SAPIENZA
Università di Roma

International Medical School
 Course of Chemistry and Introduction to Biochemistry
 Academic Year 2014-2015

Summary exercises

1. Calculate the pH of a solution prepared by mixing 100 ml of methanoic acid 0.1 M with 25 ml of sodium hydroxyde 0.16 M .
$\left(\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.
2. Calculate the pH of a solution prepared by mixing 100 ml of methanoic acid 0.04 M with 25 ml of sodium hydroxyde 0.16 M .
$\left(\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
3. A solution has been prepared by mixing 450 ml of ammonia 0.1 M with 250 ml of HCl 0.1 M . Which is the pH ?
$\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
4. Calculate the pH of a solution obtained by diluting 1 ml of the commercial solution of ammonia ($30 \% \mathrm{w}, \mathrm{d}=0.91 \mathrm{~g} / \mathrm{ml}$) up to 1 L with pure water. Calculate the pH after having added 1 g of HCl
$\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
5. Calculate the formula weight and the dissociation coefficient of a weak monoprotic acid, whose solution made by dissolving 1 g in 1 L of pure water has $\mathrm{pH}=4.0$. $\quad\left(\mathrm{Ka}=3 \cdot 10^{-6} \mathrm{M}\right)$
6. Calculate which volume of NaOH 1 M needs to be added to a 1 L of a buffer solution containing acetic acid 0.01 M and sodium acetate 0.01 M in order to adjust the pH to 5.0 ($\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$, approximate the volume to remain constant).
7. A solution of HNO_{2} is made by dissolving 3.53 g in 500 ml of pure water at $25^{\circ} \mathrm{C}$. Calculate its dissociation coefficient, knowing that this solution has an osmotic pressure of 3.87 atm .
8. Calculate the osmotic pressure of a solution of potassium acetate at $25^{\circ} \mathrm{C}$, knowing that its pH is 9.02 .
$\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right)$
