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1 Introduction 
 
This brief chapter introduces the subject of Solid Mechanics and the contents of this book 
(Book I) and the books which follow (Books II-V). 
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1.1 What is Solid Mechanics? 
 
Solid mechanics is the study of the deformation and motion of solid materials under the 
action of forces.  It is one of the fundamental applied engineering sciences, in the sense 
that it is used to describe, explain and predict many of the physical phenomena around us. 
 
Here are some of the wide-ranging questions which solid mechanics tries to answer: 
 

 
 
Solid mechanics is a vast subject.  One reason for this is the wide range of materials 
which falls under its ambit: steel, wood, foam, plastic, foodstuffs, textiles, concrete, 
biological materials, and so on.  Another reason is the wide range of applications in which 
these materials occur.  For example, the hot metal being slowly forged during the 
manufacture of an aircraft component will behave very differently to the metal of an 
automobile which crashes into a wall at high speed on a cold day. 
 
 
 

When will this cliff 
collapse? 

How does the 
heart contract 

and expand as it 
is pumped? 

When will these 
gears wear out? 

How long will a tuning 
fork vibrate for? 

How will the San Andreas fault 
in California progress?  How 

will the ground move during an 
earthquake?  

why does nature 
use the materials it 

does?  how do you build a bridge 
which will not collapse?  

American 
Plate 

Pacific
Plate 

1

2 

3 

5 
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Here are some examples of Solid Mechanics of the cold, hot, slow and fast … 
 
 

 
 
 
Here are some examples of Solid Mechanics of the small, large, fragile and strong … 
 
 

 
 
 
1.1.1 Aspects of Solid Mechanics 
 
The theory of Solid Mechanics starts with the rigid body, an ideal material in which the 
distance between any two particles remains fixed, a good approximation in some 
applications.  Rigid body mechanics is usually subdivided into 
 statics, the mechanics of materials at rest, for example of a bridge taking the weight 

a car 
 dynamics, the study of bodies which are changing speed, for example of an 

accelerating and decelerating elevator 
 
Following on from statics and dynamics usually comes the topic of Mechanics of 
Materials (or Strength of Materials).  This is the study of some elementary but very 
relevant deformable materials and structures, for example beams and pressure vessels.  
Elasticity theory is used, in which a material is assumed to undergo small deformations 
when loaded and, when unloaded, returns to its original shape.  The theory well 
approximates the behaviour of most real solid materials at low loads, and the behaviour of 
the “engineering materials”, for example steel and concrete, right up to fairly high loads. 
 
 

how did this Antarctic ice 
fracture? 

what materials can withstand  
extreme heat? 

how much will this glacier move in 
one year? 

what damage will occur during a 
car crash? 

7 8 

what affects the quality of paper? 
(shown are fibers 0.02mm thick) 

how will a ship withstand wave 
slamming?  

how strong is an eggshell and what 
prevents it from cracking? 

how thick should a dam be to 
withstand the water pressure?  

9 
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More advanced theories of deformable solid materials include 
 plasticity theory, which is used to model the behaviour of materials which undergo 

permanent deformations, which means pretty much anything loaded high enough 
 viscoelasticity theory, which models well materials which exhibit many “fluid-

like” properties, for example plastics, skin, wood and foam 
 viscoplasticity theory, which is a combination of viscoelasticity and plasticity  
 
Some other topics embraced by Solid Mechanics, are 
 rods, beams, shells and membranes, the study of material components which can 

be approximated by various model geometries, such as “very thin” 
 vibrations of solids and structures 
 composite materials, the study of components made up of more than one material, 

for example fibre-glass reinforced plastics 
 geomechanics, the study of materials such as rock, soil and ice 
 contact mechanics, the study of materials in contact, for example a set of gears 
 fracture and damage mechanics, the mechanics of crack-growth and damage in 

materials 
 stability of structures 
 large deformation mechanics, the study of materials such as rubber and muscle 

tissue, which stretch fairly easily 
 biomechanics, the study of biological materials, such as bone and heart tissue 
 variational formulations and computational mechanics, the study of the 

numerical (approximate) solution of the mathematical equations which arise in the 
various branches of solid mechanics, including the Finite Element Method 

 dynamical systems and chaos, the study of mechanical systems which are highly 
sensitive to their initial position 

 experimental mechanics 
 thermomechanics, the analysis of materials using a formulation based on the 

principles of thermodynamics 
 
 

 
 
 
 
 
 

10 11 12 

13 14 
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1.2 What is in this Book? 
 
This book is divided into five “sub-books”: 
 
I. An Introduction to Solid Mechanics 
II. Engineering Sold Mechanics 
III. The Finite Element Method 
IV. Foundations of Continuum Solid Mechanics 
V. Material Models in Continuum Solid Mechanics 
 
One can take a “bottom up” approach or a “top down” approach to the subject.  In the 
former, one looks at the particular – a restricted set of ideal geometries and materials, and 
a restricted set of models and equations. One then builds upon this knowledge 
incrementally, upwards and outwards. This would be the approach taken if one began at 
the start of Book I and worked through all the books more or less sequentially.  This is the 
course taken by most engineering students, who would work through (a subset of the) 
material over three to four years. Alternatively, one can begin very generally – consider 
all the relevant equations and only later simplify these to the particular application under 
study. This approach would involve starting at the beginning of Book IV and then 
working through Book V. 
 
The principal advantage of the bottom-up approach is that one can begin the journey with 
only a limited mathematical knowledge.  One can also develop a very physical feel for the 
subject, and over 95% of applications in the real world can probably be attacked using 
material from the first three books.  The advantage of the top-down approach is that it 
gives a lofty perspective of the subject at the outset, although the mathematics required is 
not easy. 
 
The aim of Book I is to cover the essential concepts involved in solid mechanics, and the 
basic material models.  It is primarily aimed at the Engineering or Science undergraduate 
student who has, perhaps, though not necessarily, completed some introductory courses 
on mechanics and strength of materials.  Apart from giving a student a good grounding in 
the fundamentals, it should act as a stepping stone for further study into Books II to V and 
into some of the more specialised topics mentioned in §1.1.  The philosophy adopted in 
Book I is as follows: 

 The mathematics is kept at a fairly low level; in particular, there are few 
differential equations, very little partial differentiation and there is no tensor 
mathematics 

 The critical concepts – the ones which make what follows intelligible, and which 
students often “miss” – are highlighted 

 The physics involved, and not just the theory, is given attention 
 A wide range of material models are considered, not just the standard Linear 

Elasticity 
 
The outline of Book I is as follows: Chapter 2 covers the essential material from a typical 
introductory course on mechanics; it serves as a brief review for those who have seen the 
material before, and serves as an introduction for those who are new to the subject.  
Chapters 3-8 cover much of the material typical of that included in a Strength of 
Materials or Mechanics of Materials course, and includes the elementary beam theory and 
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energy methods.  The latter part of the book, Chapters 10-12 cover the more advanced 
material models, namely viscoelasticity, plasticity and viscoplasticity. 
 
In Book II, differential equilibrium and strain is introduced, allowing for more complex 
problems to be tackled, including problems of contact mechanics, fracture mechanics and 
elastodynamics, the study of wave propagation and vibrations, and more complex 
problems of plasticity theory and viscoplasticity. 
 
