

Corso di laurea in Ingegneria dell'Informazione Indirizzo Informatica

Reti e sistemi operativi

Introduzione ai sistemi operativi

Contatti

- Docente: Alberto Pretto
 - pretto@dis.uniroma1.it
- Ricevimento
 - Appuntamento tramite e-mail
- Slide
- Pubblicate sulla pagina moodle del corso

Programma di massima

- Cos'è un sistema operativo. Le sue funzioni. La sua storia.
- Interrupt e chiamate di sistema
- Processi e thread
- Algoritmi di scheduling
- Programmazione concorrente: sincronizzazione dei processi e deadlock
- Gestione della memoria principale: memoria virtuale e paginazione
- Gestione del file system
- Casi di studio basati su S.O. Linux: la shell ed il filesystem, i comandi Unix fondamentali, il multithreading, ...

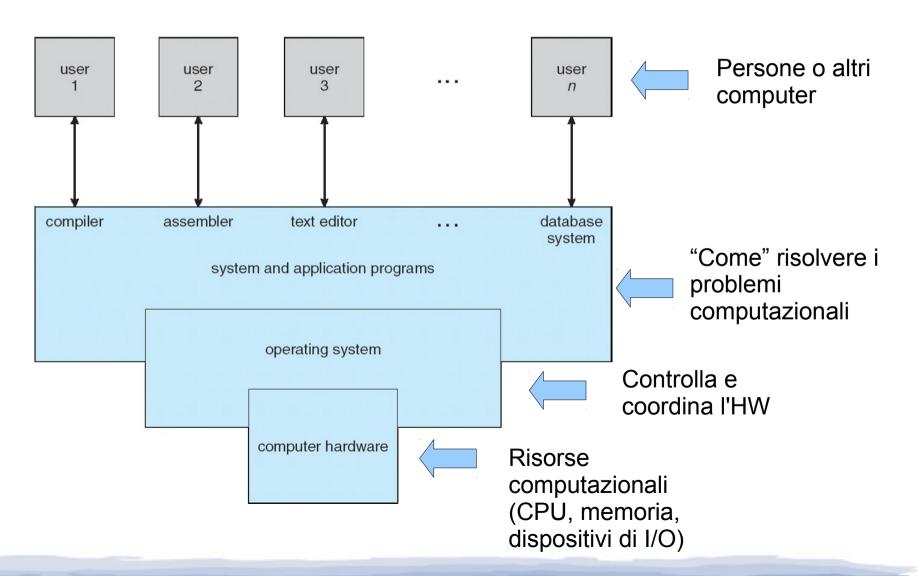
Testi di riferimento

- Silberschatz, Galvin, Gagne: Sistemi Operativi.
 Concetti ed Esempi. Pearson Ottava edizione (2009)
- Slide e dispense del corso.
- Per consultazione:
 - Andrew S. Tanenbaum: I moderni sistemi operativi. Pearson Ottava edizione (2009) 3/Ed.

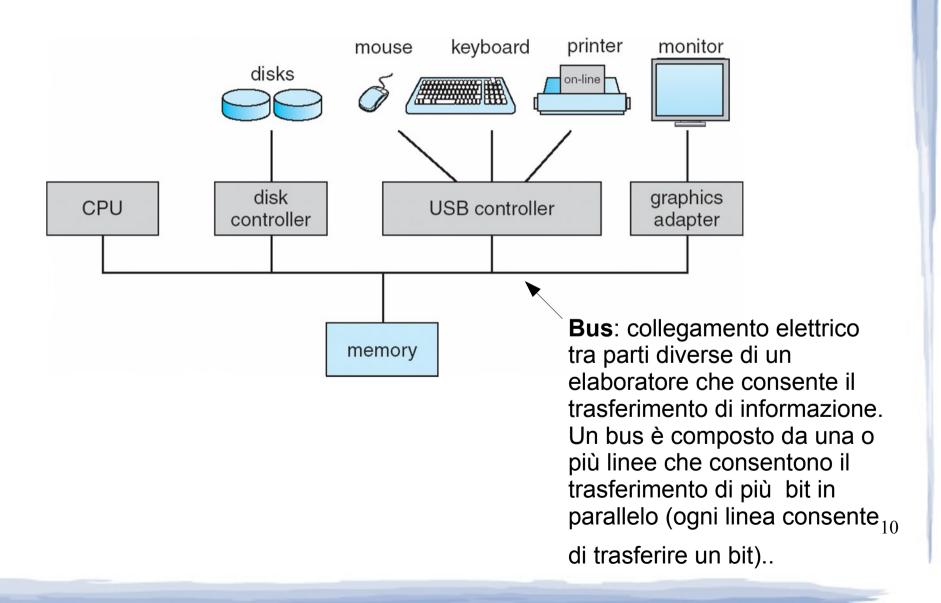
Valutazione

- Esame scritto:
 - Prova scritta parte di reti
 - Prova scritta parte di sistemi operativi

Introduzione ai sistemi operativi, cenni storici.

