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Abstract

Single-cell multiomics technologies typically measure multiple types of
molecule from the same individual cell, enabling more profound biolog-
ical insight than can be inferred by analyzing each molecular layer from
separate cells. These single-cell multiomics technologies can reveal cellu-
lar heterogeneity at multiple molecular layers within a population of cells
and reveal how this variation is coupled or uncoupled between the captured
omic layers. The data sets generated by these techniques have the potential
to enable a deeper understanding of the key biological processes and mech-
anisms driving cellular heterogeneity and how they are linked with normal
development and aging as well as disease etiology. This review details both
established and novel single-cell mono- and multiomics technologies and
considers their limitations, applications, and likely future developments.
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INTRODUCTION

A cell’s state is defined largely by the interplay between its genome, epigenome, transcriptome,
and proteome. Many of these “omic” layers can now be read at single-cell resolution, thanks
to efforts that address challenges associated with the isolation of single cells and the analysis
of minute quantities of molecules present in each cell. These methods enable the exploration of
heterogeneity between cells and within populations previously assumed to be homogeneous: Even
two daughter cells that have just been produced from the same precursor cell during mitosis can
exhibit differences in their genomes (45), transcriptomes (149), and proteomes (101, 107).

For each class of molecule, there are a range of single-cell methods that can profile a partic-
ular omic layer, though these methods differ in their sensitivity and specificity as well as their
throughput and ease of use. Researchers should be aware of the limitations of the methods used in
their studies and their potential effects on the interpretation of the results. Single-cell technology
is developing rapidly, with many of the studies described in this review representing the edge of
what is currently possible. Some protocols are well established and widely used [such as several
single-cell RNA sequencing (scRNA-seq) protocols], while others are newer and have been used
primarily by the original authors. As more researchers develop these tools, it is likely that most
existing omic protocols will be adapted into robust single-cell methods.

Building on the development of these omics technologies, multiomics technologies for single
cells have emerged that are able to capture multiple omic layers from the same cell. These
include technologies for genomics plus transcriptomics, epigenomics plus transcriptomics, and
transcriptomics in combination with targeted proteomics. Profiling multiple omic layers makes
it possible to capture a more complete set of information about each cell than is possible from
any single omic layer alone, which better reflects the complex networks of interactions that are
responsible for cellular functions. Single-cell multiomics can therefore be more powerful than a
stand-alone omics (or mono-omics) technique performed on a set of single cells as well as different
mono-omics techniques performed on different sets of similar single cells. Furthermore, analysis
of associations between variation in multiple omic layers within the same single cells allows
relationships to be identified unambiguously. For example, a comparison of the transcriptome
of one cell with the genomic sequence of another cell can be confounded by somatic genetic
variation between the cells as well as variation in cellular states and external environment.

A further advantage of collecting multiple molecular layers from the same cell is that it enables
one to study the developmental history of tissues and identify key regulatory mechanisms of
phenotypic cell states. The DNA of a cell effectively contains a historical record of mutations
acquired with each cell cycle, beginning with the fertilized egg and revealing the cell’s lineage in
relation to a population of cells it shares ancestry with. Layering such cell lineage trees with the
transcriptomes of the same cells can reveal the developmental history of specific cell types and
states within healthy and diseased organs, including capture of clonal structures within organs and
tissues, the number of stem cells contributing to functional units in organs, and the differentiation
trajectories available to a given adult stem cell. Similarly, scRNA-seq data can be used to infer
cellular differentiation programs (68, 88, 126, 130, 144) and future transcriptomic states (96) if all
cellular stages of differentiation are represented in the data set. The ability of single-cell multiomics
technologies to link such information with epigenomic measurements of the same single cells
will allow the key regulatory drivers and mechanisms of cellular differentiation to be inferred. In
conclusion, the power to link molecular layers using single-cell multiomics technologies will enable
the characterization of cells and tissues at an unprecedented molecular and architectural resolution.

Single-cell omics are often defined as technologies that capture an entire molecular layer of
a cell. However, additional layers of data associated with a single cell that are traditionally not
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described as omics will add information that is critical to obtaining a full understanding of the
biology of cellular heterogeneity. For instance, because most human organ functions are executed
by the concerted action of individual cells in a spatially organized context, it is crucial to study
individual cells in their native dimensional context. This is important not only to understand
normal organ development and function but also to investigate how (subpopulations of ) cells
are perturbed in disease conditions, including cancer and neurological disorders. Therefore, we
suggest that spatial information may be regarded as an additional omic layer because it contributes
to a complete understanding of cells within tissues.

In this review, we provide an overview of single-cell omics and multiomics methods, including
recently developed protocols. We focus primarily on the principles of the protocols and their ad-
vantages and limitations and consider applications of multiomics methods to biological questions.
Finally, we review potential future developments that will enable both capture of more data layers
and larger-scale application of multiomics techniques.

CELL ISOLATION AND CELL BARCODING: KEY CONCEPTS IN
SINGLE-CELL OMICS AND MULTIOMICS TECHNIQUES

A crucial choice for any single-cell experiment is the method for isolating single cells into a format
compatible with the downstream single-cell omics analysis. Techniques for cell isolation differ
in their throughput, ease of use, and phenotypic information captured during isolation (63); the
proportion of cells retained also varies. Low-throughput methods, such as manual micromanip-
ulation (63), laser capture microdissection (36), Raman tweezers (132), and patch clamp (16), are
used to capture specific cells and can retain the spatial information; however, these approaches are
labor intensive and limited to isolating tens or hundreds of cells per study.

Higher throughput can be achieved with fluorescence-activated cell sorting (FACS) of cells
from single-cell suspensions followed by plate-based processing, where thousands of single cells
can readily be physically isolated into microliter-scale volumes of an appropriate lysis buffer.
Although larger numbers of cells can be processed, spatial information is lost when tissues are
dissociated into a cell suspension.

Use of microfluidic devices can increase throughput to tens of thousands of single cells. Key
technologies are devices containing microfluidic channels and reaction chambers controlled by
pressure-controlled valves, droplets generated in microfluidics chips, and devices that contain
nanowells (for a recent review, see 117). The cost per cell is greatly reduced by scaling the re-
action volume per cell to nanoliter- or picoliter-scale volumes, which can move the main cost
barrier for a given experiment to sequencing rather than library preparation. These approaches
typically require preparation of cell suspensions, which (as with plate-based methods) loses spa-
tial information. Phenotypic information (such as the presence of cell surface proteins) gathered
during FACS is also lost. However, newer methods (discussed in the section titled Single-Cell
Transcriptome-Plus-Protein Measurements) allow phenotypic information to be captured using
alternative technologies, which could in some cases replace information acquired during FACS.

Cell barcoding is also a crucial step, as it allows libraries from multiple single cells to be
sequenced together in the same pool, with downstream bioinformatic steps able to deconvolute
the sequence data into files representing each cell. In many plate-based techniques, the cell barcode
is added in the final PCR step before sequencing, with the combined pool of sequencing libraries
generated in the final steps. Many of the techniques enabled by microfluidic devices allow cell
barcodes to be added near the start of the protocol; this enables the pool of libraries to be made
earlier, often allowing the whole pool to be processed within a single tube. Combinatorial indexing
methods (17, 26, 118) use a different approach: Groups of fixed and permeabilized cells are FACS
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sorted per well of a plate, with each well receiving a different short barcode that can be associated
with the target molecule. Cells from all wells are then pooled and re-sorted into small groups per
well, where additional barcodes are added to the target molecules. This process can be repeated.
With sufficient barcodes and steps, thousands of cells can be barcoded uniquely using standard
plates, as there is a low probability of two cells receiving the same set of barcodes. However, it
should be noted that many cells are lost in combinatorial indexing. For example, in single-cell
combinatorial indexing RNA sequencing (17), ∼150,000 Caenorhabditis elegans larvae were used
to generate a total of six 96-well plates, where each well contained approximately 1,000 C. elegans
cells; these plates then produced 42,035 C. elegans single-cell transcriptomes.

TARGETS OF MULTIOMICS

To understand how single-cell mono-omics methods can be combined into current and future
multiomics technologies, it is important to understand the key protocol steps as well as their
individual strengths and limitations. We briefly present widely used and state-of-the-art methods
for single-cell mono-omics techniques.

Genomic DNA

In each cell division, there is a small but nonzero probability that each base in the genome can
acquire a mutation (106, 137). This means that genetic heterogeneity is certain given a sufficient
number of cell divisions, leading to somatic genetic variation within the tissues of multicellular
organisms. This genetic heterogeneity can cause a number of diseases, including cancer (138, 154),
neurological disorders (114), and developmental disorders (8).

