CHEMISTRY AND INTRODUCTION TO BIOCHEMISTRY

ACADEMIC YEAR 2019-2020 (21 Feb. 2020)
Surname and Name \qquad

Matr. Number \qquad year.

1
For every quiz there is only one correct answer. For stoichiometry exercises, write the calculus steps and the result.

1) Sodium belongs to the first group and to the second period of the periodic table and therefore:

it has 3 electrons	$[~]$
it has 4 electron levels	$[$]
it has 1 electron in it external shell	$[$]
it has 2 electrons in it external shell	$[~]$

2) The formula of calcium phosphate is:
$\mathrm{Ca}_{3} \mathrm{PO}_{4}$ []
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad[$]
$\mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
$\mathrm{Ca}_{2} \mathrm{PO}_{4}$
$\mathrm{Ca}_{2} \mathrm{PO}_{4}$ [
3) By oxidation of propanal one obtains
a sugar []
a chiral compound []
a carboxylic acid
an hemiacetal
4) Maleic acid and fumaric acid are:
optical isomers
geometric isomers
conformational isomers
functional isomers
5) the hydroxyl groups of glycerol are:
all primary
all secondary
[]
two primary and one secondary
one primary and two secondary
6) The standard redox potential of nickel $\left(\mathrm{Ni}^{2+} / \mathbf{N i}\right)$ is $-\mathbf{0 . 2 5} \mathrm{V}$, the standard redox potenial of $\mathbf{z i n c}\left(\mathbf{C u}{ }^{2+} / \mathbf{C u}\right)$ is $+0,34 \mathrm{~V}$, therefore at stanrd conditions:
metallic nickel oxidizes the copper II ion []
metallic nickel reduces the copper II ion []
the nickel II ion reduces metallic copper
the nickel II ion oxidizes metallic copper
7) Draw the chemical formula of each compound indicating all the atoms, bonds and charges (when applicable): benzoic acid, ethyne, D-glyceraldehyde, urea.
8) Calculate the $\mathbf{p H}$ of a solution prepared by dissolving 10 g of acetic acid and 6 g of sodium acetate in water in a final volume of $500 \mathrm{~mL}\left(K_{A}=1.8 \cdot 10^{-5} \mathrm{M}\right)$.
9) 36 L of molecular oxygen at 1.2 atm and $20^{\circ} \mathrm{C}$ are cooled down to $11^{\circ} \mathrm{C}$ and brought to a pressure of di 650 mmHg . What is the final volume of the gas?
10) Calculate the osmotic pressure at $27^{\circ} \mathrm{C}$ of an 0.8 m (molal) solution of aluminium phosphate with density $=1.066 \mathrm{~g} / \mathrm{mL}$.
11) 1 mole of SO_{3} is introduced into a 10 L container at $10{ }^{\circ} \mathrm{C}$. The following homogeneous equilibrium is achieved in the gaseous phase: $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$ with a concentration of O_{2} equal to 0.025 M .
Calculate $K_{C} e K_{P}$, indicating their dimensions.