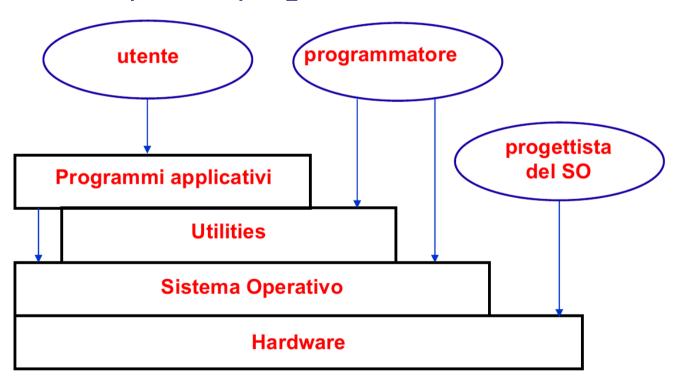

Struttura e funzioni di un SO

- Un sistema operativo è un programma che controlla l'esecuzione dei programmi applicativi e funge da interfaccia tra l'utente di un computer e l'hardware.
- Un sistema operativo:
 - Alloca risorse, evitando conflitti tra i vari processi che le utilizzano
 - Controlla il flusso di esecuzione dei programmi, gestendo le situazioni di errore


Obiettivi di un S.O.

- Eseguire in maniera opportuna i programmi
- Facilitare l'uso del computer
- Far sì che le risorse del computer siano usate in modo efficiente

Le quattro componenti di un sistema di elaborazione



Organizzazione di base di un sistema di elaborazione

Facilitare l'uso del computer

- il SO fornisce un'interfaccia tra:
 - Computer e utente
 - Computer e programmatore

Servizi forniti da un SO

- Per facilitare l'uso del computer il SO fornisce diversi servizi:
 - Esecuzione di programmi
 - Accesso ai dispositivi di I/O
 - Accesso protetto alle risorse condivise.
 - Gestione degli errori e dei malfunzionamenti.
 - Sviluppo di software editor, compilatori, debugger, etc.
 - Gestione di statistiche e raccolta dati per monitorare le prestazioni.

Usare le risorse in modo efficiente

- Le risorse che il SO cerca di usare in modo efficiente sono:
 - Il processore
 - Multitasking → più programmi in esecuzione
 - Scheduler → pianifica e determina le esecuzioni
 - La memoria
 - Paging → suddivisione della memoria in porzioni di dimensioni fisse
 - Memoria virtuale → facilita la gestione della memoria per i programmi e simula una quantità maggiore di RAM
 - I dispositivi di I/O
 - Gestione dei file → organizzazione, diritti di accesso
 - I/O buffering → ottimizzare le operazioni di I/O
 - Assegnazione dei dispositivi → accesso concorrente₁₃

Evoluzione dei SO

- Elaborazione seriale (1945-1955)
 - Un programma alla volta, niente SO, dispositivi rudimentali, codice binario
- Elaborazione batch (1955-1965)
 - Un programma di seguito all'altro, monitor, JCL (Job Control Language), protezione della memoria
- Sistemi batch multiprogrammati (1965-1980)
 - Più di un programma in memoria, scheduler, maggiore efficienza
 - Hardware più sofisticato (interrupt, DMA, MMU)
 - Gestione dei processi
- Time-sharing
 - Job interattivi, esecuzione a turno dei job, virtualizzazione del processore

Evoluzione dei SO (1945-1955)

- Elaborazione seriale (1945-1955)
 - Un programma alla volta
 - L'utente andava direttamente sulla macchina a caricare il suo software
 - Niente SO
 - Interruttori, dispositivi di input rudimentali (lettori di schede perforate, lettori di banda perforata, ...)
 - Programmi scritti in codice binario
 - Errori indicati da lampadine
 - Completamento normale → output su stampante
 - Prenotazione su fogli cartacei
 - Tempi di preparazione molto lunghi (caricamento del programma, montaggio e smontaggio di nastri magnetici, banda perforata, pacchi di schede perforate, ...).

