CHAPTER 8 ADVERSE SELECTION: AKERLOF' S MARKET FOR LEMONS

Intro

- A man walks into the office of a life insurance company.
 - He wants to buy a \$1 million life insurance policy for a term of one day. Your company will have to pay \$1 million to his heirs if and only if he dies tomorrow.
 - You know nothing else about this man.
 - How much do you charge?

Asymmetric information

- Definition: a situation in which agents in a potential economic transaction do not have the same information about the quality of the good being transacted
- A major theme of this course, and the source of many problems in health insurance markets

Bhattacharya, Hyde and Tu – Health Economics

THE INTUITION BEHIND THE MARKET FOR LEMONS

Ch 8 | Adverse Selection: Akerlof' s Market for Lemons

First: symmetric information

- Imagine a well-functioning used car market
- Sellers advertise cars, and buyers can accurately assess the condition of each car for sale
- Some buyers will be willing to pay more for cars in good condition; others are happy to get a deal
- Symmetric information: buyers and sellers have symmetric info about car quality. This is crucial.
- Outcome: each car sells for a different price, depending on its quality

Bhattacharya, Hyde and Tu – Health Economics

First: symmetric information

- Pareto-improving transaction: a transaction that leaves all parties at least no worse off
- One goal of a market is to make sure all Paretoimproving transactions take place
- In the market we have described, there is nothing to stop all Pareto-improving transactions from taking place
- All the cars end up with the people who value them the most

An example

□ 100 cars: 50 high quality and 50 «lemons

	High quality	Lemons
Sellers' price	2000	1000
Buyers price	2400	1200

- There are pareto-improving exchanges
- Willingness to pay for a car of unknown quality (average):

2400x0.5 + 1200x0.5 = 1800 <2000

- □ Only «lemons» will be sold at a price between 1000 and 1200.
- Market for good quality cars disappears

Bhattacharya, Hyde and Tu – Health Economics

Next: asymmetric information

- New assumption: sellers can determine car quality, but buyers cannot
- All cars look identically good to the buyers
- This market will look different from the previous one in several ways:
 - any cars that sell, sell for the same price
 - The best cars will not be offered on the market
 - It is possible that the cars will not end up with the people who value them most (buyers)

Why is there only one price?

- Imagine that two cars are offered for different prices in this market: **P** and **P**' > P
- No buyer will want to buy the expensive car, because both cars will seem the same
- All sellers will have to lower their prices to match the lowest price on the market

Bhattacharya, Hyde and Tu – Health Economics

Why are some cars not offered?

- We know the market has one price P
- Consider the seller who owns the nicest car on the market – it is probably worth way more than P
 - That seller has no reason to remain in the market
 - Why doesn't he advertise the high quality of his vehicle and charge a higher price?
 - Remember, buyers can't "see" quality
- Outcome: only the lower-quality cars stay on the market. This is our first example of *adverse selection*.

Adverse selection

- Definition: the oversupply of low-quality goods, products, or contracts that results when there is asymmetric information.
- This is one of the most important ideas in health economics.

Bhattacharya, Hyde and Tu – Health Economics

What happens to our market?

- Recap
 - Cars only sell at one price
 - As a result, the best cars leave the market
- What do buyers do?
 - They know the average car remaining on the market is of low quality.
 - Unless buyers value cars very highly, they will not want to buy these cars.
- The market unravels, and potential Pareto-improving transactions do not occur. This is a market failure.

Random variables

□ x is a random variable in [*a*, *b*]

- □ (p1, p2,pn)
- $\Box \sum x_i p_i$
- Continuous
 - □ f(x) density function: f(x)=prob(x=x)
 - F(x) cumulative distribution function: F(x)=prob(x<x) F(a)=0 F(b)=1, why?

$$\Box E(x) = \int_{a}^{b} f(x) dx$$

Bhattacharya, Hyde and Tu – Health Economics

The uniform distribution in [0, 100]

Conditional expectation

- Conditional expectation: expected value of the random variable, given that a certain condition occurs
- □ x is quality
- p is the price
- E(x/p) = expected quality knowing that the price is p.
 - Only cars with quality less than p will be offered → the expected quality given the price p is p/2

Bhattacharya, Hyde and Tu – Health Economics

A FORMAL STATEMENT OF THE AKERLOF MODEL

Ch 8 | Adverse Selection: Akerlof' s Market for Lemons

A formal treatment

- We will introduce a formal model of the market we discussed in the previous slides.
- We will present explicit utility functions and a specific distribution of car quality to make the argument more concrete.
- But remember the logic of the argument is the same as what we just saw.

Bhattacharya, Hyde and Tu – Health Economics

Seller and buyer utility functions

- Sellers and buyers derive utility from the cars they own and other goods
- Buyers value cars 50% more than sellers (that's why they are buyers in the first place)
- X_j = quality of the jth car owned
- M = utility from other goods

$$egin{aligned} &U_S = \sum_{j=1}^n X_j + M \ &U_B = \sum_{j=1}^n rac{3}{2} X_j + M \end{aligned}$$

Distribution of car quality

- Car quality X is uniformly distributed between 0 and 100
- Cars are equally likely to have any quality level between 0 and 100
 - You are equally likely to have a car of quality level 50 as you are to have a car of quality 96, 17, π , 54.2828 or any real number between 0 and 100
- We use the term X_i to denote the quality of car i

Information assumptions

- Buyers do not know the true quality of a particular car, but they do know a lot.
- Buyers know the utility function of the sellers and know the distribution of cars available for sale
- They also understand that sellers will withdraw highest-quality cars if the price does not justify selling.

Which cars will sellers offer?

