Prof. Giulio Vidotto (Università di Padova) Lez. 6 - Le scale nominali e le scale ordinali

Argomenti della lezione

- → Scale di Misura
 - ✓ Scala nominale
 - ✓ Scala ordinale

Scala Nominale

Consideriamo il Sistema Empirico Classificatorio

che è ripartito in classi di equivalenza

(elementi dell'insieme quoziente \tilde{A}/\sim)

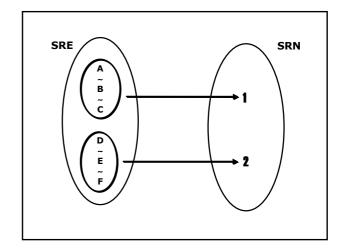
Ad ognuna di queste classi (che sono tante quanto la cardinalità di à / ~) possiamo associare un numero che ne rappresenterà la misura in modo che:

Agli elementi della stessa classe associamo lo stesso numero, ad elementi di classi diverse corrisponderanno numeri diversi. I numeri
che rappresentano la misura
delle classi sono dei puri
simboli, delle etichette per
le classi.

Prof. Giulio Vidotto (Università di Padova) Lez. 6 - *Le scale nominali e le scale ordinali*

Teorema di Rappresentazione

Se \tilde{A} è un sistema classificatorio e se l'insieme quoziente $Q = A / \sim$ è un insieme finito o infinito numerabile, allora esiste una scala $S = \{ \tilde{A}, \Re, \phi \}$



Teorema di unicità

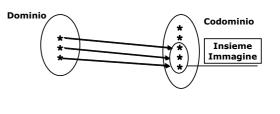
Ogni scala è unica a meno di trasformazioni iniettive.

N.B.: una funzione si dice iniettiva quando

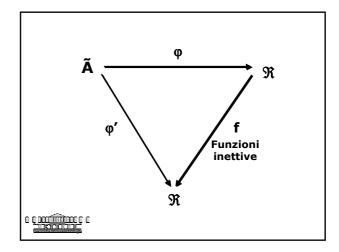
$$\forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$f(\alpha_1) = f(\alpha_2) \Rightarrow \alpha_1 = \alpha_2$$

N.B.: una f si dice suriettiva quando il suo codominio coincide con l'insieme immagine. Una funzione iniettiva diviene una corrispondenza biunivoca quando codominio e insieme immagine coincidono.



La famiglia delle trasformazioni permissibili per la scala S è costituita da tutte le funzioni iniettive f in \Re tali che se S' = { \tilde{A} , \Re , ϕ '} è una nuova scala allora l'omomorfismo ϕ ' è così ottenuto: ϕ ' = f $^{\circ}$ ϕ



Prof. Giulio Vidotto (Università di Padova) Lez. 6 - *Le scale nominali e le scale ordinali*

Regole per Costruire una Scala Nominale

Per costruire la scala di misura $S = \{ \tilde{A}, \Re, \varphi \}$ basta associare a tutti gli elementi di una classe di equivalenza lo stesso numero e a classi di equivalenza diverse numeri diversi.

Ad esempio:

siano [x] e [y] due classi distinte di \tilde{A} , allora l'omomorfismo ϕ associa:

$$[x] \rightarrow \alpha$$
, $[y] \rightarrow \beta$

con
$$\alpha \neq \beta$$
 $\alpha, \beta \in \Re$

Se la classe [x] è formata da tutti gli elementi $z \in A$ che sono equivalenti al rappresentante x, ossia $[x] = \{ z \in A : z \sim x \}$ allora , ad ogni $z \in A$, ϕ associa lo stesso numero reale α

In una corsa si possono dividere i partecipanti in:

Coloro che arrivano al traguardo (1) e coloro che non vi arrivano (2)

Marco, Luca, Edoardo → 1

Milo, Andrea _____ 2

Scala Ordinale

Un sistema empirico à ordinato è una serie se l'ordine è stretto totale e una quasi-serie se l'ordine è largo totale.

N.B.: la relazione d'ordine stretto è indicata con <, mentre la relazione d'ordine largo è indicata con ≤

Scala Ordinale

Se l'ordine in \tilde{A} è largo totale e si considera l'insieme quoziente $\tilde{A}' = \tilde{A}/\sim$, la quasi-serie \tilde{A} viene trasformata nella serie \tilde{A}' dove l'ordine è stretto totale. Il sistema \tilde{A}' è anche indicato come "serie associata alla quasi-serie \tilde{A} "

Prof. Giulio Vidotto (Università di Padova) Lez. 6 - Le scale nominali e le scale ordinali

Se in \tilde{A} l'ordine è stretto totale allora $\tilde{A} = \tilde{A}'$ ed ogni elemento di \tilde{A} si può pensare come una classe di equivalenza contenente un unico elemento.

Quindi:

si consideri un sistema empirico ordinato \tilde{A} (o \tilde{A}') e si voglia, se possibile, misurarlo costruendo un omomorfismo ϕ tra la serie empirica \tilde{A} (o \tilde{A}') ed il relativo sistema relazionale numerico (una quasi-serie numerica).