Recent studies have shown that the scale of genetic heterogeneity is higher than expected from
textbook figures in both normal and diseased tissues (29, 33, 80–82, 97, 148), highlighting the
need to study somatic genetic variation and determine its causality in relation to phenotypes,
aging, and disease. However, there are both technical and financial limitations that restrict the
study of DNA in single cells. A diploid human cell contains approximately 7 pg of genomic DNA
(gDNA), necessitating amplification to yield sufficient DNA for sequencing. Conventional single-
cell genome sequencing methods rely on whole-genome amplification (WGA) for each cell prior
to library preparation. A range of WGA methods have been developed using the principles of
PCR or multiple displacement amplification, or a combination of both approaches; each strategy
has its own advantages and limitations. However, all WGA methods are prone to artifacts that
complicate the discovery of genetic variants in the resulting sequence data. These artifacts include
locus and allelic dropouts, which lead primarily to false-negative variant calls, as well as unevenness
in amplification, generation of chimeric DNA molecules, and introduction of base copy errors,
which can lead to false identification of DNA copy number variants, structural variants, and single-
nucleotide variants, respectively. Every WGA method suffers from these artifacts, but one method
may outperform another when considering a specific set of artifacts; there are therefore WGA
methods preferred for the discovery of DNA copy number as opposed to single-nucleotide variants
and structural variants. A thorough review by Gawad et al. (44) provided an in-depth discussion
of the advantages and limitations of these methods.

New methods for single-cell genome sequencing are emerging that address these challenges.
Improvements include optimization of WGA conditions, the use of tricks to preserve Watson–
Crick molecular strand identity during amplification of the cell’s double-stranded gDNA, and
direct preparation of sequencing libraries from single-cell gDNA, which avoids previous WGA in-
termediates. Specifically, Dong et al. (32) developed a wet-plus-dry laboratory pipeline to minimize
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false single-nucleotide-variant detection by modifying the multiple-displacement-amplification
conditions, reducing cytosine-deamination artifacts, and computationally modeling allelic ampli-
fication biases. For the detection of single-nucleotide variants known from bulk DNA sequencing,
the methodology enabled a sensitivity of 90.1% at a cost of 0.12 false positives per million base
pairs. However, the method is likely outperformed by other techniques for DNA copy number
analysis. Linear amplification via transposon insertion (LIANTI), developed by Chen et al. (18),
randomly fragments the gDNA from a single cell by using transposases loaded with a T7 promoter-
containing adaptor. The DNA fragments attached to T7 promoters are then subjected to in vitro
transcription, leading to linear rather than PCR-based exponential amplification. Following re-
verse transcription, RNase treatment, and second-strand DNA synthesis (51), the double-stranded
LIANTI amplicons are ready for DNA library preparation; this reduces amplification bias and
errors associated with nonspecific priming and exponential amplification in conventional WGA
methods. A genomic coverage of 97% could be obtained and single-nucleotide variants could be
detected with a false-positive rate of 5.4 × 10−6, while DNA copy number detection improved
to ∼10 kb. Furthermore, Zhang and colleagues (22) developed single-stranded sequencing us-
ing microfluidic reactors (SISSOR). A microfluidic device is used to separate the Watson and
Crick strands of chromosomes present in the lysate of a single cell in order to randomly parti-
tion megabase-size DNA strands into multiple nanoliter-scale compartments for amplification
and barcoded library preparation. Because the resulting sequencing reads can then be traced to
the Watson and Crick strands of DNA molecules, this method enables curation of the cell’s ge-
nomic sequences; real mutations must be reported by sequencing reads from both Watson and
Crick strands deriving from the same original DNA molecule. The method enabled sequenc-
ing of single-cell genomes with error rates as low as 10−8 but at reduced genomic coverage
(63.8% ± 9.8%), most likely owing to the loss of some DNA fragments during strand separation
and partitioning within the device, and the performance for DNA copy number detection remains
to be established. Bakker et al. (7) and Zahn et al. (156) developed approaches to avoid up-front
WGA by using fragmentation, adaptor tagging, and subsequent PCR to make a sequencing library
directly from the DNA present in single-cell lysates. Despite potential loss of genetic material,
these methods are well suited for gDNA copy number profiling using low-coverage sequencing,
as they can provide better uniformity of coverage, but they are not yet suitable for full genome
interrogation.

Methylomes

5-Methylcytosine (5mC) at CpG dinucleotides is an epigenetic mark that has historically been
associated with the repression of transcription, but this mark can have varying context-specific
effects on transcription (71). Multiple methods are used to capture this mark, and most rely on
the use of bisulfite, which converts cytosine to uracil while leaving 5mC residues unchanged,
allowing the discrimination of methylated from unmethylated cytosines in the resulting sequence
data. However, single-cell methylome sequencing remains technically challenging, as not only
is DNA starting material limited, but the bisulfite treatment also causes extensive DNA damage
(60, 84). This damage can lead to higher rates of locus and allelic dropouts compared with single-
cell genome sequencing approaches. In addition, two types of error can occur during bisulfite
treatment: over-conversion (leading to false-negative CpGs) and under-conversion (leading to
false-positive CpGs), which can be measured using methylated and unmethylated DNA spike-in
controls, respectively. Individual cells that fail to pass over- or under-conversion rate thresholds
set by the authors are excluded from further analysis; the choice of exact thresholds varies among
studies, but a typical under-conversion threshold is between 1% and 5%.
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Single-cell reduced-representation bisulfite sequencing (scRRBS) (53–55) covers an average
of ∼1 million CpGs for a single diploid mouse cell (out of ∼21.9 million CpGs in the mouse
genome) and can cover a maximum of ∼1.5 million CpGs overall when data for single cells are
pooled. Samples with an under-conversion rate of less than 2% were analyzed further in these
studies. After single-cell isolation, DNA is digested using the Msp1 restriction enzyme, which rec-
ognizes C∧CGG but is methylation insensitive. RRBS relies on the fact that CpGs are not evenly
distributed throughout the genome and tend to cluster in CpG islands close to gene promoter re-
gions (30). The use of Msp1 digestion enables the recovery of a large number of CpG islands, which
make up most of the library input material. After end repair and dA tailing, premethylated indexed
sequencing adaptors are ligated to the Msp1-digested DNA fragments prior to bisulfite conversion;
PCR is then used to amplify the product before sequencing. The use of biotinylated 5′ and 3′ adap-
tors and rescue steps with this protocol has recently been proposed to improve sample yield (153).

Bisulfite-induced DNA damage after adaptor ligation means that any damage to the insert
DNA will interfere with PCR amplification, leading to sample loss. Single-cell bisulfite sequencing
(scBS-seq) (24, 131) limits this loss by using a modification of the postbisulfite adaptor tagging
protocol (99). Here, DNA is bisulfite treated after cell lysis, simultaneously fragmenting the DNA
and converting unmethylated cytosines. A first set of biotin-tagged random primers containing the
first sequencing adaptor is then used to produce complementary strands to the bisulfite-converted
DNA. Repeating this step five times increases the sensitivity because it maximizes the number of
tagged DNA strands and generates multiple copies of each fragment. Biotin-tagged DNA is then
purified, which is followed by another random priming with the reverse primer containing the
other sequencing adaptor. The resulting fragments are amplified by PCR prior to sequencing. This
technique can provide methylation status information for a maximum of 10.1 million CpG sites
in the mouse genome when data from single cells are pooled, profiling an average of 3.7 million
CpGs for a standard diploid mouse cell. These studies used an under-conversion threshold of less
than 5%, with a typical under-conversion rate of less than 2%.

A postbisulfite adaptor tagging approach was also used in single-cell whole-genome bisulfite
sequencing (scWGBS) (39), although multiple rounds of first-strand synthesis complementary to
the bisulfite-treated DNA were omitted. This technique allows a mean coverage of 1 million CpGs
and a maximum of 2.7 million CpGs (39) or, with higher sequencing depth, 2.2 million CpGs
and a maximum of 8.5 million CpGs (50) in diploid mouse cells. An over-conversion rate of less
than 2% and an under-conversion rate of less than 1% were reported (39). Here, cells are sorted
into 96-well plates for bisulfite conversion, which is followed by random-hexamer-primed DNA
synthesis, terminal tagging, and enrichment PCR. This approach has also been extended to single
nuclei for systems where single-cell isolation is difficult, such as neurons (91). scWGBS does not
have a preamplification step (in contrast to scBS-seq), which reduces amplification biases, allowing
more accurate identification of PCR duplicates and reducing reagent costs. In comparison with
scWGBS, scBS-seq has a higher library complexity (39) and therefore is better suited to deep
sequencing at high coverage; scWGBS is better suited to low-coverage methylation profiling of
many cells. Unlike scRRBS and scWGBS, scBS-seq does not give stranded information.

A final method for profiling 5mC in single cells is to use methylation-sensitive restriction en-
zymes, which avoids bisulfite-mediated DNA degradation. The first use of this approach in single
cells applied the BstUI restriction enzyme, which recognizes CG∧CG sites and does not digest
methylated DNA (5mC at position 1 or 3 on one or both strands) (89). Subsequent PCR with three
primers produces two products for undigested DNA (i.e., the restriction recognition sequence is
methylated on one or more CpGs) and one product for digested DNA (i.e., the restriction recog-
nition sequence is unmethylated), as one of the primer pairs spans the restriction site; this was used
to analyze six loci. Another technique, single-cell restriction analysis of methylation (SCRAM)
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(21), increased the throughput of this technique to analyze up to 24 loci in 48 single cells; further
studies could increase this scale. This method also uses HpaII, which recognizes 5′-CC∧GG-3′

and is blocked by 5mC at position 1 or 2 on one or both strands; in mammals, however, the second
cytosine is more likely to be methylated. Neither of these approaches is genome-wide, and both
have only single-base-pair resolution at the cut site.