In Book III, the Finite Element Method, the standard method of obtaining 
approximate/numerical solutions to the equations of Solid Mechanics, is examined. 
 
In Book IV, tensor mathematics is introduced, allowing one to analyse the mechanics of 
solid materials without making any approximations, for example regarding the strain in 
materials.   
 
Finally, in Book V, material models are described. 
  
 



 9

2 Statics of Rigid Bodies 
 
 
Statics is the study of materials at rest.  The actions of all external forces acting on such 
materials are exactly counterbalanced and there is a zero net force effect on the material: 
such materials are said to be in a state of static equilibrium.  
 
In much of this book (Chapters 6-8), static elasticity will be examined.  This is the study 
of materials which, when loaded by external forces, deform by a small amount from some 
initial configuration, and which then take up the state of static equilibrium.  An example 
might be that of floor boards deforming to take the weight of furniture.  In this chapter, as 
an introduction to this subject, rigid bodies are considered.  These are ideal materials 
which do not deform at all. 
 
The chapter begins with the fundamental concepts and principles of mechanics – 
Newton’s laws of motion.  Then the mechanics of the particle, that is, of a very small 
amount of matter which is assumed to occupy a single point in space, is examined.  
Finally, an analysis is made of the mechanics of the rigid body. 
 
The material in this chapter covers the essential material from a typical introductory 
course on statics. Although the concepts presented in this chapter serve mainly as an 
introduction for the later chapters, the ideas are very useful and important in themselves, 
for example in the design of machinery and in structural engineering. 
 
 
 
 
 



 10

 



Section 2.1 

Solid Mechanics Part I                                                                                Kelly 11

2.1 The Fundamental Concepts and Principles of 
Mechanics 

 
 
2.1.1 The Fundamental Concepts 
 
The four fundamental concepts used in mechanics are space, time, mass and force1.  It is 
not easy to define what these concepts are.  Rather, one “knows” what they are, and they 
take on precise meaning when they appear in the principles and equations of mechanics 
discussed further below. 
 
The concept of space is associated with the idea of the position of a point, which is 
described using coordinates ),,( zyx  relative to an origin o as illustrated in Fig. 2.1.1. 
 

 
 

Figure 2.1.1:  a particle in space 
 
The time at which events occur must be recorded if a material is in motion.  The concept 
of mass enters Newton’s laws (see below) and in that way is used to characterize the 
relationship between the acceleration of a body and the forces acting on that body.  
Finally, a force is something that causes matter to accelerate; it represents the action of 
one body on another. 
 
 
2.1.2 The Fundamental Principles 
 
The fundamental laws of mechanics are Newton’s three laws of motion.  These are: 
 
Newton’s First Law: 
if the resultant force acting on a particle is zero, the particle remains at rest (if originally 
at rest) or will move with constant speed in a straight line (if originally in motion) 
 
By resultant force, one means the sum of the individual forces which act; the resultant is 
obtained by drawing the individual forces end-to-end, in what is known as the vector 

                                                 
1 or at least the only ones needed outside more “advanced topics” 

x

y

z


particle p 

o
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polygon law; this is illustrated in Fig. 2.1.2, in which three forces 321 ,, FFF  act on a 

single particle, leading to a non-zero resultant force2 F. 
 

 
 

Figure 2.1.2: the resultant of a system of forces acting on a particle; (a) 
three forces acting on a particle, (b) construction of the resultant F, (c) 
an alternative construction, showing that the order in which the forces 
are drawn is immaterial, (d) the resultant force acting on the particle 

 
 
Example (illustrating Newton’s First Law) 
 
In Fig. 2.1.3 is shown a floating boat.  It can be assumed that there are two forces acting 
on the boat.  The first is the boat’s weight gF , that is its mass times the acceleration due 

to gravity g.  There is also an upward buoyancy force bF  exerted by the water on the boat.  

Assuming the boat is not moving up or down, these two forces must be equal and 
opposite, so that their resultant is zero.  
 

 
 

Figure 2.1.3: a zero resultant force acting on a boat 
 

■ 
  

The resultant force acting on the particle of Fig. 2.1.2 is non-zero, and in that case one 
applies Newton’s second law: 
 
 
 
 
                                                 
2 the construction of the resultant force can be regarded also as a principle of mechanics, in that it is not 
proved or derived, but is taken as “given”  and is borne out by experiment 
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gF


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Newton’s Second Law: 
if the resultant force acting on a particle is not zero, the particle will have an acceleration 
proportional to the magnitude of the resultant force and in the direction of this resultant 
force: 
 

aF m             (2.1.1) 
 

where3 F is the resultant force, a is the acceleration and m is the mass of the particle.  The 
units of the force are the Newton (N), the units of acceleration are metres per second 
squared (m/s2), and those of mass are the kilogram (kg); a force of 1 N gives a mass of 1 
kg an acceleration of 1 m/s2. 
 
If the water were removed from beneath the boat of Fig. 2.1.3, a non-zero resultant force 
would act, and the boat would accelerate at g m/s2 in the direction of gF . 

 
Newton’s Third Law: 
each force (of “action”) has an equal and opposite force (of “reaction”) 
 
Again, considering the boat of Fig. 2.1.3, the water exerts an upward buoyancy force on 
the boat, and the boat exerts an equal and opposite force on the water.  This is illustrated 
in Fig. 2.1.4. 
 

 
Figure 2.1.4: Newton’s third law; (a) the water exerts a force on the 

boat, (b) the boat exerts an equal and opposite force on the water 
 
Newton’s laws are used in the analysis of the most basic problems and in the analysis of 
the most advanced, complex, problems.  They appear in many guises and sometimes they 
appear hidden, but they are always there in a Solid Mechanics problem. 

                                                 
3 vector quantities, that is, quantities which have both a magnitude and a direction associated with them, are 
represented by bold letters, like F here; scalars are represented by italics, like m here.  The magnitude and 
direction of vectors are illustrated using arrows as in Fig. 2.1.2 

bF

bF

(a) (b)
surface of water 
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2.2 The Statics of Particles 
 
 
2.2.1 Equilibrium of a Particle 
 
The statics of particles is the study of particles at rest under the action of forces.  Such 
particles can be analysed using Newton’s first law only.  This situation is referred to as 
equilibrium, which is defined as follows: 
 
Equilibrium of a Particle 
A particle is in equilibrium when the resultant of all the forces acting on that particle is 
zero 
 
In practical problems, one will want to introduce a coordinate system to describe the 
action of forces on a particle.  It is important to note that a force exists independently of 
any coordinate system one might use to describe it.  For example, consider the force F in 
Fig. 2.2.1.  Using the vector polygon law, this force can be decomposed into 
combinations of any number of different individual forces; these individual forces are 
referred to as components of F.  In particular, shown in Fig 2.2.1 are three cases in which 
F is decomposed into two rectangular (perpendicular) components, the components of F 
in “direction x” and in “direction y”, xF  and yF . 

 

 
 

Figure 2.2.1: A force F decomposed into components Fx and Fy 
using three different coordinate systems 

 
By resolving forces into rectangular components, one can obtain analytic solutions to 
problems, rather than relying on graphical solutions to problems, for example as done in 
Fig. 2.1.2.  In order that the resultant force F on a body be zero, one must have that the 
resultant force in the x and y directions are zero individually1, as illustrated in the 
following example. 
 