Evoluzione dei SO (1955-1965)

- Elaborazione batch (1955-1965)
 - Un programma di seguito all'altro, senza soste.
 - Il batch monitor (programma residente in memoria) carica ed esegue uno alla volta i programmi (con i dati relativi), leggendoli da un dispositivo di input (lettore di schede o unità nastro), stampando di volta in volta i risultati.
 - L'utente non accede alla macchina, ma consegna il pacco di schede (programma e dati) ad un operatore che li inserisce, uno di seguito all'altro, nel dispositivo di input.
 - Schede di controllo contenenti istruzioni per il monitor (JCL - Job Control Language) sono inserite prima del programma (job), tra programma e dati e alla fine dei dati.

Evoluzione dei SO (1965-1980)

- Sistemi batch multiprogrammati
 - Più di un programma in memoria (multitasking)
 - Quando il programma in esecuzione chiede al SO di eseguire un'operazione di I/O (lenta), il SO avvia l'operazione e, nell'attesa che sia completata, cede il controllo ad un altro programma (che sia pronto).
 - II SO comprende uno scheduler.
 - Il funzionamento è ancora di tipo batch (l'utente consegna il pacco di schede e ripassa più tardi a ritirare le sue schede e il pacco con le stampe).
 - La produttività è più alta, perché il processore è usato in modo più efficiente.

Sistemi batch multiprogrammati

- Caratteristiche aggiuntive che devono essere presenti nell'hardware:
 - Gestione dell'I/O tramite interruzioni
 - Gestione dell'I/O tramite DMA
 - Gestione della memoria (MMU)
- Lo scheduler può gestire:
 - Programmi indipendenti
 - Attività (task) di un medesimo programma che possono procedere in parallelo (multitasking)
- Lo scheduler di un SO multitasking gestisce:
 - Processi (programmi indipendenti o task cooperanti).

Processo → entità attiva che rappresenta l'esecuzione del programma.

Sistemi time-sharing

- Le modalità di funzionamento non sono più di tipo "batch"
- Gli utenti usano un terminale per accedere al sistema in cui vengono eseguiti job interattivi
- Adatti ad applicazioni con transazioni interattive
- il SO, tramite lo scheduler, esegue a turno ciascun programma per un breve quanto temporale (time-slicing):
 - Sfrutta la lentezza dei tempi di reazione dell'utente
 - I tempi di risposta percepiti dagli utenti sono paragonabili a quelli di un sistema dedicato

Obiettivi dei SO time-sharing

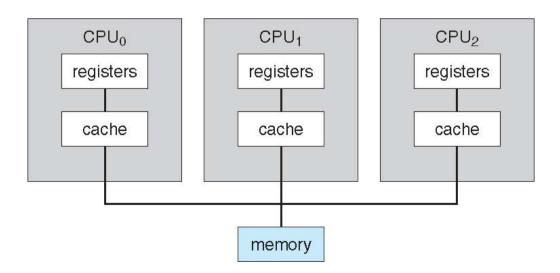
- Un SO time-sharing è un SO multiprogrammato con obiettivi diversi:
 - SO multiprogrammato:
 - rendere massima l'utilizzazione del processore
 - SO time-sharing:
 - Rendere minimi i tempi di risposta.
- e con diverse modalità di interazione:
 - SO multiprogrammato → ramite comandi JCL forniti con il job
 - SO time-sharing → tramite terminale

Evoluzione dei SO (1980 - 1995)

Personal Computer

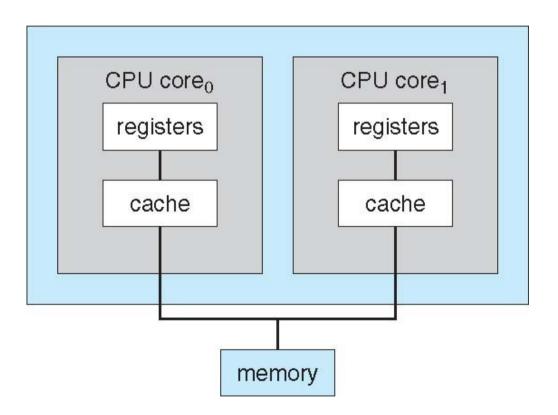
- Inizialmente SO monoutente e monotask (MS-DOS) per processori di potenza limitata (Intel 8086, 80186, 80286)
- Successivamente SO multitasking e multiutente (Windows, Unix, Macintosh) con processori più potenti (Intel 80386, Intel 80486, Intel Pentium, AMD 64 bit, Intel Core iX, ...).