DNA methylation is complex and regulated: Tet (ten eleven translocation) proteins ac-
tively demethylate 5mC and progressively oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (66). Although these modifications may
seem to be derivatives of 5mC, they may have functional roles (40) and can be used to track
the dynamics of DNA methylation. Additionally, there is evidence that 5fC and 5caC can af-
fect transcription by affecting the rate and specificity of RNA polymerase II (74). The bisulfite-
and restriction-enzyme-based methods do not discriminate between 5mC and 5hmC, and 5fC
and 5caC are converted to uracils during bisulfite treatment (65, 69, 155); novel approaches are
therefore needed to probe the role of these modifications.

Methylase-assisted bisulfite sequencing (MAB-seq) allows detection of 5fC and 5caC indirectly
using a treatment with CpG methylase M.SssI, which methylates all unmethylated CpG sites, pro-
tecting cytosines but not 5fCs and 5caC during bisulfite treatment (105, 151). This method was
adapted for single cells (152), capturing cell-specific 5fC/5caC profiles of mice embryonic stem
cells and blastomeres, and provided evidence for 5fC/5caC dilution at DNA replication, producing
two daughter cells with complementary 5fC/5caC patterns. Single-cell MAB-seq can also be used
to map sister chromatid exchange. Furthermore, 5fC can be detected directly with single-cell
chemical-labeling-enabled C-to-T conversion sequencing (scCLEVER-seq) (158). This tech-
nique uses malononitrile, which specifically reacts with 5fC and therefore directly chemically
labels this modification. When the PCR product is amplified, the adduct prevents normal pairing
with guanine, meaning labeled 5fC sites are read as thymine.

Mooijman et al. (100) profiled the remaining modification, 5hmC, through glycosylation of
5hmC positions, which generates recognition sites for the restriction endonuclease AbaS1. This
study also used 5hmC to trace the lineages of single cells.

Histone Modifications

Modification of the N/C-terminal tails of histone proteins can act to modify the probability of
gene expression occurring near a DNA locus. Capturing information about histone modifications
at the single-cell level would be informative for studying the epigenetic programs of cells (such as
cellular differentiation trajectories) and predicting possible transcriptional states.

Modifications to histone proteins can be surveyed at single-cell resolution using droplet-based
chromatin immunoprecipitation (Drop-ChIP) (120). Bulk ChIP followed by sequencing (ChIP-
seq) uses antibodies specific to a histone modification to pull down chromatin associated with
that mark. Low-input ChIP-seq is challenging, as small amounts of on-target epitope binding
combined with nonspecific antibody binding results in a low signal-to-noise ratio. Drop-ChIP
uses microfluidic devices to coencapsulate cells in a droplet with a lysis detergent and micrococcal
nuclease (MNase), generating mono-, di-, or trinucleosomes, and these nucleosome droplets are
then merged one by one with a droplet containing a cell-specific barcode and an aliquot of DNA
ligase solution. This generates barcoded chromatin fragments with a PCR handle. ChIP-seq
can then be performed on these pooled fragments in the presence of carrier chromatin. This
method was used to identify histone H3 dimethylation at lysine 4 (H3K4me2) and histone H3
trimethylation at lysine 4 (H3K4me3) marks in mixed populations of mouse cells. These profiles
have a sparse amount of signal, with an average of ∼1,000 unique reads per cell, leading to ∼800
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peaks per cell. Although this leads to low de novo peak identification sensitivity, the accuracy of
these data is high, with ∼50% of the reads aligning to known positive peaks from bulk ChIP-seq,
which has proved sufficient to cluster cells into cell type.

Open Chromatin

Profiling open chromatin or DNA accessibility allows researchers to infer usage of gene regulatory
elements such as promoters and enhancers and can be used to infer operative transcription factors
via footprinting analysis (145). For bulk samples, several approaches have been developed to
identify these accessible DNA sequences (98). Most approaches [MNase sequencing (MNase-seq)
(123), formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-
seq) (49), and DNase sequencing (DNase-seq) (11)] fragment the accessible DNA, generating
small fragments (<200 base pairs) that can be processed into libraries. Single-cell DNase-seq of
DNase I hypersensitive sites has been achieved by including circular carrier DNA along with the
digested material from the single cell during purification and library preparation to minimize loss
of the small quantity of DNase I hypersensitive site DNA (25, 70).

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) uses transposases
that can simultaneously fragment and ligate (or tagment) adaptors to DNA in open chromatin; less
accessible chromatin should not be fragmented. Subsequent PCR amplification is performed with
primers complementary to these adaptors. The DNA fragments in these libraries are enriched
for open chromatin and require a relatively shallow sequencing depth (13). ATAC-seq has been
adapted for single cells using a programmable microfluidic platform (14), which can process up to
96 samples. Single-nucleus ATAC-seq has also been achieved using combinatorial indexing (26),
but this requires barcode-carrying transposases, which are not yet commercially available. These
different barcode-carrying transposases are used to tagment small populations of nuclei in plate
format. Following transposition, all nuclei are pooled, redistributed, and then lysed. Subsequently,
a second barcode is added with PCR using indexed primers complementary to the transposase-
introduced adaptors. Finally, all PCR products are pooled and sequenced. Reads containing the
same combination of barcodes are highly likely to be derived from the same cell.

Nuclear Structure

Transcriptomic output is also regulated by the higher-order chromatin structure of the DNA
within a cell (85). Single-cell high-throughput chromosome conformation capture (scHi-C) can
be used to determine the chromosomal architecture within single cells, revealing thousands of
contacts (102, 104). This technique was also used to associate dynamics in topologically associated
domains with cell cycle progression (103). Two studies recently improved the sensitivity of the
scHi-C technique (41, 103). A related approach, single-cell combinatorial indexed Hi-C (sciHi-C)
(118), uses combinatorial barcoding to increase the throughput of the technique without the need
to physically isolate thousands of nuclei.

A key step of scHi-C is cross-linking of a bulk cell sample, which is followed by cell per-
meabilization and the creation of a nuclear suspension. A restriction digest is used to fragment
the gDNA; overhanging ends are filled in, using biotin-labeled dATP in the mix of nucleotides.
Nearby fragments are then ligated, capturing spatial nuclear organization. Single nuclei are sub-
sequently isolated, and the cross-linking is reversed. Through the use of streptavidin-coated mag-
netic beads, the informative biotin-containing fragments are captured and converted into a library
for sequencing. Downstream analysis identifies which distant sequences are present in the same
fragment, enabling deconvolution of spatial genomic relationships.
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DNA adenine methyltransferase identification (DamID) allows the identification of DNA–
protein interactions in single cells (78). This technique was used to study lamina-associated do-
mains, i.e., regions of interphase chromosomes that interact with the nuclear lamina. The Esche-
richia coli enzyme Dam is fused to a protein of interest using genetic techniques. The fusion protein
is usually inducible, and upon induction, Dam methylates the adenines in GATC motifs in close
proximity to it—i.e., DNA that is likely to be interacting with the protein of interest. Cells are
FACS sorted into a lysis buffer in plates and digested with the restriction enzyme DpnI, which is
specific for Dam-methylated GATC sequences. Adaptor ligation, PCR, and library preparation
then follow before sequencing. These steps are all carried out in one tube (as much as possible) to
minimize DNA loss.

RNA

The transcriptome is dynamic and tightly linked to cell identity and function, enabling definition
of the cell type and cell state. Examining the transcriptome at the single-cell level allows the
interrogation of inherent features of transcription, such as transcriptional noise and regulated
heterogeneity. Single-cell resolution is essential in elucidating coexpression and mutually exclusive
expression of genes within cells. Transcripts are thought to be expressed over several orders of
magnitude, with many transcripts having low-level expression [5–20 transcript copies per cell
(139)]. A typical human cell contains less than 1 pg of mRNA (72).

Protocols for measuring eukaryotic polyadenylated mRNA are the most developed of the
scRNA-seq techniques, although they vary in their sensitivity and accuracy (140, 160). Read
counts from synthetic spike-in RNAs, such as ERCCs (named for the External RNA Controls
Consortium, which developed them), can be used to compare these protocols; the performance of
these assays is strongly dependent on sequencing depth, with the maximum observed sensitivity
saturating at approximately 4.5 million reads per cell (140). Eukaryotic mRNA can be selectively
amplified, enabling enrichment compared with the highly abundant and relatively uninformative
rRNA. This selective reverse transcription can be achieved by using an oligo(dT) primer, which
can also add a PCR handle to the 5′ end of the first-strand complementary DNA (cDNA). Many
protocols make use of the template-switching activity (159) of Moloney murine leukemia virus
(MMLV) reverse transcriptases, which allows the addition of a second PCR handle at the 3′ end of
the first-strand cDNA; this, in turn, enables exponential amplification with PCR. Other protocols
make use of in vitro transcription from a T7 promoter incorporated into one end of the cDNA,
which enables linear amplification (34). Other parameters that vary between protocols include
whether the sequence data generated encode the full-length mRNA or a 5′ or 3′ fragment and
whether strand information is retained.