- A seller will put a car on the market if selling it will increase his utility.
- If a seller sells his car of quality X for P dollars, he loses X units of utility but gains P dollars
- Hence, he will only put car *j* on the market if $P > X_i$

When will buyers buy?

- Figuring out when buyers buy is trickier due to uncertainty.
- Like sellers, buyers are trying to maximize utility.
 But think about a buyer who is considering buying a car of uncertain quality. How does she know what will happen to her utility?
- Buyers have to think in terms of expected utility.

When will buyers buy?

- Suppose a buyer buys a car in this market.
- □ She pays P dollars and thus loses P units of utility.
- □ She gains a car with expected value E[X|P], so she gains 3/2 E[X|P] units of utility.
 - Remember, E[X|P] means "expectation of X conditional on P." We need to think about P because it affects sellers' decisions, and hence affects the distribution of quality X.
- □ Hence, buyers will buy if:

$$\frac{3}{2}E\left[X_i\right] \ge P$$

Bhattacharya, Hyde and Tu – Health Economics

When will buyers buy?

- We need to find E[X|P] to decide if buyers will buy
- Remember the distribution of cars now:

 The formula for expectation for a uniform distribution is simply the average of the endpoints.
 So E[X|P] = ½ P

When will buyers buy?

• We found $E[X|P] = \frac{1}{2}P$

We plug that into our condition for buying:

```
3/2 E[X|P] > P
3/2 * ½ P > P
¾ P > P
```

- This is impossible; hence buyers will not buy for any P!
- No cars sell, no Pareto-improving trades take place, the cars stay with sellers (who do not want them as much as the buyers do). The market unravels.

Bhattacharya, Hyde and Tu – Health Economics

What just happened?

To review:

- A single price P is somehow established in the market
- Sellers remove all cars of quality greater than P
- Of the cars that remain, the average quality (E[X|P]) is only ½ P
- Buyers do not like cars enough to buy a car of quality ½ P for a price of P
- No cars sell, even though buyers like cars better than sellers and all the cars "should" end up with buyers.

What does this used car market have to do with health insurance?

- Let's imagine a health insurance market that is similar to the market we just discussed:
 - Each customer *i* has an expected amount of health care costs over the course of the year X_i.
 - An insurance company offers a single policy with an annual premium P. This full insurance policy covers all health care costs incurred during the year.
 - Customers are risk-neutral. Customer *i* will purchase insurance if and only if *P* is less than his expected health care costs X_i.
 - The insurers cannot distinguish healthy and sick customers
 - Expected customer health care costs X_i are distributed uniformly in the population between \$0 and \$20,000.

Bhattacharya, Hyde and Tu – Health Economics

What does this used car market have to do with health insurance?

Analogy between these two markets

The "cars" are customers' bodies

- The "sellers" are customers
- The "buyers" are insurance companies
- The sellers try to convince the buyers that the "cars" are healthy; just as a high-quality car is worth a lot to buyers, a healthy customer is worth a lot to insurers
- Just like high-quality cars leave the market when a universal price is set, high-quality bodies will leave the market when a universal premium is set.

Health insurance market

- Suppose the insurer offers a contract with premium \$10,000 for the year.
- What happens? Who stays in the market?

Health insurance market

- Only the least healthy people buy insurance; their average health expenditures are \$15,000.
- □ The insurer raises premiums to \$15,000 the next year.

Bhattacharya, Hyde and Tu – Health Economics

Adverse selection death spiral

- There is nothing to stop this cycle, which is called an adverse selection death spiral.
- Definition: successive rounds of adverse selection that destroy an insurance market.
- The heart of the problem is adverse selection: only the worst customers stay in the market when the insurer sets the premium.
- No way for the insurer to turn a profit in this very simple model.

Bhattacharya, Hyde and Tu – Health Economics

WHEN CAN THE MARKET FOR LEMONS WORK?

Ch 8 | Adverse Selection: Akerlof' s Market for Lemons

What if buyers value cars very highly?

Let's assume new utility functions:

$$U_S = \sum_{j=1}^n X_j + M$$
$$U_B = \sum_{j=1}^n \frac{5}{2} X_j + M$$

Now buyers value cars much more than sellers. Will this fix the market?

Bhattacharya, Hyde and Tu – Health Economics

What if buyers value cars very highly?

□ We need a new condition for buyers:

$$\frac{5}{2}\mathrm{E}\left[X_{n+1}\right] \ge P$$

- Recall that E[X|P] = ½ P. This is unaffected by the buyers' utility function – why?
- The condition now holds: buyers will be willing to buy cars at price P. They know the remaining cars are bad but they value them highly enough to pay P for them.

What if there is a minimum guaranteed car quality?

The condition for buyers is as it was before, but now E[X|P] will be different because a different subset of cars is on the market.

 This is promising: the worst cars were forced off the market, so the remaining cars are better.

Bhattacharya, Hyde and Tu – Health Economics

What if there is a minimum guaranteed car quality?

□ When do buyers buy?

If 3/2 E[X|P] > P

- What is E[X|P]
 - Based on the formula for the expectation of a uniform distribution, E[X|P] = ½ * (P + 10)
- Buyers buy if:

3/2 E[X|P] > P

```
3/2 * ½ * (P + 10) > P
```

Buyers will buy if the price is below \$30.

Conclusion

- Asymmetric information causes parties to misrepresent themselves
- Adverse selection removes high-quality goods from the market, leaving only low-quality
- □ Generally, the market will unravel unless:
 - Someone values a product highly enough to have a positive change in utility
 - Government regulation through a price floor promotes a minimum standard of quality
- One major concept has been missing in this whole analysis: risk aversion.
- The Rothschild-Stiglitz model combines asymmetric information and risk aversion.