SO per personal computer

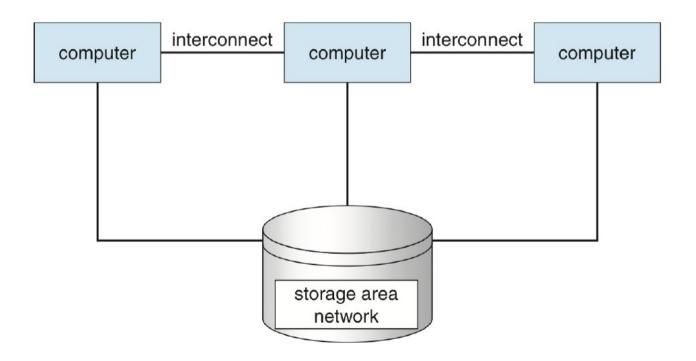

- Obiettivi diversi dai SO per mainframe:
 - SO per mainframe: massimizzare l'uso delle risorse (processore e dispositivi)
 - SO per PC: massimizzare la facilità d'uso e la prontezza di risposta
- Caratteristiche comuni ai SO per mainframe e per PC:
 - Scheduler
 - Protezione della memoria
 - Gestione della concorrenza
- Altre caratteristiche:
 - Protezione dei file
 - Protezione dai virus

Evoluzione dei SO (1995 - ...)

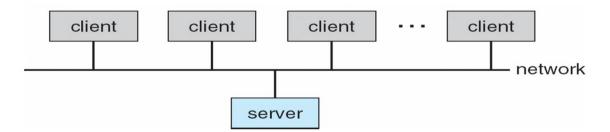
- Sistemi paralleli → aumentare le prestazioni
 - Sistemi multiprocessore (simmetrici, asimmetrici)
 - Sistemi distribuiti (cluster)
- Sistemi real-time → fornire il risultato corretto entro un tempo prefissato
 - Controllo di processo
 - Sistemi embedded
 - Hard e soft real-time


Sistemi multiprocessore

- Vantaggi:
 - Prestazioni migliori
 - Scalabilità
 - Affidabilità maggiore (graceful degradation or fault tolerance)


Sistemi multicore

Più CPU nello stesso package (chip)


Sistemi cluster

 Più computer interconnessi fra di loro (es. attraverso interfaccia Ethernet)

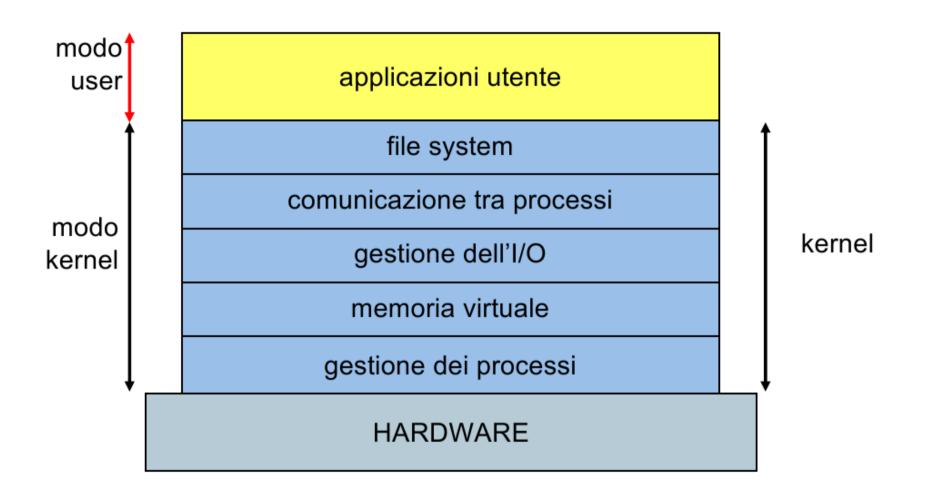
Client-Server e P2P Computing

- Client-server: ruoli ben definiti, un server, molti client, es.:
 - Compute server (database)
 - File server