Teorema di Rappresentazione

Se à è un sistema empirico ordinato e Ã' la serie empirica associata ad Ã, dove Ã' è costituita da un insieme di elementi finito o infinito numerabile è sempre possibile costruire una scala di misura $S = \{ \tilde{A}', \Re, \phi \}$ dove

$$\Re = \langle R, \leq \rangle$$

è il sistema numerico costituito dall'insieme dei numeri reali R e da una relazione di ordine largo totale.

Teorema di unicità

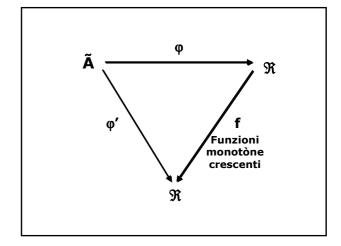
Ogni scala è unica a meno di trasformazioni monotòne crescenti in senso stretto.

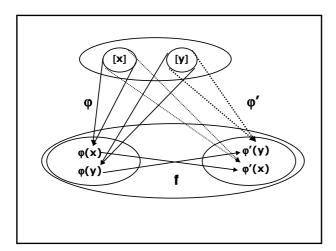
NB: una funzione f: R→R è monotòna crescente in senso stretto quando per ogni coppia x, x'∈R se x<x' allora f(x)<f(x')

La famiglia delle trasformazioni permissibili per la scala $S = \{ \tilde{A}', \, \mathfrak{R}, \, \phi \}$ è costituita da tutte le funzioni monotòne crescenti in senso stretto f, definite in \mathfrak{R} tali che se $S' = \{ \tilde{A}', \, \mathfrak{R}, \, \phi' \}$ è una nuova scala allora l'omomorfismo ϕ' è così ottenuto $\phi' = f \circ \phi$

Prof. Giulio Vidotto (Università di Padova) Lez. 6 - Le scale nominali e le scale ordinali

Se φ è un omomorfismo fra sistemi ordinati e se f è monotòna crescente in senso stretto, l'applicazione composta f ° φ è ancora un omomorfismo fra sistemi ordinati.





Regole per Costruire una Scala Ordinale (Ã = serie)

Sia à = < A,< > una serie finita, allora gli elementi di A sono ordinati secondo l'ordine "<".

Ad ogni elemento di A associamo, mediante una applicazione φ, il numero degli elementi di A che lo precedono...

Regole per Costruire una Scala Ordinale (con à = serie)

... questa φ è un omomorfismo φ : $\widetilde{A} \to \Re$ perché se $(x, y \in A)$ e x precede y, cioè x < y, allora $\alpha = \varphi(x) < \varphi(y) = \beta$, in quanto il numero α di elementi che precedono x è minore del numero β degli elementi che precedono y.

Regole per Costruire una Scala Ordinale (Ã = serie infinita numerabile)

Sia à = < A,< > una serie infinita numerabile, esiste una applicazione biettiva fra A e l'insieme dei numeri naturali N:

Prof. Giulio Vidotto (Università di Padova) Lez. 6 - *Le scale nominali e le scale ordinali*

gli elementi di A si possono anche scrivere come una successione $x_1, x_2, x_3, ..., x_n$ con $n \in N$ e poiché c'è la relazione d'ordine, il sistema \tilde{A} può essere scritto come la successione ordinata $x_1 < x_2 < x_3 < ... < x_n < ...$

Per costruire un omomorfismo quindi, associamo al primo elemento x_1 un qualsiasi numero reale α_1 , al secondo elemento x_2 che segue x_1 ($x_1 < x_2$) un numero reale α_2 (con $\alpha_1 < \alpha_2$) e così di seguito...

$$φ: \tilde{\mathbf{A}} \rightarrow \mathfrak{R} = \langle \mathbf{R}, \langle \rangle$$

tale che $\varphi(x_n) = \alpha_n \operatorname{con} \alpha_n \in R$

Regole per Costruire una Scala Ordinale (Ã = quasi-serie)

Sia \tilde{A} = < A, <, ~ > una quasi-serie. Possiamo allora scrivere il sistema \tilde{A}' come \tilde{A}' = < A/~, < > Se Ã' è finita o infinita numerabile, per costruire l'omomorfismo φ si associa ad ogni classe di equivalenza di Ã' un numero reale e si mantiene l'ordine che esiste fra gli elementi di Ã'

Ad esempio:

In una corsa possiamo disporre gli atleti secondo l'ordine di arrivo (andando oltre la semplice distinzione fra coloro che hanno tagliato il traguardo ed i ritirati):

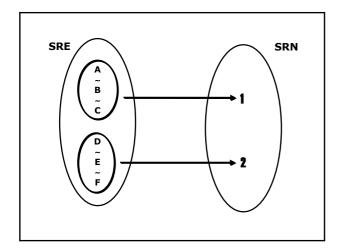
Conclusione della lezione

→ Scale di Misura

✓ Scala nominale

✓ Scala ordinale

Prof. Giulio Vidotto (Università di Padova) Lez. 6 - *Le scale nominali e le scale ordinali*



In una corsa si possono dividere i partecipanti in:

Coloro che arrivano al traguardo (1) e coloro che non vi arrivano (2)

Marco, Luca, Edoardo — 1

Milo, Andrea — 2

Ad esempio:

In una corsa possiamo disporre gli atleti secondo l'ordine di arrivo (andando oltre la semplice distinzione fra coloro che hanno tagliato il traguardo ed i ritirati):