Scale is a key variable in scRNA-seq experiments, as the number of cells processed within
a single sample has increased exponentially in recent years (121, 141). Plate-based methods are
able to process hundreds of cells per experiment, with the potential to process thousands of
cells across multiple runs. Widely used protocols include Smart-seq and Smart-seq2 (112, 113),
which use template switching in combination with PCR, while cell expression by linear ampli-
fication and sequencing (CEL-seq) (59), CEL-seq2 (58), and massively parallel RNA single-cell
sequencing (MARS-seq) (67) use in vitro transcription, although there is an even wider range
available (111). Optimization of plate-based techniques has been achieved by multiple groups;
a recently optimized protocol is single-cell RNA barcoding and sequencing (SCRB-seq) (133),
which was improved in molecular crowding single-cell RNA barcoding and sequencing (mcSCRB-
seq) (6) by the addition of polyethylene glycol (a crowding agent) and substitution of the PCR
polymerase.
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Microfluidics-based approaches have enabled thousands of cells to be processed in parallel.
Droplet-based platforms such as Drop-seq (95) and InDrop (79, 161) facilitate large-scale cell
numbers at low cost; droplet scRNA-seq has also been commercialized at a similar scale (157). A
simple and low-cost nanowell-based approach, Seq-well (47), can process up to 10,000 cells per
array. Combinatorial indexing (17) can also process thousands of cells in parallel but requires cells
to be fixed.

Other studies focus on different aspects of the transcriptome. Single-cell integrated nuclear
RNA and cytoplasmic RNA sequencing (SINC-seq) allows differential capture and quantification
of mRNA from the nucleus and cytoplasm from the same single cell by physically separating
the nucleus and cytoplasm, allowing insights into posttranscriptional dynamics and regulation
(1). Noncoding RNAs are underexplored at the single-cell level, although some long noncoding
RNAs can be captured via their poly(A) tail (77). Small RNAs have been captured on a single-cell
scale (38), but this approach has not yet been widely adopted.

Proteins

Proteins directly mediate cellular function, and therefore it is crucial to understand their hetero-
geneity between cells. Analysis of single-cell proteomes is limited by the small amount of starting
material as well as the inability to directly amplify proteins.

A simple single-cell proteomic readout uses antibodies conjugated to fluorophores that target
proteins of interest and subsequent flow cytometry to measure the levels of fluorescent signal
per cell as a proxy for protein abundance per cell. This enables analysis of thousands to millions
of cells in a single run and can be multiplexed to tens of proteins by using different dyes for
different antibodies; however, spectral overlap limits multiplexing (109). Replacing fluorophores
with different stable metal isotope tags enables more than 40 proteins to be multiplexed when
analyzed by mass cytometry but is limited by the number of available stable metal isotopes (9,
134).

An alternative method uses antibodies conjugated with DNA barcode sequences, enabling the
conversion of the protein signal into an amplifiable DNA sequence. After washes, the bound
antibody–oligonucleotide can be amplified, increasing its signal. Subsequently, protein levels can
be determined by quantitative PCR (qPCR) or sequencing of the DNA products. The capacity
for multiplexing is much greater—4n, where n represents the length of the antibody-specific DNA
sequence. However, covering the full proteome [which is estimated to comprise more than 20,000
proteins and many more proteoforms for humans (115)] is unlikely, mainly because of the lack of
high-affinity antibodies.

Ullal et al. (146) first introduced the antibody barcoding with photocleavable DNA (ABCD)
technique. They fixed and permeabilized human cancer cells so that both intracellular and extra-
cellular proteins could be profiled using a panel of ∼90 barcoded antibodies. Following antibody
staining and washing, UV light releases the DNA barcode from the antibody, and barcodes are
counted using fluorescent hybridization technology, enabling multiplexed quantitation on the
NanoString fluorescent DNA barcoding platform. A limitation of this technique is the lack of
possible sample/cell multiplexing, which limits throughput.

Abseq (129) overcomes this multiplexing limit with a microfluidic device. Cells are stained
with antibodies containing a DNA barcode comprising (a) a sequence that is antibody specific,
allowing the target protein to be identified, and (b) a unique molecular index (UMI) sequence,
which allows PCR duplicates to be identified following sequencing, thus improving the accuracy
of quantification. A microfluidic device then isolates antibody-bound single cells into droplets
that contain the proteinase K lysing agent, releasing the barcode within the droplet. Following
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proteinase K inactivation, these droplets are merged with droplets containing oligonucleotides
with cell-specific barcodes. Strand overlap extension PCR (SOE-PCR) is used to associate the
cell-specific barcode with the antibody barcode within the same droplet. This technique can
profile more than 10,000 cells in parallel in an hour. The authors noted that the encapsulation
method is similar to InDrop and Drop-seq and therefore may be compatible with multiomic RNA
and DNA capture. However, this technique is currently limited to cell surface proteins.

Single-cell proteomics by mass spectrometry (SCoPE-MS) increases the depth of single-cell
proteomics compared with antibody-mediated methods, with 583 proteins quantified at the single-
cell level (12). SCoPE utilizes tandem mass tag (TMT) labeling to enable TMT-labeled peptides
from single cells to be pooled with 100–200 carrier cells in the mass spectrometry run. TMT-
labeled peptides can be quantified while using the total pooled peptides to identify its sequence.
Improvements in the sensitivity and speed of mass spectrometry will further enhance the method,
which may be extended to include protein modifications.

The proteome extends outside the confines of the cellular membrane: Proteins can be secreted
and/or deposited on the surface of a cell. Techniques have emerged to trap cells in nanoliter-scale
chambers; the introduction and sealing of a miniaturized antibody microarray onto the top of
the well allow secreted proteins to bind to their cognate antibody. Secreted protein levels are
quantified by a multicolor immunoassay. Use of spatial and spectral positioning of dots allowed
this method to analyze a secreted proteome of 42 proteins (90).

Spatial Transcriptomics

A cell rarely exists in isolation, and environmental signals will be integrated to some extent by
every cell. This environment consists of a complex set of factors, including interactions with other
cells and signaling molecules. Identifying a cell’s context, especially within a primary tissue or
organoid model, is therefore essential to understand how a single cell’s phenotype relates to its
three-dimensional spatial coordinates.

An indirect approach to identify localization is to analyze cells with scRNA-seq and map these
data onto a reference map that was generated using RNA in situ hybridization approaches (2,
108, 122, 124). A direct approach is spatial transcriptomics (135), which uses barcoded oligo(dT)
primers immobilized and arrayed onto glass slides. The spotted oligo(dT) primers include a cleav-
age site, an amplification handle, a spatial barcode (ID), a UMI, and an oligo(dT) sequence. Tis-
sue sections are placed onto the slide, fixed, and then permeabilized, which allows free polyade-
nylated transcripts to anneal to the barcoded oligo(dT) array. Next, cDNA is generated and can be
cleaved from the slide and converted into an RNA-seq library. The ID index in the sequence data
allows sequence reads to be mapped to spatial coordinates on the array and therefore the tissue;
the inclusion of UMIs reduces noise. A disadvantage of the current system is that the oligo(dT)
spots on the array have a diameter of 100 μm and thus often capture transcripts from multiple
cells rather than a single cell.

Alternative in situ sequencing approaches are being developed that involve directly preparing
massively parallel sequencing libraries in fixed cells or tissue sections (73, 83). Subsequently, these
libraries (primarily targeted transcripts) are sequenced in situ, providing sequencing reads from
the locations of the nucleic acid molecule within the cell and thus the tissue, which results in
spatial maps of the acquired sequences. Issues with overcrowding and low sensitivity need to be
overcome to enable transcriptome-wide capture of spatial information.