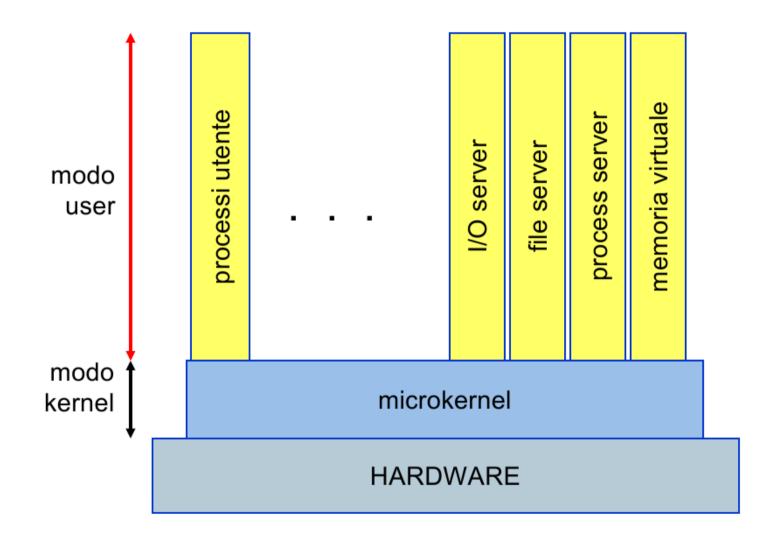
- Peer-to-Peer: non vi è distinzione tra i computer connessi
 - EMule

Componenti di un SO

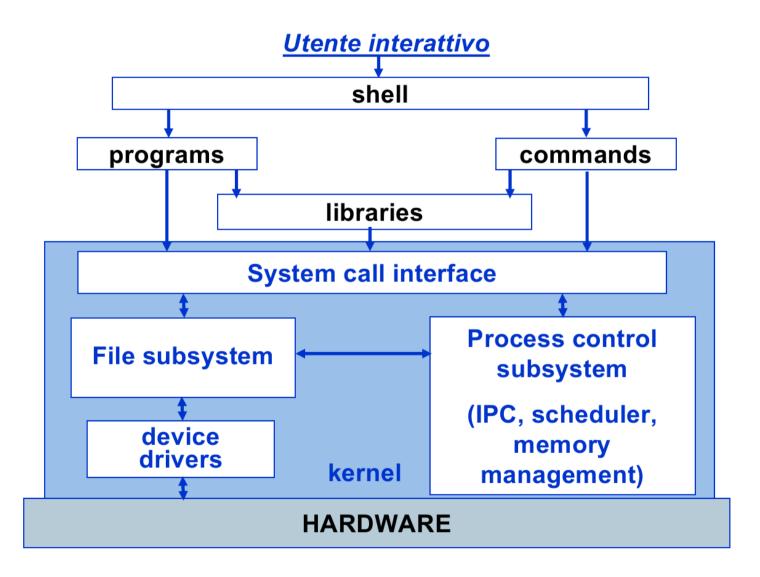
- Gestore dei processi
- Gestore della memoria
- Gestore dei sistemi di I/O
- Gestore della memoria secondaria
- Gestore dei file
- Gestore delle comunicazioni di rete
- Gestore della sicurezza
- Interprete dei comandi


Servizi di un SO

- Richiesti al SO da:
 - Utenti, tramite l'interprete dei comandi (CLI o GUI)
 - Programmi, tramite system call
- Esecuzione di programmi
- Operazioni di I/O
- Accesso al file system
- Comunicazioni tra processi (shared memory, pipes, ...)
- Gestione delle risorse
- Protezione interna e sicurezza verso l'esterno
- Gestione delle condizioni anomale
- Gestione delle statistiche


Strutture dei SO

- A strati o livelli (layered):
 - Ciascun livello fornisce funzionalità al livello superiore, usando (e nascondendo) quelle del livello inferiore
 - Il livello più basso del SO è il kernel (nucleo)
 - Non è facile definire l'ordinamento delle varie funzioni
 - Può introdurre inefficienza
- Microkernel:
 - Solo le funzioni essenziali fornite dal kernel
 - Le altre funzioni sono affidate a processi (eseguiti in modo supervisore o in modo utente) trattati dal microkernel alla stregua degli altri processi


SO con architettura a strati

SO con architettura microkernel

Architettura di un SO UNIX