 
 
 

                                                 
1 and in the z direction if one is considering a three dimensional problem 
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Example 
 
Consider the particle in Fig. 2.2.2, subjected to forces 321 ,, FFF .  The particle is in 

equilibrium and so by definition the resultant force is zero, 0F  .  The forces are 
decomposed into horizontal and vertical components xxx 321 ,, FFF  and yyy 321 ,, FFF .  The 

horizontal forces may be added together to get a single horizontal force xF , which must 

equal zero.  This force xF  should be evaluated using the vector polygon law but, since the 

individual forces xxx 321 ,, FFF  all lie along the same line, one need only add together the 

magnitudes of these vectors, which involves simply an addition of scalars:  
0321  xxx FFF .  Similarly, one has 0321  yyy FFF .  These equations could be 

used to evaluate, for example, the force 1F , if only 2F  and 3F  were known. 

 

`  
 

Figure 2.2.2: Calculating the resultant of three forces by 
decomposing them into horizontal and vertical components 

 
■ 

  
In general then, if a set of forces nFFF ,,, 21   act on a particle, the particle is in 

equilibrium if and only if 
 

 
0,0,0   zyx FFF    Equations of Equilibrium (particle)   (2.2.1) 

 
 
These are known as the equations of equilibrium for a particle.  They are three 
equations and so can be used to solve problems involving three “unknowns”, for example 
the three components of one of the forces.  In two-dimensional problems (as in the next 
example), they are a set of two equations. 
 
Example 
 
Consider the system of two cables attached to a wall shown in Fig. 2.2.3.  The cables 
meet at C, and this point is subjected to the two forces shown.  To evaluate the forces of 
tension arising in the cables AC and BC, one can draw a free body diagram of the particle 

x

y



1F

x1F
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2F

3F x2F

y2F
y3F
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C, i.e. the particle is isolated and all the forces acting on that particle are considered, Fig 
2.2.3b. 
 

 
 

Figure 2.2.3: Calculating the tension in cables; (a) the cable system, 
(b) a free-body diagram of particle C, (c) cable AC in equilibrium 

 
The equations of equilibrium for particle C are 
 

0120sin10030cos
,0cos10060cos

AC

ACBC










FF
FFF

y

x  

 
leading to N9.36,N2.46 BCAC  FF . 

 
The cable exerts a tension/pulling force on particle C and so, from Newton’s third law, C 
must exert an equal and opposite force on the cable, as illustrated in Fig. 2.2.3c. 

■ 
 
The concept of the free body is essential to Solid Mechanics, for the most simple and 
most complex of problems.  Again and again, problems will be solved by considering 
only a portion of the complete system, and analysing the forces acting on that portion 
only. 
 
 
2.2.2 Rough and Smooth Surfaces 
 
Fig 2.2.4a shows a particle in equilibrium, sitting on a rough surface and subjected to a 
force F.  Such a surface is one where frictional forces are large enough to prevent 
tangential motion.  The free body diagram of the particle is shown in Fig. 2.2.4b.  The 
friction reaction force is fR  and the normal reaction force is N  and these lead to the 

resultant reaction force R which, by Newton’s first law, must balance F. 
 
When a particle meets a smooth surface, there is no resistance to tangential movement.  
The particle is subjected to only a normal reaction force, and thus a particle in equilibrium 
can only sustain a purely normal force.  This is illustrated in Fig. 2.2.4c. 
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Figure 2.2.4: a particle sitting on a surface; (a) a rough surface, (b) 
a free-body diagram of the particle in (a), (c) a smooth surface 

 
 
2.2.3 Problems 
 
1. A 3000kg crate is being unloaded from a ship.  A rope BC is pulled to position the 

crate correctly on the wharf.  Use the Equations of Equilibrium to evaluate the 
tensions in the crane-cable AB and rope.  [Hint: create a free body for particle B.] 

 

 
 
2. A metal ring sits over a stationary post, as shown in the plan view below.  Two forces 

act on the ring, in opposite directions.  Draw a free body diagram of the ring including 
the reaction force of the post on the ring.  Evaluate this reaction force.  Draw a free 
body diagram of the post and show also the forces acting on it. 

 

 
 
3. Two cylindrical barrels of radius 500mm  are placed inside a container, a cross 

section of which is shown below.  The mass of each barrel is 10kg.  All surfaces are 
smooth.  Draw free body diagrams of each barrel, including the reaction forces 
exerted by the container walls on the barrels, the weight of each barrel, which acts 
through the barrel centres, and the reaction forces of barrel on barrel.  Apply the 
Equations of Equilibrium to each barrel.  Evaluate all forces.  What forces act on the 
container walls? 

 o15

o10
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2.3 The Statics of Rigid Bodies 
 
A material body can be considered to consist of a very large number of particles.  A rigid 
body is one which does not deform, in other words the distance between the individual 
particles making up the rigid body remains unchanged under the action of external forces.   
 
A new aspect of mechanics to be considered here is that a rigid body under the action of a 
force has a tendency to rotate about some axis.  Thus, in order that a body be at rest, one 
not only needs to ensure that the resultant force is zero, but one must now also ensure that 
the forces acting on a body do not tend to make it rotate.  This issue is addressed in what 
follows. 
 
 
2.3.1 Moments, Couples and Equivalent Forces 
 
When one swings a door on its hinges, it will move more easily if (i) one pushes hard, i.e. 
if the force is large, and (ii) if one pushes furthest from the hinges, near the edge of the 
door.  It makes sense therefore to measure the rotational effect of a force on an object as 
follows: 
 
The tendency of a force to make a rigid body rotate is measured by the moment of that 
force about an axis.  The moment of a force F about an axis through a point o is defined 
as the product of the magnitude of F times the perpendicular distance d from the line of 
action of F and the axis o.  This is illustrated in Fig. 2.3.1. 
 

 
 

Figure 2.3.1: The moment of a force F about an axis o (the axis goes 
“into” the page) 

 
The moment oM  of a force F can be written as 

 
FdM 0      (2.3.1) 

 
Not only must the axis be specified (by the subscript o) when evaluating a moment, but 
the sense of that moment must be given; by convention, a tendency to rotate 
counterclockwise is taken to be a positive moment.  Thus the moment in Fig. 2.3.1 is 
positive.  The units of moment are the Newton metre (Nm) 
 
Note that when the line of action of a force goes through the axis, the moment is zero. 

d 
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of force 
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It should be emphasized that there is not actually a physical axis, such as a rod, at the 
point o of Fig. 2.3.1; in this discussion, it is imagined that an axis is there. 
 
Two forces of equal magnitude and acting along the same line of action have not only the 
same components yx FF , , but have equal moments about any axis.  They are called 

equivalent forces since they have the same effect on a rigid body.  This is illustrated in 
Fig. 2.3.2. 
 

 
 

Figure 2.3.2: Two equivalent forces 
 
Consider next the case of two forces of equal magnitude, parallel lines of action separated 
by distance d, and opposite sense.  Any two such forces are said to form a couple.  The 
only motion that a couple can impart is a rotation; unlike the forces of Fig. 2.3.2, the 
couple has no tendency to translate a rigid body.  The moment of the couple of Fig. 2.3.3 
about o is 
 

FdFdFdM  12o           (2.3.2) 

 

 
 

Figure 2.3.3: A couple 
 
The sign convention which will be followed in most of what follows is that a couple is 
positive when it acts in a counterclockwise sense, as in Fig. 2.3.3. 
 