Alternatively, use of sequential fluorescence in situ hybridization (seqFISH) approaches (19,
127, 128) enables highly accurate quantitative detection of transcripts from hundreds to thousands
of genes, which are linked with their cellular locations. seqFISH approaches are typically more
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Advantages and limitations

Separation of nucleus and cytoplasm (e.g., scTrio-seq and scMT-seq) 

Process without separation (e.g., DR-seq)

TTTTTTTTTTn
AAAAAAAAAAn Magnet

scRNA-seq library

scDNA-seq library

scRNA-seq library

scDNA-seq library

Separation of DNA and RNA (e.g., G&T-seq and scM&T-seq) 

scRNA-seq library

scDNA-seq library

Cell

mRNA

gDNA gDNA
Lysis

Lysis

Lysis

Separation

PCR of DNA

Second-strand
cDNA synthesis

and in vitro
transcription

Second-strand
cDNA synthesis

and in vitro
transcription

scRNA-seq

Preamplification
of gDNA and 
mRNA (cDNA)

mRNA

scDNA-seq

scRNA-seq

scDNA-seq

Reverse transcription

Amplification

Split

Amplified gDNA
and cDNA

Cell lysate

Cell lysate
Cell lysate + beads

Amplified gDNA

Amplified cDNA

Incubation with oligo(dT) beads

Nucleus

Cytosol

• Minimal risk of loss of molecules
  (as preamplified in the first vessel)
• cDNA contamination in gDNA
  library
• Not amenable to bisulfite
  sequencing

• scDNA-seq and scRNA-seq
  protocols are easily modified
• Amenable to bisulfite sequencing
• Potential loss of molecules

scRNA-seq library

Single-cell
protein data

Splitting of cell lysate, such as protein and RNA (e.g., PEA) 

Lysis

scRNA-seq
Reverse

transcription

Detection of
proteins

Split

Cell lysate

Proteins detected 

Amplified cDNA 

• Amenable to RNA and protein
  measurements in parallel
• Significant loss of molecules

Analysis

• scDNA-seq and scRNA-seq
  protocols are easily modified
• Amenable to bisulfite sequencing
• Loss of cytoplasmic and
  all nuclear mRNA molecules

Figure 1
Overview of basic single-cell multiomics strategies. Bold text indicates a process; standard text indicates the relevant biological molecules.
Abbreviations: cDNA, complementary DNA; DR-seq, DNA–RNA sequencing; G&T-seq, genome and transcriptome sequencing;
gDNA, genomic DNA; PEA, proximity extension assay; scDNA-seq, single-cell DNA sequencing; scMT-seq, single-cell methylome
and transcriptome sequencing (using a strategy similar to scTrio-seq); scM&T-seq, single-cell methylome and transcriptome sequencing
(using a protocol based on G&T-seq); scRNA-seq, single-cell RNA sequencing; scTrio-seq, single-cell triple-omics sequencing.

sensitive than scRNA-seq: scRNA-seq detects 20–40% of mRNA molecules present in the cell,
while seqFISH approaches detect 85% of the targeted transcripts in situ.

Spatial information has also been combined with proteomics analysis using mass cytometry.
Tissue is stained for mass cytometry, and spatial information is obtained by using a scanning laser
that ablates the tissue and sends it in real time through high-temperature plasma and then onto a
mass spectrometer. This method was used to identify both proteins (4) and protein modifications
(48).

SINGLE-CELL MULTIOMICS TECHNOLOGIES

A range of strategies following cell lysis enable single-cell multiomics (Figure 1, Table 1): The
cell lysate may be split and subjected to different omics analyses, or the “omes” may be either
separated prior to downstream analysis or processed and tagged without a priori separation (10).

Single-Cell Genome-Plus-Transcriptome Sequencing

Methods that profile DNA and RNA from the same single cell can link acquired genetic variation
to transcriptional variation unambiguously. Furthermore, the genomic information may be used
to construct cell lineage trees, which is important in understanding normal development (150) as
well as disease etiology and progression (28).

26 Chappell · Russell · Voet

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
8.

19
:1

5-
41

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
5.

92
.2

35
.6

2 
on

 0
3/

30
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



GG19CH02_Voet ARI 2 August 2018 9:17

T
ab

le
1

Si
ng

le
-c

el
lm

ul
ti

om
ic

s
te

ch
no

lo
gi

es

T
ec

hn
ol

og
y

G
en

om
ic

la
ye

r

C
hr

om
at

in
ac

ce
ss

ib
il-

it
y

ep
ig

en
et

ic
la

ye
r

C
pG

m
et

hy
la

ti
on

ep
ig

en
et

ic
la

ye
r

T
ra

n-
sc

ri
pt

om
ic

la
ye

r
P

ro
te

in
la

ye
r

St
ra

te
gy

C
el

li
so

la
ti

on
a

C
el

l
th

ro
ug

h-
pu

t
A

ut
o-

m
at

io
n

C
on

st
it

ue
nt

m
et

ho
ds

D
R

-s
eq

(3
1)

G
en

om
e

—
—

T
ra

ns
-

cr
ip

to
m

e
—

P
re

am
pl

ifi
ca

tio
n

an
d

ta
gg

in
g

of
D

N
A

an
d

R
N

A
fo

llo
w

ed
by

sp
lit

tin
g

M
ou

th
pi

pe
tt

e
L

ow
N

o
M

od
ifi

ed
C

E
L

-s
eq

(5
9)

an
d

m
od

ifi
ed

M
A

L
B

A
C

(1
61

)

G
&

T
-s

eq
(9

2,
94

)
G

en
om

e
—

—
T

ra
ns

-
cr

ip
to

m
e

—
Se

pa
ra

tio
n

(D
N

A
an

d
po

ly
ad

en
yl

at
ed

m
R

N
A

)

FA
C

S
M

ed
iu

m
Y

es
M

od
ifi

ed
Sm

ar
t-

se
q2

(1
12

,
11

3)
an

d
P

ic
oP

L
E

X
W

G
A

or
M

D
A

W
G

A
(9

2,
94

)

sc
T

ri
o-

se
q

(6
2)

C
N

V
s

(f
ro

m
sc

R
R

B
S

da
ta

)

—
R

ed
uc

ed
-

re
pr

es
en

ta
tio

n
D

N
A

C
pG

m
et

hy
la

tio
n

T
ra

ns
-

cr
ip

to
m

e
—

Se
pa

ra
tio

n
(n

uc
le

us
an

d
cy

to
pl

as
m

)
fo

llo
w

ed
by

bi
su

lfi
te

co
nv

er
si

on

M
ou

th
pi

pe
tt

e
L

ow
N

o
sc

R
N

A
-s

eq
m

et
ho

d
of

T
an

g
et

al
.(

14
3)

an
d

sc
R

R
B

S
(5

4)

sc
M

T
-s

eq
(6

4)
SN

P
s

(f
ro

m
sc

R
R

B
S

an
d

sc
R

N
A

-
se

q
da

ta
)

—
R

ed
uc

ed
-

re
pr

es
en

ta
tio

n
D

N
A

C
pG

m
et

hy
la

tio
n

T
ra

ns
-

cr
ip

to
m

e
—

Se
pa

ra
tio

n
(n

uc
le

us
an

d
cy

to
pl

as
m

)
M

ic
ro

ca
pi

lla
ry

pi
pe

tt
e

L
ow

P
ar

tia
l

M
od

ifi
ed

Sm
ar

t-
se

q2
pr

ot
oc

ol
(1

12
,

11
3)

an
d

m
od

ifi
ed

sc
R

R
B

S
(5

4)

sc
G

E
M

(2
0)

T
ar

ge
te

d
ge

no
ty

p-
in

g
(S

an
ge

r
an

d
ne

xt
-

ge
ne

ra
tio

n
se

qu
en

c-
in

g)

—
T

ar
ge

te
d

D
N

A
C

pG
m

et
hy

la
tio

n
(q

P
C

R
)

T
ar

ge
te

d
(R

T
-

qP
C

R
)

—
R

es
tr

ic
tio

n
di

ge
st

io
n,

pr
ea

m
pl

ifi
ca

tio
n,

an
d

sp
lit

tin
g

Fl
ui

di
gm

C
1

M
ed

iu
m

Y
es

M
od

ifi
ed

SC
R

A
M

(2
1)

sc
M

&
T

-
se

q
(5

)
—

—
D

N
A

C
pG

m
et

hy
la

tio
n

T
ra

ns
-

cr
ip

to
m

e
—

Se
pa

ra
tio

n
(D

N
A

an
d

po
ly

ad
en

yl
at

ed
m

R
N

A
)f

ol
lo

w
ed

by
bi

su
lfi

te
co

nv
er

si
on

FA
C

S
M

ed
iu

m
Y

es
M

od
ifi

ed
G

&
T

-s
eq

(9
2,

94
)a

nd
m

od
ifi

ed
sc

B
S-

se
q

(2
4,

13
1) (C

on
tin

ue
d)

www.annualreviews.org • Single-Cell (Multi)omics Technologies 27

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
8.

19
:1

5-
41

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
5.

