CHAPTER 7 DEMAND FOR INSURANCE

Why buy insurance?

- Demand for insurance driven by the fear of the unknown uncertainty
 - Hedge against risk -- the possibility of bad outcomes
- Risk of income loss
 - □ income loss because sick
 - □ + income need for healthcare
- Purchasing insurance means forfeiting income in good times to get money in bad times
- Insurance contract:
 - Pay a premium
 - □ Receive a pay-out if sick
 - □ If bad times avoided, then money lost
 - Ex: The individual who buys health insurance but never visits the hospital might have been better off spending that income elsewhere.

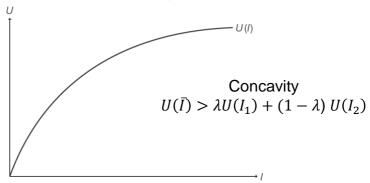
Risk aversion

- Hence, risk aversion drives demand for insurance
 - The individual is risk averse if s/he prefers the certainty equivalent to a "lottery" with the same expected value
- □ We can model risk aversion through utility from income U(I)
 - □ Utility increases with income: U'(I) > 0
 - Marginal utility for income is declining: U"(I) < 0
 - A measure of (absolute) risk aversion: $-\frac{U''(I)}{U'(I)}$

Bhattacharva, Hyde and Tu - Health Economic

Income and utility

- Graphically,
 - Utility increasing with income U'(I) > 0
 - Marginal utility decreasing U"(I) < o



Adding uncertainty

- An individual does not know whether she will become sick, but she knows the probability of sickness is p between o and 1
 - Probability of sickness is p
 - Probability of staying healthy is 1 p
- If she gets sick, medical bills and missed work will reduce her income
 - □ I_s = income if she does get sick
 - \square $I_H > I_S$ = income if she remains healthy

Bhattacharya, Hyde and Tu - Health Economics

Expected value

- □ The **expected value** of a random variable X, E[X], is the sum of all the possible outcomes of X weighted by each outcome's probability
 - If the outcomes are $x_1, x_2, ..., x_n$, and the probabilities for each outcome are $p_1, p_2, ..., p_n$ respectively, then:

$$E[X] = p_1 x_1 + p_2 x_2 + \cdots + p_n x_n$$

□ In our individual's case, the formula for expected value of income E[I]:

$$E[I] = p I_S + (1-p) I_H$$

Example: expected value

 Suppose we offer a starving graduate student a choice between two possible options, a lottery and a certain payout:

A: a lottery that awards \$500 with probability 0.5 and \$0 with probability 0.5.

B: a check for \$250 with probability 1.

□ The expected value of both the lottery and the certain payout is \$250:

$$E[I] = p I_S + (1-p) I_H$$

 $E[A] = .5(500) + .5(0) = 250
 $E[B] = 1(250) = 250

Bhattacharya, Hyde and Tu - Health Economics

People prefer certain outcomes

- Studies find that most people prefer certain payouts over uncertain scenarios
- What does that imply about the utility function?
- □ To answer this question, we need to define expected **utility** for a lottery or uncertain outcome.

Expected Utility

- □ The expected utility from a random payout X E[U(X)] is the sum of the utility from each of the possible outcomes, weighted by each outcome's probability.
- □ If the outcomes are $x_1, x_2, ..., x_n$, and the probabilities for each outcome are $p_1, p_2, ..., p_n$ respectively, then:
 - **E**[U(X)] = $p_1 U(x_1) + p_2 U(x_2) + \cdots + p_n U(x_n)$

Bhattacharya, Hyde and Tu - Health Economics

Example

□ The preference for option B over option A implies that expected utility from B, is greater than expected utility from A:

$$E[U(B)] \ge E[U(A)]$$

 $U(\$250) \ge 0.5 \ U(\$500) + 0.5 \ U(\$0)$

- In this case, even though the expected values of both options are equal, the individual prefers the certain payout over the uncertain one.
 - This is risk aversion
 - □ as opposed to risk neutrality and risk loving

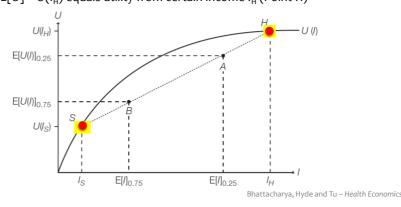
Expected utility without insurance

- Lottery scenario similar to case of insurance customer
 - She gains a high income I_H if healthy, and low income I_S if sick.
- Uncertainty about which outcome will happen, though she knows the probability of becoming sick is p
 - Expected utility E[U(I)] is: $E[U(I)] = p U(I_S) + (1-p) U(I_H)$