It is straight forward to show the following three important properties of couples: 
(a) the moment of Fig. 2.3.3 is also Fd  about any axis in the rigid body, and so can be 

represented by M, without the subscript.  In other words, this moment of the couple is 
independent of the choice of axis. {see ▲Problem 1} 

(b) any two different couples having the same moment M are equivalent, in the sense that 
they tend to rotate the body in precisely the same way; it does not matter that the 
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forces forming these couples might have different magnitudes, act in different 
directions and have different distances between them. 

(c) any two couples may be replaced by a single couple of moment equal to the algebraic 
sum of the moments of the individual couples. 

 
Example 
 
Consider the two couples shown in Fig. 2.3.4a.  These couples can conveniently be 
represented schematically by semi-circular arrows, as shown in Fig. 2.3.4b.  They can 
also be denoted by the letter M, the magnitude of their moment, since the magnitude of 
the forces and their separation is unimportant, only their product.  In this example, if the 
body is in static equilibrium, the couples must be equal and opposite, 12 MM  , i.e. the 
sum of the moments is zero and the net effect is to impart zero rotation on the body. 
 
Note that the curved arrow for 2M  has been drawn counterclockwise, even though it is 
negative.  It could have been illustrated as in Fig. 2.3.4c, but the version of 2.3.4b is 
preferable as it is more consistent and reduces the likelihood of making errors when 
solving problems (see later). 
 

 
 

Figure 2.3.4: Two couples acting on a rigid body 
 

■ 
 
A final point to be made regarding couples is the following: any force is equivalent to (i) 
a force acting at any (other) point and (ii) a couple.  This is illustrated in Fig. 2.3.5. 
 
Referring to Fig. 2.3.5, a force F acts at position A.  This force tends to translate the rigid 
body along its line of action and also to rotate it about any chosen axis.  The system of 
forces in Fig. 2.3.5b are equivalent to those in Fig. 2.3.5a: a set of equal and opposite 
forces have simply been added at position B.  Now the force at A and one of the forces at 
B form a couple, of moment M say.  As in the previous example, the couple can 
conveniently be represented by a curved arrow, and the letter M.  For illustrative 
purposes, the curved arrow is usually grouped with the force F at B, as shown in Fig. 
2.3.5c.  However, note that the curved arrow representing the moment of a couple, which 
can be placed anywhere and have the same effect, is not associated with any particular 
point in the rigid body. 
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Figure 2.3.5: Equivalents force/moment systems; (a) a force F, (b) 
an equivalent system to (a), (c) an equivalent system involving a 

force and a couple M 
 
Note that if the force at A was moved to a position other than B, the moment M of Fig. 
2.3.5c would be different. 
 
Example 
 
Consider the spanner and bolt system shown in Fig. 2.3.6.  A downward force of 200N is 
applied at the point shown.  This force can be replaced by a force acting somewhere else, 
together with a moment.  For the case of the force moved to the bolt-centre, the moment 
has the magnitude shown in Fig. 2.3.6b. 
 

 
 

Figure 2.3.6: Equivalent force and force/moment acting on a 
spanner and bolt system 

 
As mentioned, it is best to maintain consistency and draw the semi-circle representing the 
moment counterclockwise (positive) and given a value of 40  as in Fig. 2.3.6b; rather 
than as in Fig. 2.3.6c. 

■ 
 
Example 
 
Consider the plate subjected to the four external loads shown in Fig. 2.3.7a.  An 
equivalent force-couple system F-M, with the force acting at the centre of the plate, can 
be calculated through 
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o

200 N, 100 N

M (100)(100) (50 / 2)(100) (50 / 2)(100) (200)(50) 7071.07 Nmm

x yF F 

      

 


 

 
and is shown in Fig. 2.3.7b.  A resultant force R can also be derived, that is, an 
equivalent force positioned so that a couple is not necessary, as shown in Fig. 2.3.7.c.   
 

 
 

Figure 2.3.7: Forces acting on a plate; (a) individual forces, (b) an 
equivalent force-couple system at the plate-centre, (c) the resultant 

force 
 
The force systems in the three figures are equivalent in the sense that they tend to impart 
(a) the same translation in the x direction, (b) the same translation in the y direction, and 
(c) the same rotation about any given point in the plate.  For example, the moment about 
the upper left corner is 
 

 Fig 2.3.7a: (100)(0) (50 / 2)(50) (50 / 2)(150) (200)(100)     
 Fig 2.3.7b: 7071)44.89)(61.223(   
 Fig 2.3.7c: )82.57)(61.223(  
 
all leading to Nmm93.12928M about that point. 

■ 
 
 
2.3.2 Equilibrium of Rigid Bodies 
 
The concept of equilibrium encountered earlier in the context of particles can now be 
generalized to the case of the rigid body: 
 
Equilibrium of a Rigid Body 
A rigid body is in equilibrium when the external forces acting on it form a system of 
forces equivalent to zero 
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The necessary and sufficient conditions that a (two dimensional) rigid body is in 
equilibrium are then 
 

 
0,0,0 o   MFF yx    Equilibrium Equations (2D Rigid Body)  (2.3.3) 

 
 
that is, there is no resultant force and no resultant moment.  Note that the yx   axes and 
the axis of rotation o can be chosen completely arbitrarily: if the resultant force is zero, 
and the resultant moment about one axis is zero, then the resultant moment about any 
other axis in the body will be zero also. 
 
 
2.3.3 Joints and Connections 
 
Components in machinery, buildings etc., connect with each other and are supported in a 
number of different ways.  In order to solve for the forces acting in such assemblies, one 
must be able to analyse the forces acting at such connections/supports. 
 
One of the most commonly occurring supports can be idealised as a roller support, Fig. 
2.3.8a.  Here, the contacting surfaces are smooth and the roller offers only a normal 
reaction force (see §2.2.2).  This reaction force is labelled yR , according to the 

conventional yx   coordinate system shown.  This is shown in the free-body diagram of 
the component. 
 

 
 

Figure 2.3.8: Supports and connections; (a) roller support, (b) pin 
joint, (c) clamped 

 
Another commonly occurring connection is the pin joint, Fig. 2.3.8b.  Here, the 
component is connected to a fixed hinge by a pin (going “into the page”).  The 
component is thus constrained to move in one plane, and the joint does not provide 
resistance to this turning movement.  The underlying support transmits a reaction force 
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through the hinge pin to the component, which can have both normal ( yR ) and tangential 

( xR ) components. 

 
Finally, in Fig. 2.3.8c is shown a fixed (clamped) joint.  Here the component is welded 
or glued and cannot move at the base.  It is said to be cantilevered.  The support in this 
case reacts with normal and tangential forces, but also with a couple of moment M, which 
resists any bending/turning at the base. 
 
Example 
 
For example, consider such a component loaded with a force F a distance L from the 
base, as shown in Fig. 2.3.9a.  A free-body diagram of the component is shown in Fig. 
2.3.9b.  The known force F acts on the body and so do two unknown forces xR , yR , and 

a couple of moment M.  The unknown forces and moment will be called reactions 
henceforth.  If the component is static, the equilibrium equations 2.3.3 apply; one has, 
taking moments about the base of the component, 
 

0,0,0 o   MFLMRFRFF yyxx  

 
and so 
 

FLMRFR yx  ,0,  

 
The moment is positive and so acts in the direction shown in the Figure. 
 