92
.2

35
.6

2 
on

 0
3/

30
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



GG19CH02_Voet ARI 2 August 2018 9:17

T
ab

le
1

(C
on

ti
nu

ed
)

T
ec

hn
ol

og
y

G
en

om
ic

la
ye

r

C
hr

om
at

in
ac

ce
ss

ib
il-

it
y

ep
ig

en
et

ic
la

ye
r

C
pG

m
et

hy
la

ti
on

ep
ig

en
et

ic
la

ye
r

T
ra

n-
sc

ri
pt

om
ic

la
ye

r
P

ro
te

in
la

ye
r

St
ra

te
gy

C
el

li
so

la
ti

on
a

C
el

l
th

ro
ug

h-
pu

t
A

ut
o-

m
at

io
n

C
on

st
it

ue
nt

m
et

ho
ds

sc
N

O
M

e-
se

q
(1

16
)

—
C

hr
om

at
in

ac
ce

ss
ib

il-
ity

D
N

A
C

pG
m

et
hy

la
tio

n
—

—
B

is
ul

fit
e

co
nv

er
si

on
FA

C
S

M
ed

iu
m

N
o

—

sc
C

O
O

L
-

se
q

(5
2)

C
N

V
an

d
pl

oi
dy

C
hr

om
at

in
ac

ce
ss

ib
il-

ity

D
N

A
C

pG
m

et
hy

la
tio

n
—

—
B

is
ul

fit
e

co
nv

er
si

on
an

d
pr

ed
ic

tio
n

of
C

N
V

s

M
ic

ro
m

an
ip

u-
la

to
r

L
ow

N
o

sc
B

S-
se

q
(2

4,
13

1)

sc
N

M
T

-
se

q
(2

3)
—

C
hr

om
at

in
ac

ce
ss

ib
il-

ity

D
N

A
C

pG
m

et
hy

la
tio

n
T

ra
ns

-
cr

ip
to

m
e

—
B

is
ul

fit
e

co
nv

er
si

on
fo

llo
w

ed
by

se
pa

ra
tio

n

FA
C

S
M

ed
iu

m
P

ar
tia

l
sc

M
&

T
-s

eq
(5

)a
nd

sc
N

O
M

e-
se

q
(1

16
)

P
E

A
/S

T
A

(4
6)

—
—

—
T

ar
ge

te
d

T
en

s
of

pr
o-

te
in

s

C
om

bi
na

tio
n

Fl
ui

di
gm

C
1

M
ed

iu
m

Y
es

—

P
L

A
Y

R
(4

2)
—

—
—

T
ra

ns
-

cr
ip

to
m

e
T

en
s

of
pr

o-
te

in
s

C
om

bi
na

tio
n

M
as

s
cy

to
m

et
ry

H
ig

h
N

o
—

C
IT

E
-s

eq
(1

36
)

—
—

—
T

ra
ns

-
cr

ip
to

m
e

T
en

s
of

pr
o-

te
in

s

C
om

bi
na

tio
n

fo
llo

w
ed

by
se

pa
ra

tio
n

of
lib

ra
ri

es

D
ro

p-
se

q
an

d
10

x
G

en
om

ic
s

C
hr

om
iu

m

H
ig

h
N

o
D

ro
p-

se
q

(9
5)

an
d

10
x

G
en

om
ic

s
C

hr
om

iu
m

(1
57

)

R
E

A
P

-s
eq

(1
10

)
—

—
—

T
ra

ns
-

cr
ip

to
m

e
T

en
s

of
pr

o-
te

in
s

C
om

bi
na

tio
n

fo
llo

w
ed

by
se

pa
ra

tio
n

of
lib

ra
ri

es

10
x

G
en

om
ic

s
C

hr
om

iu
m

H
ig

h
N

o
10

x
G

en
om

ic
s

C
hr

om
iu

m
(1

57
)

A
bb

re
vi

at
io

ns
:C

E
L

-s
eq

,c
el

le
xp

re
ss

io
n

by
lin

ea
r

am
pl

ifi
ca

tio
n

an
d

se
qu

en
ci

ng
;C

IT
E

-s
eq

,c
el

lu
la

r
in

de
xi

ng
of

tr
an

sc
ri

pt
om

es
an

d
ep

ito
pe

sb
y

se
qu

en
ci

ng
;C

N
V

,c
op

y
nu

m
be

r
va

ri
at

io
n;

D
R

-s
eq

,D
N

A
–R

N
A

se
qu

en
ci

ng
;

D
ro

p-
se

q,
dr

op
le

t-
ba

se
d

se
qu

en
ci

ng
;F

A
C

S,
flu

or
es

ce
nc

e-
ac

tiv
at

ed
ce

ll
so

rt
in

g;
G

&
T

-s
eq

,g
en

om
e

an
d

tr
an

sc
ri

pt
om

e
se

qu
en

ci
ng

;M
A

L
B

A
C

,m
ul

tip
le

an
ne

al
in

g
an

d
lo

op
in

g–
ba

se
d

am
pl

ifi
ca

tio
n

cy
cl

es
;M

D
A

,m
ul

tip
le

di
sp

la
ce

m
en

ta
m

pl
ifi

ca
tio

n;
P

E
A

,p
ro

xi
m

ity
ex

te
ns

io
n

as
sa

y;
P

L
A

Y
R

,p
ro

xi
m

ity
lig

at
io

n
as

sa
y

fo
r

R
N

A
;q

P
C

R
,q

ua
nt

ita
tiv

e
P

C
R

;R
E

A
P

-s
eq

,R
N

A
ex

pr
es

si
on

an
d

pr
ot

ei
n

se
qu

en
ci

ng
as

sa
y;

R
T

-q
P

C
R

,r
ev

er
se

tr
an

sc
ri

pt
io

n
qu

an
tit

at
iv

e
P

C
R

;s
cB

S-
se

q,
si

ng
le

-c
el

lb
is

ul
fit

e
se

qu
en

ci
ng

;s
cC

O
O

L
-s

eq
,s

in
gl

e-
ce

ll
ch

ro
m

at
in

ov
er

al
lo

m
ic

-s
ca

le
la

nd
sc

ap
e

se
qu

en
ci

ng
;s

cG
E

M
,s

in
gl

e-
ce

ll
an

al
ys

is
of

ge
no

ty
pe

,e
xp

re
ss

io
n,

an
d

m
et

hy
la

tio
n;

sc
M

T
-s

eq
,

si
ng

le
-c

el
lm

et
hy

lo
m

e
an

d
tr

an
sc

ri
pt

om
e

se
qu

en
ci

ng
(u

si
ng

a
st

ra
te

gy
si

m
ila

r
to

sc
T

ri
o-

se
q)

;s
cM

&
T

-s
eq

,s
in

gl
e-

ce
ll

m
et

hy
lo

m
e

an
d

tr
an

sc
ri

pt
om

e
se

qu
en

ci
ng

(u
si

ng
a

pr
ot

oc
ol

ba
se

d
on

G
&

T
-s

eq
);

sc
N

M
T

-s
eq

,s
in

gl
e-

ce
ll

se
qu

en
ci

ng
te

ch
ni

qu
e

th
at

co
m

bi
ne

ss
cN

O
M

e-
se

q
an

d
sc

M
&

T
-s

eq
;s

cN
O

M
e-

se
q,

si
ng

le
-c

el
ln

uc
le

os
om

e
oc

cu
pa

nc
y

an
d

m
et

hy
lo

m
e

se
qu

en
ci

ng
;S

C
R

A
M

,s
in

gl
e-

ce
ll

re
st

ri
ct

io
n

an
al

ys
is

of
m

et
hy

la
tio

n;
sc

R
N

A
-s

eq
,s

in
gl

e-
ce

ll
R

N
A

se
qu

en
ci

ng
;s

cR
R

B
S,

si
ng

le
-c

el
lr

ed
uc

ed
-r

ep
re

se
nt

at
io

n
bi

su
lfi

te
se

qu
en

ci
ng

;s
cT

ri
o-

se
q,

si
ng

le
-c

el
lt

ri
pl

e-
om

ic
ss

eq
ue

nc
in

g;
ST

A
,s

hi
ft

ed
te

rm
in

at
io

n
as

sa
y;

W
G

A
,w

ho
le

-g
en

om
e

am
pl

ifi
ca

tio
n;

—
,n

ot
ap

pl
ic

ab
le

.
a I

so
la

tio
n

te
ch

ni
qu

e
us

ed
in

th
e

or
ig

in
al

pu
bl

ic
at

io
n.

28 Chappell · Russell · Voet

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
8.

19
:1

5-
41

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
5.

92
.2

35
.6

2 
on

 0
3/

30
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



GG19CH02_Voet ARI 2 August 2018 9:17

There are three approaches that enable profiling the DNA and RNA from the same single
cell. The first approach, DNA–RNA sequencing (DR-seq) (31), preamplifies gDNA and mRNA
simultaneously before splitting the reaction in two in order to finalize the gDNA and mRNA
sequencing libraries separately. The gDNA is processed using a modified approach for multiple
annealing and looping–based amplification cycles (MALBAC)—a WGA method that combines
multiple rounds of displacement amplification with PCR (162)—while the mRNA is processed
using a modified CEL-seq approach (59). By avoiding up-front separation of DNA and RNA,
this method minimizes the risk for loss of nucleic acids, but it is confounded by RNA-derived
amplification products contaminating the DNA sequencing (DNA-seq) data.

The second method, genome and transcriptome sequencing (G&T-seq), relies on physical
separation of mRNA from gDNA (92, 94). Following cell lysis, the polyadenylated mRNA is
separated from the gDNA by binding to oligo(dT)-coated paramagnetic beads. The mRNA is
amplified using a modified Smart-seq2 protocol (112, 113), while the DNA in the polyadenylated
mRNA–depleted cell lysate is precipitated on-bead and subjected to WGA and conventional library
preparation. Physical separation has the advantage of choice of downstream handling methods
for both DNA and RNA but could lead to potential loss of nucleic acids, although no major
losses have been reported to date. Additionally, G&T-seq has been automated on conventional
liquid handling robotics, improving the robustness and throughput of single-cell multiomics. The
single-cell transcriptogenomics method published by Li et al. (86) is based on similar principles
to G&T-seq.

