metabolism. In ALS MNs, an abnormal accumulation of these proteins is observed in the cytoplasm that is thought to contribute to MN degeneration because of effects on RNA processing and other RNA-related mechanisms (Blokhuis et al., 2013).

Normal

Under basal conditions, levels of NEAT1_2 in motor neurons are low and so are the paraspeckle numbers. Paraspeckle assembly might also be transient ("on demand").

Developing ALS

During development of pathological changes typical for ALS, paraspeckle hyper-assembly is triggered by internal and external insults, such as TDP-43 loss of function (LoF), proteostasis collapse and immune response. Subsequent signalling events would enable protective neuronal response to stress and delay neuronal degeneration.

Developing ALS when a paraspeckle protein is affected

NEURONAL VULNERABILTY AND CELL DEATH

These data support the idea that altered *NEAT1* expression in ALS leads to defects in paraspeckle formation causing cell death and neurodegeneration.

In ALS cases with an essential/important paraspeckle protein affected by a mutation, its mutant isoform might negatively impact on protective paraspeckle hyper-assembly. This can be realised through:

i) failure to upregulate NEAT1_2 (e.g. if proteins regulating NEAT1_2 levels, such as SFPQ and hnRNP K, are mutated or sequestered into abnormal inclusions/RNA foci);

ii) attenuated assembly of paraspeckles or assembly of dysfunctional paraspeckles (e.g. if a structural paraspeckle protein, such as FUS, is mutated);

iii) persistence of paraspeckles (e.g. if a mutation confers abnormal stability). Defective paraspeckle response may expedite the development of molecular pathology and accelerate disease onset and progression. A mutant protein is marked by a red star.

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS

Silvia Biscarini^a, Davide Capauto^a, Giovanna Peruzzi^a, Lei Lu^b, Alessio Colantoni^c, Tiziana Santini^a, Neil A. Shneider^b, Elisa Caffarelli^d, Pietro Laneve^{a,*,1}, Irene Bozzoni^{a,c,d,e,**}

^a Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy

^b Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA

^c Department of Biology and Biotechnology, Sapienza University of Rome, Italy

^d Institute of Molecular Biology and Pathology of CNR, Rome, Italy

^e Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Italy

Als...

ALS is an incurable adult-onset neurodegenerative disease, which affects upper and lower motor neurons (MNs), and leads to paralysis and death in 3–5 years from diagnosis. Several genetic alterations are associated with ALS, including caus- ative mutations in FUS, TDP-43 and expansions in C9ORF72 point to the essential role of aberrant RNA metabolism in ALS pathogenesis

Starting from the the beginning...

Wichterle H. et al., 2002; Errichelli et al., 2017; Biscarini et al., 2018

Starting from the the beginning...

Starting from the the beginning...

RNA-seq

RNA-seq

Comparison 9644 genes differentially expressed

469 encoded for bona fide IncRNAs The family of IncRNAs up-regulated in MNs derived from 270 loci and includes some species already known to play key roles in neurogenesis; among them, Miat, Rmst, Hotairml, Meg3, Rian and Mirg.

IncRNAs involved in motor neural differentiation process (12).

Errichelli et al., 2017; Biscarini et al., 2018

qRT-PCR analysis of the 12 IncRNAs up-regulated during MN differentiation

Biscarini et al., 2018

IncRNAs enriched in motor neurons

Pax6 and Olig2 transcription factors, responsible for establishing MN progenitors

Genes required for consolidation of MN identity (Hb9) and for development (Islet-1) and function (ChAT) of spinal MNs were highly enriched in Hb9::GFP+ cells

Biscarini S. et al., 2018

IncRNAs enriched in motor neurons

Biscarini et al., 2018

Codogeneity graph

Expression profile of selected IncRNAs during human MN differentiation from iPSCs.

LncRNA expression in FUS-ALS MNs

Fus mutant mouse MNs carrying the equivalent of one of the most severe human ALSassociated FUS alleles (P517L) MNs (homo, gray bars), relative to Fus+/+ MNs (wt, black bars). qRT-PCR analysis of specific IncRNAs in Fus-/- MNs (ko, striped bars), relative to Fus+/+ MNs (wt, black bars).

IncRNAs enriched in motor neurons

Biscarini et al., 2018

Lhxlos genomic locus

Color		UCSC label	ENCODE classification
	red	prom	promoter-like signature
	orange	enhP	proximal enhancer-like signature
	yellow	enhD	distal enhancer-like signature
	pink	K4m3	DNase-H3K4me3
	blue	CTCF	CTCF-only

Errichelli et al., 2017; Biscarini et al., 2018

Lhxlos expression in mouse tissues

Lhxlos is up-regulated in *in vitro* derived MNs from mESCs of FUS-ALS mouse models

Ctrl: Fus+/+ MNs Mutated Fus : FusP517L/P517L MNs Fus KO: Fus-/- MNs

mutant mouse MNs carrying the equivalent of one of the most severe ALS-associated FUS alleles (P517L).

Lhxlos expression analysis in SCs derived from mutant SOD mice in ongoing

Lhxlos mouse KO strategy

Lhxlos -/- mouse

Reads from Lhx1os +/+ and Lhx1os -/- spinal cord RNA-seq

Lhxl expression in Lhxlos -/- mouse

Lhx1 in Sp.cord

Looking for Lhxlos -/- in vivo phenotype

Open field
Hanging wire
Hanging steel
Treadmill

Elvira De Leonibus IGB-cnr. EMBL

CARMINE

Open field

task to evaluate exploratory activity

Hanging wire test

to evaluate their grip strength

3 Months n=10

H.W.*weight

There are no differences between genotypes

Elvira De Leonibus IGB-cnr

Hanging steel test

Elvira De Leonibus (IGB-CNR)

3 months WT n=8, HET n=5, KO n=8 6 months WT n=6, HET n=6, KO n=6

Running session

2-RUN TIME

Treadmill 3- SHOCK NUMBER/RUN TIME

Nissl-stained motor neuron count in the lumbar spinal cord

Ventral horn of SC

mRNAs differential expression

SPINAL CORD 3 months RESTING WT vs KO

Lhxlos protein interactors

ER-stress mediated induction of Lhxlos