 
 

Figure 2.3.9: A loaded cantilevered component; (a) loaded 
component, (b) free body diagram of the component 

 
The reaction moment of Fig. 2.3.9(b) can be experienced as follows: take a ruler and hold 
it firmly at one end, upright in your right hand. Simulate the applied force now by 
pushing against the ruler with a finger of your left hand.  You will feel that, to maintain 
the ruler “vertical” at the base, you need to apply a twist with your right hand, in the 
direction of the moment shown in Fig. 2.3.9(b). 
 
Note that, when solving this problem, moments were taken about the base.  As mentioned 
already, one can take the moment about any point in the column.  For example, taking the 
moment about the point where the force F is applied, one has 
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F 0xM R L M    

 
This of course leads to the same result as before, but the final calculation of the forces is 
now slightly more complicated; in general, it is easier if the axis is chosen to coincide 
with the point where the reaction forces act – this is because the reaction forces do not 
then appear in the moment equation: o 0M FL M    . 

■ 
 
For ease of discussion, from now on, “couples” such as that encountered in Fig. 2.3.9 will 
simply be called “moments”. 
 
All the elements are now in place to tackle fairly complex static rigid body problems. 
 
Example 
 
Consider the plate subjected to the three external loads shown in Fig. 2.3.10a.  The plate 
is supported by a roller at A and a pin-joint at B.  The weight of the plate is assumed to be 
small relative to the applied loads and is neglected.  A free body diagram of the plate is 
shown in Fig 2.3.10b.  This shows all the forces acting on the plate.  Reactions act at A 
and B: these forces represent the action of the base on the plate, preventing it from 
moving downward and horizontally.  The equilibrium equations can be used to find the 
reactions: 
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Figure 2.3.10: Equilibrium of a plate; (a) forces acting on the plate, 
(b) free-body diagram of the plate 

 
The resultant moment was calculated by taking the moment about point A.  As mentioned 
in relation to the previous example, one could have taken the moment about any other 
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point in the plate.  The “most convenient” point about which to take moments in this 
example would be point A or B, since in that case only one of the reaction forces will 
appear in the moment equilibrium equation. 

■ 
 
In the above example there were three unknown reactions and three equilibrium equations 
with which to find them.  If the roller was replaced with a pin, there would be four 
unknown reactions, and now there would not be enough equations with which to find the 
reactions.  When this situation arises, the system is called statically indeterminate.  To 
find the unknown reactions, one must relax the assumption of rigidity, and take into 
account the fact that all materials deform.  By calculating deformations within the plate, 
the reactions can be evaluated.  The deformation of materials is studied in the following 
chapters. 
 
To end this Chapter, note the following: 
(i) the equilibrium equations 2.3.3 result from Newton’s laws, and are thus as valid for 

a body of water as they are for a body of hard steel; the external forces acting on a 
body of still water form a system of forces equivalent to zero. 

(ii) as mentioned already, Newton’s laws apply not only to a complete body or 
structure, but to any portion of a body.  The external forces acting on any free-body 
portion of static material form a system of forces equivalent to zero. 

(iii) there is no such thing as a rigid body.  Metals and other engineering materials can 
be considered to be “nearly rigid” as they do not deform by much under even fairly 
large loads.  The analysis carried out in this Chapter is particularly relevant to these 
materials and in answering questions like: what forces act in the steel members of a 
suspension bridge under the load of self-weight and traffic? (which is just a more 
complicated version of the problem of Fig. 2.2.3 or Problem 3 below). 

(iv) if the loads on the plate of Fig. 2.3.10a are too large, the plate will “break”.  The 
analysis carried out in this Chapter cannot answer where it will break or when it will 
break.  The more sophisticated analysis carried out in the following Chapters is 
necessary to deal with this and many other questions of material response.  

 
 
2.3.4 Problems 
 
1. A plate is subjected to a couple Fd , with cm20d , as shown below left.  Verify 

that the couple can be moved to the position shown below right, and the effect on the 
plate is the same, by showing that the moment about point o in both cases is 

20M F  . 
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2. What force F must be applied to the following static component such that the tension 

in the cable, T, is 1kN?  What are the reactions at the pin support C? 
 

 
 
3. A machine part is hinged at A and subjected to two forces through cables as shown.  

What couple M needs to be applied to the machine part for equilibrium to be 
maintained?  Where can this couple be applied? 
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3 Stress 
 
Forces acting at the surfaces of components were considered in the previous chapter.  The 
task now is to examine forces arising inside materials, internal forces.  Internal forces are 
described using the idea of stress.  There is a lot more to stress than the notion of “force 
over area”, as will become clear in this chapter.  First, the idea of surface (contact) stress 
distributions will be examined, together with their relationship to resultant forces and 
moments.  Then internal stress and traction will be discussed.  The means by which 
internal forces are described is through the stress components, for example yyzx  , , and 
this “language” of sigmas and subscripts needs to be mastered in order to model sensibly 
the internal forces in real materials.  Stress analysis involves representing the actual 
internal forces in a real physical component mathematically.  Some of the limitations of 
this are discussed in §3.3.2. 
 
Newton’s laws are used to derive the stress transformation equations, and these are 
then used to derive expressions for the principal stresses, stress invariants, principal 
directions and maximum shear stresses acting at a material particle.  The practical case 
of two dimensional plane stress is discussed. 
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3.1 Surface and Contact Stress 
 
The concept of the force is fundamental to mechanics and many important problems 
can be cast in terms of forces only, for example the problems considered in Chapter 2.  
However, more sophisticated problems require that the action of forces be described 
in terms of stress, that is, force divided by area.  For example, if one hangs an object 
from a rope, it is not the weight of the object which determines whether the rope will 
break, but the weight divided by the cross-sectional area of the rope, a fact noted by 
Galileo in 1638. 
 
 
3.1.1 Stress Distributions 
 
As an introduction to the idea of stress, consider the situation shown in Fig. 3.1.1a: a 
block of mass m and cross sectional area A sits on a bench.  Following the 
methodology of Chapter 2, an analysis of a free-body of the block shows that a force 
equal to the weight mg  acts upward on the block, Fig. 3.1.1b.  Allowing for more 
detail now, this force will actually be distributed over the surface of the block, as 
indicated in Fig. 3.1.1c.  Defining the stress to be force divided by area, the stress 
acting on the block is 
 

A

mg
            (3.1.1) 

 
The unit of stress is the Pascal (Pa): 1Pa is equivalent to a force of 1 Newton acting 
over an area of 1 metre squared.  Typical units used in engineering applications are 
the kilopascal, kPa ( Pa103 ), the megapascal, MPa ( Pa106 ) and the gigapascal, GPa 

( Pa109 ). 
 

 
 

Figure 3.1.1: a block resting on a bench; (a) weight of the block, (b) reaction of 
the bench on the block, (c) stress distribution acting on the block 

 
The stress distribution of Fig. 3.1.1c acts on the block.  By Newton’s third law, an 
equal and opposite stress distribution is exerted by the block on the bench; one says 
that the weight force of the block is transmitted to the underlying bench. 
 