Bhattacharya, Hyde and Tu - Health Economics

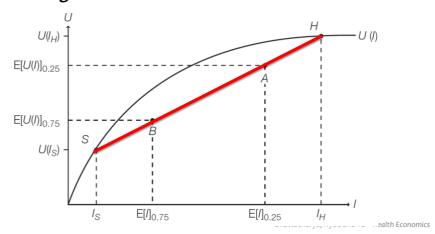
E[U(I)] and probability of sickness

- □ Consider a case where the person is sick with certainty (p = 1):
 - E[U] = U(I_S) equals the utility from certain income I_S (Point S)
- □ Consider case where person has no chance of becoming sick (p = o):
 - E[U] = U(I_H) equals utility from certain income I_H (Point H)



What if *p* lies between 0 and 1?

□ For p between 0 and 1, expected utility falls on a line segment between S and H

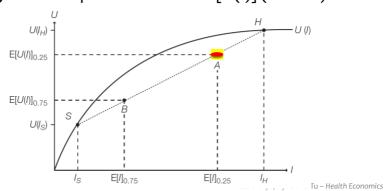


Ex: p = 0.25

□ For p = 0.25, person's expected income is:

$$E[I] = 0.25 \cdot I_S + (1 - .25) \cdot I_H$$

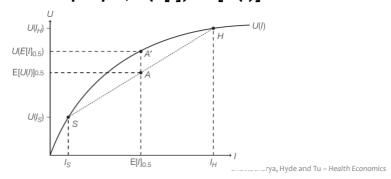
Utility at that expected income is E[U(I)] (Point A)



Expected utility and expected income

- Crucial distinction between
 - Expected utility E[U(I)]
 - Utility from expected income U(E[I])

For risk-averse people, U(E[I]) > E[U(I)]



An example

- □ I₁=100 I₂=400
- $p_1=0.25 p_2=0.75$
- U(I)=log(I)
- □ E(I)=?
- □ U(E(I))=?
- E(U(I))=?

Risk-averse individuals

Synonymous definitions of risk-aversion:

- Prefer certain outcomes to uncertain ones with the same expected income.
- □ Prefer the utility from expected income to the expected utility from uncertain income
 □ U(E[I]) > E[U(I)]
- Concave utility function
 - □ U'(I) > 0
 - □ U"(I) < o

Bhattacharya, Hyde and Tu – Health Economics

A basic health insurance contract

- Customer pays an upfront fee
 - \blacksquare Payment r is known as the insurance premium
- □ If ill, customer receives q -- the insurance payout
- □ If healthy, customer receives nothing
- □ Either way, customer loses the upfront fee
- Customer's final income is:
 - □ Sick: $I_S + q r$

■ Healthy: $I_H + o - r$

Income with insurance

- □ Let I_H' and I_S' be income with insurance
 - □ Sick:

$$I_{s}' = I_{s} + q - r$$

■ Healthy:

$$I_{H}' = I_{H} + o - r$$

□ Remember that risk-averse individuals want to avoid uncertainty →

Bhattacharya, Hyde and Tu - Health Economics

Full insurance

□ Full insurance means no income uncertainty

$$I_H' = I_S'$$

- □ Final income is **state-independent**
 - Regardless of healthy or sick, final income is the same
- Risk-averse individuals prefer full insurance to partial insurance (given the same price)

Full insurance payout

State independence implies

$$I_H' = I_S'$$

So

$$I_{H} + o - r = I_{S} + q - r$$

$$I_{H} = I_{S} + q$$

$$q = I_{H} - I_{S}$$

□ The payout from a full insurance contract is difference between incomes without insurance

Bhattacharya, Hyde and Tu – Health Economics

Actuarially fair insurance

Actuarially fair means that insurance is a fair bet
 i.e. the premium equals the expected payout

$$r = pq$$

 Insurer makes zero profit/loss from actuarially fair insurance in expectation

Actuarially fair, full insurance

■ Healthy State

$$\begin{split} I'_{H} &= I_{H} - r \\ &= I_{H} - pq \\ &= I_{H} - p(I_{H} - I_{S}) \\ &= pI_{S} + (1 - p)I_{H} \\ I'_{H} &= E[I]_{p} \end{split}$$

■ Sick State

$$I'_{S} = I_{S} - r + q$$

 $= I_{S} - pq + q$
 $= I_{S} - p(I_{H} - I_{S}) + (I_{H} - I_{S})$
 $= pI_{S} + (1 - p)I_{H}$
 $I'_{S} = E[I]_{v}$

Notice consumers with actuarially fair, full insurance achieve their *expected income* with certainty!