A third approach separates the nucleus and cytoplasm from the same cell, allowing genomic (57,
147) or epigenomic (62, 64) analysis of the nucleus and transcriptomic analysis of the cytoplasmic
RNA. While these approaches also offer flexibility in the protocols applied downstream of the
separation of nuclear DNA and cytoplasmic RNA, the separation in this case involves loss of nuclear
transcripts, and often the full content of the cytoplasm cannot be separated from the nucleus,
resulting in some loss of cytoplasmic RNA for transcriptomics analysis as well. Furthermore,
these approaches are currently mostly manually performed and subject to low throughput, but
they are amenable to automation and microfluidics (57, 147).

Single-Cell Epigenome-Plus-Transcriptome Sequencing

The epigenome largely orchestrates how a cell reads its genome and produces its transcriptome.
However, the association of epigenomic heterogeneity with transcriptional heterogeneity remains
largely to be determined at single-cell resolution. Additionally, the cause and effect of transcrip-
tomic and epigenetic changes during cell state transitions and cellular differentiation may be
elucidated by profiling both simultaneously.

Single-cell triple-omics sequencing (scTrio-seq) (62) allows assessment of the genomic copy
number variations, DNA methylome, and transcriptome of a single cell. In this approach, an indi-
vidual cell is lysed gently, leaving the nucleus intact while releasing cytoplasmic mRNAs. Centrifu-
gation is then used to pellet the nucleus, and the cytoplasmic supernatant is transferred to another
tube. The mRNA in the supernatant is converted into an scRNA-seq library using the method
published by Tang et al. (143). In parallel, the nucleus is processed using the scRRBS method
(54), yielding a reduced-representation overview of 5mC in the genome and a low-resolution
DNA copy number landscape. Because of systematic coverage bias in scRRBS data, DNA copy
number computation from focal read depth analyses in 10-Mb windows required a normalization
factor for each genomic bin, which was determined from sequence depth values of bulk RRBS data.

Single-cell methylome and transcriptome sequencing (scMT-seq) applies a similar strategy to
scTrio-seq (64) and also lyses the cellular membrane but not the nuclear membrane, after which
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the nucleus is isolated by microcapillary picking. The mRNA in the lysate is amplified using a
modified Smart-seq2 protocol (112, 113), while the nuclear genome is processed using a modified
version of the scRRBS protocol (53) in parallel.

Single-cell methylome and transcriptome sequencing (scM&T-seq) (5) is based on the G&T-
seq protocol but applies scBS-seq on the gDNA following physical separation of DNA and RNA.
In contrast to scTrio-seq and scMT-seq, scM&T-seq thus provides a broader CpG methylation
landscape of the cell and is not confounded by loss of the entire nuclear transcript pool, but may
drop some nucleic acids during the physical separation of gDNA and polyadenylated mRNA.

Single-cell analysis of genotype, expression, and methylation (scGEM) (20) first isolates single
cells in a Fluidigm C1 Single-Cell Auto Prep system. Cells are then lysed within the nanoliter-scale
reaction chambers, and the polyadenylated mRNA is converted to cDNA. A protease treatment
removes chromatin-associated proteins before a methylation-sensitive digest is carried out using
a modified SCRAM assay. A PCR preamplification is performed on-chip using primers targeting
specific cDNAs and gDNA loci for DNA methylation and genotype profiling. The preamplified
products are split to generate qPCR-based targeted readouts of gene expression and methylation
status as well as sequencing-based genotypes. In contrast to DNA methylation assays that require
bisulfite and thus are prone to stochastic dropouts, scGEM enables a more reproducible assessment
of methylation status at specific sites across cells.

Apart from methodologies that capture the DNA methylome together with transcriptome
and/or genome information, several methods have recently been devised that also allow one to
read multiple layers of the epigenome of a single cell. The latest method further combines this
with RNA-seq of the same cell.

Single-cell nucleosome occupancy and methylome sequencing (scNOMe-seq) was reported in
2017 (116). Conventional NOMe-seq (75) employs a GpC methyltransferase, M.CviPI, to probe
chromatin accessibility (75, 76). M.CviPI methylates cytosines in accessible GpC dinucleotides
(i.e., nonnucleosomal DNA) in vitro. In mammalian cells, the cytosine in CpG dinucleotides is
methylated in vivo rather than the other cytosine-containing dinucleotides—CpA, CpC, or CpT
(87). Bisulfite sequencing then follows, where unmethylated cytosines are converted to uracils and
endogenous CpG methylation is encoded simultaneously with GpC accessibility in the DNA-seq
data. This has two advantages over count-based methods for chromatin accessibility profiling (e.g.,
ATAC-seq or DNase-seq): Inaccessible chromatin is better distinguished from missing data, and
the resolution is determined by the frequency of GpC sites in the genome (1 in 16 base pairs)
rather than library insert size (>100 base pairs).

Single-cell chromatin overall omic-scale landscape sequencing (scCOOL-seq) (52) is an alter-
native method for scNOMe-seq (116) and allows multiple layers of the epigenome to be accessed,
including not only chromatin accessibility and DNA methylation but also DNA copy number
variation and ploidy. To do so, it modifies bulk NOMe-seq (56) with postbisulfite adaptor tagging
sequencing, which is the basis for scBS-seq (131). DNA copy number information is derived from
focal read depth analyses in 1-Mb genomic bins coupled with a hidden Markov model to determine
copy number segments. To infer the single-cell ploidy from single-cell COOL-seq data, the same
quantity of λDNA is spiked to each single-cell sample to deduce the ploidy of the cell.

A 2018 article describes a novel three-layer technique, scNMT-seq (23), which combines the
principle of scNOMe-seq (116) with scM&T-seq (5). Single cells are sorted by FACS into tubes
containing a GpC methylase reaction mixture before the DNA and RNA are physically separated
and processed as in the scM&T-seq protocol. The chromatin accessibility and DNA methylation
can then be measured by using the principles of scNOMe-seq (116), while the transcriptome
information is provided by a modified Smart-seq2 protocol (112, 113).
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Single-Cell Transcriptome-Plus-Protein Measurements

Understanding how transcripts are translated into proteins on a genome-wide scale is important
in comprehending how transcriptomic cellular states translate into functional phenotypic states.
Additionally, this may reveal phenotypic cell states that may not be observable from scRNA-seq
alone owing to potential heterogeneity in posttranscriptional and posttranslational processes.

One technology to simultaneously measure protein and transcript levels in a single cell is
enabled by combining the proximity extension assay with targeted cDNA amplification (46). This
assay uses a pair of antibodies that bind to the same protein at different epitopes. These antibodies
are functionalized with single-stranded DNA oligonucleotides that have complementary 3′ ends.
The complementary oligonucleotides on antibodies binding nearby on the same protein will anneal
in a cell lysate. The dual DNA polymerase–RNA polymerase activity of reverse transcriptases
then allows simultaneous generation of a protein-derived DNA barcode and cDNA from RNA.
Protein and transcript levels can subsequently be measured by qPCR or sequencing, with protein
detection remaining limited mainly by available antibody pairs. This technique enabled parallel
measurement of 38 proteins and 96 transcripts.

In an alternative approach, cells are isolated by FACS and lysed (27), after which the lysate
is split to measure RNA and protein separately. The proximity extension assay is performed on
proteins and reverse transcription is performed on RNA, both of which are then read out by
microfluidic qPCR assays. The correlation of transcripts and proteins from 22 genes in single
cells was investigated using this method.

In the proximity ligation assay for RNA (PLAYR) approach (42), cells are fixed and perme-
abilized, and specific transcripts and proteins are targeted for detection by mass cytometry. The
transcripts are hybridized with PLAYR probes, which are in turn detected by insert and backbone
probes that form a DNA circle following ligation. This circle is amplified by rolling circle am-
plification, and the resulting amplified insert sequences per transcript are hybridized with mass
cytometry–compatible probes. Antibodies conjugated to distinct metal isotopes are used to target
specific proteins, enabling concurrent RNA and protein measurement by mass cytometry. While
this enables rapid evaluation of RNA and proteins across thousands of single cells, it is intrinsi-
cally limited by the number of metal isotope tags available as well as the number of high-affinity
antibodies.