The stress distribution of Fig. 3.1.1 is uniform, i.e. constant everywhere over the 
surface.  In more complex and interesting situations in which materials contact, one is 
more likely to obtain a non-uniform distribution of stress.  For example, consider the 
case of a metal ball being pushed into a similarly stiff object by a force F, as 

mg

(a) (c)

mg

(b)
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illustrated in Fig. 3.1.2.1  Again, an equal force F acts on the underside of the ball, 
Fig. 3.1.2b.  As with the block, the force will actually be distributed over a contact 
region.  It will be shown in Part II that the ball (and the large object) will deform and 
a circular contact region will arise where the ball and object meet2, and that the stress 
is largest at the centre of the contact surface, dying away to zero at the edges of 
contact, Fig. 3.1.2c ( 21    in Fig. 3.1.2c).  In this case, with stress   not constant, 
one can only write, Fig. 3.1.2d, 
 

A A

F dF dA                 (3.1.2) 

 
The stress varies from point to point over the surface but the sum (or integral) of the 
stresses (times areas) equals the total force applied to the ball. 
 

 
 
Figure 3.1.2: a ball being forced into a large object, (a) force applied to ball, (b) 

reaction of object on ball, (c) a non-uniform stress distribution over the 
contacting surface, (d) the stress acting on a small (infinitesimal) area 

 
A given stress distribution gives rise to a resultant force, which is obtained by 
integration, Eqn. 3.1.2.  It will also give rise to a resultant moment.  This is examined 
in the following example. 
 
Example 
 
Consider the surface shown in Fig. 3.1.3, of length 2m and depth 2m (into the page).  
The stress over the surface is given by x  kPa, with x measured in m from the left-
hand side of the surface. 
 
The force acting on an element of length dx  at position x is (see Fig. 3.1.3b) 
 

   kPa m 2 mdF dA x dx     

                                                 
1 the weight of the ball is neglected here 
2 the radius of which depends on the force applied and the materials in contact 
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The resultant force is then, from Eqn. 3.1.2 
 

  kN4mkPa2 2
2

0

  xdxdFF
A

 

 
The moment of the stress distribution is given by 
 

 
AA

dAldMM 0                                           (3.1.3) 

 
where l is the length of the moment-arm from the chosen axis. 
 
Taking the axis to be at 0x , the moment-arm is xl  , Fig. 3.1.3b, and 
 

  mkN
3

16
mkPa2 3

2

0

0   dxxxdMM
A

x  

 
Taking moments about the right-hand end, 2x , one has 
 

    mkN
3

8
mkPa22 3

2

0

2   dxxxdMM
A

x  

 

 
 

Figure 3.1.3: a non-uniform stress acting over a surface; (a) the stress 
distribution, (b) stress acting on an element of size dx  

 
■ 

 
 
3.1.2 Equivalent Forces and Moments 
 
Sometimes it is useful to replace a stress distribution   with an equivalent force F, 
i.e. a force equal to the resultant force of the distribution and one which also give the 
same moment about any axis as the distribution.  Formulae for equivalent forces are 
derived in what follows for triangular and arbitrary linear stress distributions. 
 

x

m2

)(x

dx

)(xx

(a) (b)
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Triangular Stress Distribution 
 
Consider the triangular stress distribution shown in Fig. 3.1.4.  The stress at the end is 

0 , the length of the distribution is L and the thickness “into the page” is t.  The 

equivalent force is, from Eqn. 3.1.2, 
 

Ltdx
L

x
tF

L

0

0

0 2

1                                             (3.1.4) 

 
which is just the average stress times area.  The point of action of this force should be 
such that the moment of the force is equivalent to the moment of the stress 
distribution.  Taking moments about the left hand end, for the distribution one has, 
from 3.1.3, 
 

tLdxxxtM
L

2
0

0

o 3

1
)(     

 
Placing the force at position cxx  , Fig. 3.1.4, the moment of the force is 

  cxLtM 2/0o  .  Equating these expressions leads to the position at which the 

equivalent force acts: 
 

Lxc 3

2
 .                                                   (3.1.5) 

 

 
 

Figure 3.1.4: triangular stress distribution and equivalent force 
 
Note that the moment about any axis is now the same for both the stress distribution 
and the equivalent force. 

■ 
 
Arbitrary Linear Stress Distribution 
 
Consider the linear stress distribution shown in Fig. 3.1.5.  The stress at the ends are 

1  and 2  and this time the equivalent force is  
 

    2/)/)(( 21

0

121    LtdxLxtF
L

                 (3.1.6) 
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Taking moments about the left hand end, for the distribution one has 
 

  6/2)( 21
2

0

o    tLdxxxtM
L

 

 
The moment of the force is   2/21o cxLtM   .  Equating these expressions leads 

to 
 

 
 21

21

3

2








L

xc                                                (3.1.7) 

 
Eqn. 3.1.5 follows from 3.1.7 by setting 01  . 
 

 
 

Figure 3.1.5: a non-uniform stress distribution and equivalent force 
 

■ 
 
The Centroid 
 
Generalising the above cases, the line of action of the equivalent force for any 
arbitrary stress distribution )(x  is 
 

F

dFx

dxxt

dxxxt
xc



 

)(

)(




 Centroid       (3.1.8) 

 
This location is known as the centroid of the distribution. 
 
Note that most of the discussion above is for two-dimensional cases, i.e. the stress is 
assumed constant “into the page”.  Three dimensional problems can be tackled in the 
same way, only now one must integrate two-dimensionally over a surface rather than 
one-dimensionally over a line. 
 
Also, the forces considered thus far are normal forces, where the force acts 
perpendicular to a surface, and they give rise to normal stresses.  Normal stresses are 
also called pressures when they are compressive as in Figs. 3.1.1-2. 
 

1
2

L

o

equivalent force

)(x

cx



Section 3.1 

Solid Mechanics Part I                                                                                Kelly 36

 
3.1.3 Shear Stress 
 
Consider now the case of shear forces, that is, forces which act tangentially to 
surfaces. 
 
A normal force F acts on the block of Fig. 3.1.6a.  The block does not move and, to 
maintain equilibrium, the force is resisted by a friction force mgF  , where   is 
the coefficient of friction.  A free body diagram of the block is shown in Fig. 3.1.6b.  
Assuming a uniform distribution of stress, the stress and resultant force arising on the 
surfaces of the block and underlying object are as shown.  The stresses are in this case 
called shear stresses. 
 

 
 
Figure 3.1.6: shear stress; (a) a force acting on a block, (b) shear stresses arising 

on the contacting surfaces 
 
 
3.1.4 Combined Normal and Shear Stress 
 
Forces acting inclined to a surface are most conveniently described by decomposing 
the force into components normal and tangential to the surface.  Then one has both 
normal stress N  and shear stress S , as in Fig. 3.1.7. 

 

 
 
Figure 3.1.7: a force F giving rise to normal and shear stress over the contacting 

surfaces 
 
The stresses considered in this section are examples of surface stresses or contact 
stresses.  They arise when materials meet at a common surface.  Other examples 
would be sea-water pressurising a material in deep water and the stress exerted by a 
train wheel on a train track. 
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3.1.5 Problems 
 
1. Consider the surface shown below, of length 4cm and unit depth (1cm into the 

page).  The stress over the surface is given by x 2  kPa, with x measured in 
cm from the surface centre. 
(a) Evaluate the resultant force acting on the surface (in Newtons). 
(b) What is the moment about an axis (into the page) through the left-hand end of 

the surface? 
(c) What is the moment about an axis (into the page) through the centre of the 

surface? 
 