Bhattacharya, Hyde and Tu - Health Economics

Insurance and risk aversion

- As we have seen, by reducing uncertainty, insurance can make risk-averse individuals better off.
- □ Relative to the state of no insurance, with insurance she loses income in the healthy state (I_H > I'_H) and gains income in the sick state (I_S < I'_S).
 - In other words, the risk-averse individual willingly sacrifices some good times in the healthy state to ease the bad times in the sick state.

Insurer profits

- Now consider the same insurance contract from the point of view of the insurer
 - □ Premium *r*
 - □ Payout q
 - □ Probability of sickness p
 - $E[\Pi]$ = Expected profits

$$E[\Pi(p,q,r)] = (1-p)r + p(r-q)$$
$$= r - pq$$

Bhattacharya, Hyde and Tu - Health Economics

Fair and unfair insurance

□ In a perfectly competitive insurance market, profits will equal zero

$$E[\Pi(p,q,r)] = 0 \implies r = pq$$

- Same definition as actuarially fair!
- An insurance contract which yields positive profits is called unfair insurance:

$$E[\Pi(p,q,r)] > 0 \qquad \Longrightarrow \qquad r > pq$$

 An insurer would never offer a contract with negative profits

Full vs. partial insurance

- Partial insurance does not achieve stateindependence
 - **■** Full insurance

$$I'_S = I'_H$$

$$I_S - r + q = I_H - r$$

$$I_S + q = I_H$$

$$q = I_H - I_S$$

$$I'_{S} < I'_{H}$$

$$I_{S} - r + q < I_{H} - r$$

$$I_{S} + q < I_{H}$$

$$q < I_{H} - I_{S}$$

- Size of the payout q determines the fullness of the contract
 - □ Closer q is to I_H I_S, the fuller the contract

Bhattacharya, Hyde and Tu – Health Economics

Comparing insurance contracts

- □ A^F -- Actuarially fair & full
- □ A^P -- Actuarially fair & partial
- □ A -- Uninsurance

 $U(A^{F}) > U(A^{P}) > U(A)$

 I_S^P

Bhattacharya, Hyde and Tu – Health Economics

 I_H^P

The ideal insurance contract

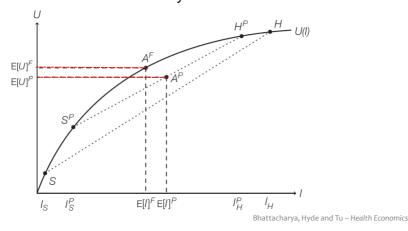
- For anyone risk-averse, actuarially fair & full insurance contract offers the most utility
 - Hence, it is called the ideal insurance contract
- Ideal and non-ideal insurance contracts:

	Fair	Unfair
Full	r = pq	r > pq
	$q = I_H - I_S$	$q = I_H - I_S$
Partial	r = pq	r > pq
	$q < I_H - I_S$	$q < I_H - I_S$

Bhattacharya, Hyde and Tu – Health Economics

Comparing non-ideal contracts

- □ A^F Full but actuarially unfair contract
- □ A^P Partial but actuarially fair contract



Comparing non-ideal contracts

- □ In this case, $U(A^F) > U(A^P)$
 - Even though A^F is actuarially unfair, its relative fullness (i.e. higher payout) makes it more desirable
- But notice if contract A^F became more unfair, then expected income E[I] falls
 - If too unfair, A^F may generate less utility than A^P
- Similarly, A^P may become more full by increasing its payout
 - Uncertainty falls, so point A^P moves
 - At some point, this consumer will be indifferent between the two contracts

Bhattacharya, Hyde and Tu - Health Economics

Conclusion

- Demand for insurance driven by risk aversion
 - Desire to reduce uncertainty
 - Diminishing marginal utility from income
 - U(I) is concave, so U"(I) < 0
 - U(E[I]) > E[U(I)]
- Risk aversion can explain not only demand for insurance but can also help explain
 - Large family sizes
 - Portfolio diversification
 - Farmers scattering their crops and land holdings