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (136) uses a
cytometry-by-sequencing approach. Single cells in suspension are labeled with oligonucleotide-
functionalized antibodies that target cell surface proteins. These oligonucleotides comprise a PCR
handle, an antibody barcode, and a poly(A) tail and are conjugated via a streptavidin–biotin inter-
action to the antibodies. Additionally, a disulfide bond at the 5′ end of the oligonucleotide allows
the oligonucleotide to be released in reducing conditions. Cells are coencapsulated in droplets with
Drop-seq beads or 10x Genomics Chromium gel beads; during lysis, these antibody-derived tags
and the mRNAs of the cell anneal to the oligo(dT) on the beads. After reverse transcription and
amplification, the cDNA and antibody-derived tags can be separated by size (<300-nucleotide
fragments containing antibody-derived tags and >300-nucleotide fragments representing
mRNAs). These can be pooled on the same sequencing lane in a manner that allows for ad-
justments in depth. This study targeted immune cell surface proteins, but in principle the method
could access cytosolic and perhaps nuclear proteins if a permeabilization step was performed prior
to antibody staining. Notably, this study could detect subtypes of natural killer cells (CD56 bright
and dim) that could not be distinguished by scRNA-seq alone.

The RNA expression and protein sequencing assay (REAP-seq) (110) also uses DNA
barcode-conjugated antibodies, which are incubated with a cell suspension, followed by droplet
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scRNA-seq. REAP-seq uses a Thunder-Link PLUS oligonucleotide conjugation system to link
oligonucleotides to barcodes, which is distinct from CITE-seq. After cell lysis, reverse transcrip-
tase produces cDNA from the mRNAs and extends the antibody barcode [which contains a poly(A)
region] through its DNA polymerase activity. Similarly to CITE-seq, the two cell-barcoded li-
braries can be separated by size (155 versus >500 base pairs). The method enabled the detection
of 82 proteins in parallel with scRNA-seq.

APPLICATIONS: CURRENT AND FUTURE

We present two contrasting application areas for multiomics: cancer, in which the technology is
emerging to deliver novel insight in the disease, and atlas projects, in which the technology may
have great potential.

Cancer

Tumors comprise different subpopulations of cancer cells, along with stromal cells that provide
support. However, the precise combination of driver mutations present in cancer cells, their order
of acquisition, and the extent, nature, and functional consequences of the (epi)genomic diversity
that arises in the cancer cells remain largely unknown because bulk DNA or RNA analyses are
inadequate. For the same reason, our understanding of the potential plurality of cancer cell states
within a tumor—of which some can metastasize and/or evade therapy—fueled by (epi)genetic
alterations remains limited. Similarly, a better understanding of the heterogeneous stromal cell
population, which is a key contributor to the tumor microenvironment, has been hampered by
classic bulk molecular profiling methods. Tumor cells coevolve with the surrounding microenvi-
ronment and interact to promote tumor growth and development. The stromal cells are recruited
from local host stroma and promote processes such as extracellular matrix remodeling, cellular
migration, neoangiogenesis, invasion, drug resistance, and evasion of immune surveillance. Ques-
tions remain about the precise cellular composition of the microenvironment, the processes of
transdifferentiation from stromal cell to stromal cell (e.g., pericytes transdifferentiating into en-
dothelial cells or fibroblasts) or tumor cell to stromal cell [e.g., transdifferentiation of glioblastoma
stem-like cells into mural cells driving vasculogenic mimicry (125)], and the interactions between
stromal cells and tumor cells that have a potential role in cancer growth and progression (15). Un-
derstanding the nature, extent, and biology of cellular heterogeneity within a cancer is paramount
for the design of effective therapies (3).

Single-cell multiomics methods can provide novel insights into the development of intratumor
cellular heterogeneity. For instance, methods enabling genome-plus-transcriptome sequencing
such as DR-seq (31), G&T-seq (92), and microfluidic versions (57, 147) may allow determination of
the subclonal genetic architecture and phylogenetic tree, which exposes the order of acquisition of
mutations in the cancer cells from single-cell DNA sequencing (scDNA-seq) analysis. scRNA-seq
analysis of the same cells will provide insight into the different transcriptomic cancer cell states with
potential functional dissimilarities that arise within a tumor, providing unprecedented insight into
the extent to which these different phenotypic cancer cell states are driven by genetic alterations,
nongenetic alterations, or both. Layering these data with additional protein information from the
same cells will provide deeper insight into the functional dissimilarities among the cells; similarly,
reading the epigenomes of these same cells can provide further understanding of the molecular
processes driving the different cellular cancer states. Applying similar technologies to circulating
tumor cells (i.e., cells that leave the solid tumor and become blood-borne) and disseminated tumor
cells (i.e., cells that lead to micrometastases that later may fuel overt metastases in distant organs)
may provide further understanding of the genetic and nongenetic mechanisms underlying cancer
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cell dissemination and the dormancy of cancer cells, respectively. These multiomics methods
can also be applied to the stromal cells, which in combination with spatial methodologies may
provide unprecedented insight into the subpopulations that exist among the stromal cells, how
these subpopulations are molecularly determined, and how they interact with nearby cancer cells to
promote tumor growth and progression. In addition to improving the fundamental understanding
of tumor development, single-cell multiomics methods have the capacity to provide a deeper
understanding of the diversity of drug resistance mechanisms applied by cells, which can be genetic
or nongenetic in nature (37, 43, 142).

Atlas Projects

The ability of scRNA-seq to reveal (sub)types and phenotypic states of cells has led to the initiation
of cell atlas projects. The most ambitious is the Human Cell Atlas, which is being created by an
international consortium (119, 121). These projects aim to provide data-driven identification and
classification of cells (119), which will enable a more profound fundamental understanding of the
normal development of organisms and how dysregulation of cellular processes may contribute to
aging and disease. Although these atlases will initially comprise reference sets of human and ani-
mal cells based on genes detected as expressed in scRNA-seq data and with spatial transcriptomic
methods (61), single-cell multiomics will be required to provide a deeper understanding of the key
molecular drivers and mechanisms underpinning cellular states. For example, open-chromatin-
plus-transcriptome profiling of single cells, which may be enabled by scNMT-seq (23), at scale will
provide a more profound understanding of the gene regulatory networks involved in the definition
of cell states and how they may become dysregulated in disease. Similarly, layering phenotypic
states of cells with cell lineage will provide an understanding of the normal developmental tra-
jectories of organs and their cellular architecture, the noise within such trajectories during the
development of different individuals, and how these trajectories may become perturbed, leading
to disease.

FUTURE DEVELOPMENTS

The rate of development of single-cell multiomics protocols is now increasing rapidly, with many
new methods published or posted to a preprint server since this field was last reviewed (10, 93).
The current trend of generating larger and larger scRNA-seq data sets (121, 141) is likely to be
mirrored in single-cell multiomics data sets.

Further progress is likely to be achieved by refining existing mono-omics techniques, including
scRNA-seq, scDNA-seq, and single-cell ATAC-seq, by increasing their sensitivity and accuracy;
such improvements are likely to be transferable to multiomics techniques. For example, most
scRNA-seq protocols often require more than 10 mRNA molecules in order to reliably detect
gene expression (140); lowering this threshold would allow better detection of low-copy-number
mRNAs that encode, for instance, transcription factors. The breadth of these omic layers may also
improve, with the capture of more classes of RNAs, more target proteins, and more DNA modi-
fications. Metabolomics is currently extremely challenging at the single-cell level, but progress is
being made (35).

Methods that enable new combinations of omic layers are likely to appear. Long-read tech-
nologies may be able to codetect DNA sequence and DNA methylation as well as other DNA
marks and adducts on the same molecule (10). Additionally, long-read sequencing may advance the
detection of structural variants along with other types of genetic variation in cells. High-resolution
capture of spatial information in combination with scRNA-seq may be extended to include capture
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of other nucleic acids or antibody tags. Greater linkage of live-cell imaging data with single-cell
sequence data may allow the interrogation of more complex phenotypes. Nuclear structure re-
mains unexplored in conjunction with other omic layers; although these studies use single nuclei,
no study has combined these techniques with simultaneous RNA or protein profiling from the
cytoplasmic fraction of the same cell. We also anticipate the development of technologies that
will profile four or five layers of omics data in parallel by further combining existing techniques.
Additionally, the use of combinatorial indexing or microfluidics approaches is likely to result in
single-cell multiomics methods that enable high-throughput processing of thousands of cells.

Cost is likely to be a barrier to some single-cell multiomics technologies, particularly those
that aim to capture the whole genome. Library costs may be reduced by scaling down volumes
of reactions, but linearly scaling sequencing costs may prove a greater barrier for most studies.
Compromises may be made to sample gDNA by using targeted sequencing of a panel of genes
known to be of interest.

Novel computational methods that allow the integrated study of two or more omic layers per
cell of large heterogeneous populations will need to be developed. Most current studies analyze
each omics data set separately and compare final results. An example of this approach is scTrio-seq
(62), where copy number variations are separately analyzed in conjunction with either the meth-
ylome or the transcriptome. Specialist multiomics algorithms should be developed to analyze the
different layers of data together.

In the next few years, it is likely that greater progress will be made toward “omni-omics”—
the capture of all molecules in a cell. Because the cellular phenome is defined as the set of all
phenotypes expressed by a cell, multiomics ultimately aims to characterize these omnisciently for
different layers. Future multiomics technologies will eventually need to encompass all single-cell
omics technologies or find an analytical way to omnisciently characterize a cell’s “ome” layers,
three-dimensional coordinates, phenotypes, and cell lineage history.
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