 
 

2. Consider the surface shown below, of length 4mm and unit depth (1mm into the 
page).  The stress over the surface is given by x  MPa, with x measured from 
the surface centre.  What is the total force acting on the surface, and the moment 
acting about the centre of the surface? 

 

 
 
3. Find the reaction forces (per unit length) at the pin and roller for the following 

beam, which is subjected to a varying pressure distribution, the maximum 
pressure being kPa20)( x  (all lengths are in cm – give answer in N/m) 
[Hint: first replace the stress distribution with three equivalent forces] 
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4. A block of material of width 10cm and length 1m is pushed into an underlying 

substrate by a normal force of 100 N.  It is found that a uniform triangular normal 
stress distribution arises at the contacting surfaces, that is, the stress is maximum 
at the centre and dies off linearly to zero at the block edges, as sketched  below 
right.  What is the maximum pressure acting on the surface? 
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3.2 Body Forces 
 
Surface forces act on surfaces.  As discussed in the previous section, these are the forces 
which arise when bodies are in contact and which give rise to stress distributions.  Surface 
forces also arise inside materials, acting on internal surfaces, Fig. 3.2.1a, as will be 
discussed in the following section. 
 
To complete the description of forces acting on real materials, one needs to deal with 
forces which arise even when bodies are not in contact; one can think of these forces as 
acting at a distance, for example the force of gravity.  To describe these forces, one can 
define the body force, which acts on volume elements of material.  Fig. 3.2.1b shows a 
sketch of a volume element subjected to a magnetic body force and a gravitational body 
force gF . 
 

 
 
Figure 3.2.1: forces acting on a body; (a) surface forces acting on surfaces, (b) body 

forces acting on a material volume element 
 
 
3.2.1 Weight 
 
The most important body force is the force due to gravity, i.e. the weight force.  In 
Chapter 2 there were examples involving the weight of components.  In those cases it was 
simply stated that the weight could be taken to be a single force acting at the component 
centre (for example, Problem 3 in §2.2.3).  This is true when the component is 
symmetrical, for example, in the shape of a circle or a square.  However, it is not true in 
general for a component of arbitrary shape. 
 
In what follows, the important case of a flat object of arbitrary shape will be examined. 
 
The weight of a small volume element V  of material of density   is VgdF    and 
the total weight is 
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dVgF
V
                                                       (3.2.1) 

 
Consider the general two-dimensional case, Fig. 3.2.2, where material elements of area 

iA  (and constant thickness t) are subjected to forces ii AgtF   . 
 

 
 

Figure 3.2.2: Resultant Weight on a body 
 
The resultant, i.e. equivalent, weight force due to all elements, for a component with 
uniform density, is  
 

gtAdAgtdFF    , 
 
where A is the cross-sectional area. 
 
The resultant moments about the x and y axes, which can be positioned anywhere in the 
body, are  ydAgtM x   and  xdAgtM y   respectively; the moment xM  is shown 

in Fig. 3.2.3.  The equivalent weight force is thus positioned at ),( cc yx , Fig. 3.2.2, where 
 

A

ydA
y

A

xdA
x cc

  ,  Centroid of Area    (3.2.2) 

 
The position ),( cc yx  is called the centroid of the area.  The quantities  xdA ,  ydA , are 
called the first moments of area about, respectively, the y and x axes. 
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Figure 3.2.3: The moment Mx; (a) full view, (b) plane view 
 
 
 
 
3.2.2 Problems 
 
 
1. Where does the resultant force due to gravity act in the triangular component shown 

below?  (Gravity acts downward in the direction of the arrow shown, perpendicular to 
the component’s surface)  
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3.3 Internal Stress 
 
The idea of stress considered in §3.1 is not difficult to 
conceptualise since objects interacting with other objects are 
encountered all around us.  A more difficult concept is the 
idea of forces and stresses acting inside a material, “within 
the interior where neither eye nor experiment can reach” as 
Euler put it.  It took many great minds working for centuries 
on this question to arrive at the concept of stress we use 
today, an idea finally brought to us by Augustin Cauchy, 
who presented a paper on the subject to the Academy of 
Sciences in Paris, in 1822. 

       Augustin Cauchy  
 
3.3.1 Cauchy’s Concept of Stress 
 
Uniform Internal Stress 
 
Consider first a long slender block of material subject to equilibrating forces F at its ends, 
Fig. 3.3.1a.  If the complete block is in equilibrium, then any sub-division of the block 
must be in equilibrium also.  By imagining the block to be cut in two, and considering 
free-body diagrams of each half, as in Fig. 3.3.1b, one can see that forces F must be 
acting within the block so that each half is in equilibrium.  Thus external loads create 
internal forces; internal forces represent the action of one part of a material on another 
part of the same material across an internal surface.  If the material out of which the block 
is made is uniform over this cut, one can take it that a uniform stress AF /  acts over 
this interior surface, Fig. 3.3.1b. 
 

 
 

Figure 3.3.1: a slender block of material; (a) under the action of external forces F, 
(b) internal normal stress σ, (c) internal normal and shear stress 
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Note that, if the internal forces were not acting over the internal surfaces, the two half-
blocks of Fig. 3.3.1b would fly apart; one can thus regard the internal forces as those 
required to maintain material in an un-cut state.  
 
If the internal surface is at an incline, as in Fig. 3.3.1c, then the internal force required for 
equilibrium will not act normal to the surface.  There will be components of the force 
normal and tangential to the surface, and thus both normal ( N ) and shear ( S )  stresses 

must arise.  Thus, even though the material is subjected to a purely normal load, internal 
shear stresses develop. 
 
From Fig. 3.3.2a, the normal and shear stresses arising on an interior surface inclined at 
angle   to the horizontal are {▲Problem 1} 
 

 cossin,cos2

A

F

A

F
SN         (3.3.1) 

 

 
 

Figure 3.3.2: stress on inclined surface; (a) decomposing the force into normal and 
shear forces, (b) stress at an internal point 

 
Although stress is associated with surfaces, one can speak of the stress “at a point”.  For 
example, consider some point interior to the block, Fig 3.3.2b.  The stress there evidently 
depends on which surface through that point is under consideration.  From Eqn. 3.3.1a, 
the normal stress at the point is a maximum AF /  when 0  and a minimum of zero 
when o90 .  The maximum normal stress arising at a point within a material is of 
special significance, for example it is this stress value which often determines whether a 
material will fail (“break”) there.  It has a special name: the maximum principal stress.  
From Eqn. 3.3.1b, the maximum shear stress at the point is AF 2/  and arises on 
surfaces inclined at o45 . 
 
Non-Uniform Internal Stress 
 
Consider a more complex geometry under a more complex loading, as in Fig. 3.3.3.  
Again, using equilibrium arguments, there will be some stress distribution acting over any 
given internal surface.  To evaluate these stresses is not an easy matter, and much of Part 
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II is devoted to doing just that.  Suffice to say here that they will invariably be non-
uniform over a surface, that is, the stress at some particle will differ from the stress at a 
neighbouring particle. 
 

 
 

Figure 3.3.3: a component subjected to a complex loading, giving rise to a non-
uniform stress distribution over an internal surface 

 
Traction and the Physical Meaning of Internal Stress 
 
All materials have a complex molecular microstructure and each molecule exerts a force 
on each of its neighbours.  The complex interaction of countless molecular forces 
maintains a body in equilibrium in its unstressed state.  When the body is disturbed and 
deformed into a new equilibrium position, net forces act, Fig. 3.3.4a.  An imaginary plane 
can be drawn through the material, Fig. 3.3.4b.  Unlike some of his predecessors, who 
attempted the extremely difficult task of accounting for all the molecular forces, Cauchy 
discounted the molecular structure of matter and simply replaced the molecular forces 
acting on the plane by a single force F, Fig 3.3.4c.  This is the force exerted by the 
molecules above the plane on the material below the plane and can be attractive or 
repulsive.  Different planes can be taken through the same portion of material and, in 
general, a different force will act on the plane, Fig 3.3.4d. 
 

 
 

Figure 3.3.4: a multitude of molecular forces represented by a single force; (a) 
molecular forces, a plane drawn through the material, replacing the molecular 

forces with an equivalent force F, a different equivalent force F acts on a different 
plane through the same material 

 
The definition of stress will now be made more precise.  First, define the traction at some 
particular point in a material as follows: take a plane of surface area S through the point, 
on which acts a force F.  Next shrink the plane – as it shrinks in size both S and F get 
smaller, and the direction in which the force acts may change, but eventually the ratio 

SF /  will remain constant and the force will act in a particular direction, Fig. 3.3.5.  The 
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limiting value of this ratio of force over surface area is defined as the traction vector (or 
stress vector) t: 
 

           
S

F
S 




 0
limt      (3.3.2) 

 

 
 
Figure 3.3.5: the traction vector - the limiting value of force over area, as the surface 

area of the element on which the force acts is shrunk 
 
An infinite number of traction vectors act at any single point, since an infinite number of 
different planes pass through a point.  Thus the notation SFS  /lim 0  is ambiguous.  

For this reason the plane on which the traction vector acts must be specified; this can be 
done by specifying the normal n to the surface on which the traction acts, Fig 3.3.6.  The 
traction is thus a special vector – associated with it is not only the direction in which it 
acts but also a second direction, the normal to the plane upon which it acts. 
 

 
 

Figure 3.3.6: two different traction vectors acting at the same point 
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Stress Components 
 
The traction vector can be decomposed into components which act normal and parallel to 
the surface upon which it acts.  These components are called the stress components, or 
simply stresses, and are denoted by the symbol  ; subscripts are added to signify the 
surface on which the stresses act and the directions in which the stresses act. 
 
Consider a particular traction vector acting on a surface element.  Introduce a Cartesian 
coordinate system with base vectors kji ,,  so that one of the base vectors is a normal to 
the surface, and the origin of the coordinate system is positioned at the point at which the 
traction acts.  For example, in Fig. 3.3.7, the k  direction is taken to be normal to the 
plane, and kjit k

zyx ttt )( .  

 

 
 

Figure 3.3.7: the components of the traction vector 
 
Each of these components it  is represented by ij   where the first subscript denotes the 

direction of the normal to the plane and the second denotes the direction of the 
component.  Thus, re-drawing Fig. 3.3.7 as Fig. 3.3.8: kjit k

zzzyzx  )( .  The first 

two stresses, the components acting tangential to the surface, are shear stresses, whereas 

zz , acting normal to the plane, is a normal stress1. 
 

 
 

Figure 3.3.8: stress components – the components of the traction vector 
 
The traction vector shown in Figs. 3.3.7, 3.3.8, represents the force (per unit area) exerted 
by the material above the surface on the material below the surface.  By Newton’s third 

                                                 
1 this convention for the subscripts is not universally followed.  Many authors, particularly in the 
mathematical community, use the exact opposite convention, the first subscript to denote the direction and 
the second to denote the normal.  It turns out that both conventions are equivalent, since, as will be shown 

later, the stress is symmetric, i.e. jiij    
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law, an equal and opposite traction must be exerted by the material below the surface on 
the material above the surface, as shown in Fig. 3.3.9 (thick dotted line).  If )(kt  has stress 
components , ,zx zy zz   , then so should )( kt  : ( ) ( )( ) ( ) ( )zx zy zz          k kt i j k t . 

 
 

Figure 3.3.9: equal and opposite traction vectors – each with the same stress 
components 

 
 
Sign Convention for Stress Components 
 
The following convention is used: 

 
The stress is positive when the direction of the normal and the direction of 

the stress component are both positive or both negative 
The stress is negative when one of the directions is positive and the other is 

negative 
 
According to this convention, the three stresses in Figs. 3.3.7-9 are all positive. 
 
Looking at the two-dimensional case for ease of visualisation, the (positive and negative) 
normal stresses and shear stresses on either side of a surface are as shown in Fig. 3.3.10.  
Normal stresses which “pull” (tension) are positive; normal stresses which “push 
(compression) are negative.  Note that the shear stresses always go in opposite directions. 
 

 
 

Figure 3.3.10: stresses acting on either side of a material surface: (a) positive 
stresses, (b) negative stresses 

 
Examples of negative stresses are shown in Fig. 3.3.11 {▲Problem 4}. 
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Figure 3.3.11: examples of negative stress components 
 
 
3.3.2 Real Problems and Saint-Venant’s Principle 
 
Some examples have been given earlier of external forces acting on materials.  In reality, 
an external force will be applied to a real material component in a complex way.  For 
example, suppose that a block of material, welded to a large object at one end, is pulled at 
its other end by a rope attached to a metal hoop, which is itself attached to the block by a 
number of bolts, Fig. 3.3.12a.  The block can be idealised as in Fig 3.3.12b; here, the 
precise details of the region in which the external force is applied are neglected. 
 

 
 

Figure 3.3.12: a block subjected to an external force: (a) real case, (b) ideal model, 
(c) stress in ideal model, (d) stress in actual material, (e) the stress in the real 
material, away from the right hand end, is modelled well by either (f) or (g) 

 
According to the earlier discussion, the stress in the ideal model is as in Fig. 3.3.12c.  One 
will find that, in the real material, the stress is indeed (approximately) as predicted, but 
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only at an appreciable distance from the right hand end.  Near where the rope is attached, 
the force will differ considerably, as sketched in Fig.3.3.12d. 
 
Thus the ideal models of the type discussed in this section, and in much of this book, are 
useful only in predicting the stress field in real components in regions away from points 
of application of loads.  This does not present too much of a problem, since the stresses 
internal to a structure in such regions are often of most interest.  If one wants to know 
what happens near the bolted connection, then one will have to create a complex model 
incorporating all the details and the problem will be more difficult to solve. 
 
It is an experimental fact that if two different force systems are applied to a material, but 
they are equivalent force systems, as in Fig. 3.3.12(f,g), then the stress fields in regions 
away from where the loads are applied will be the same.  This is known as Saint-
Venant’s Principle.  Typically, one needs to move a distance away from where the loads 
are applied roughly equal to the distance over which the loads are applied. 
 
 
3.3.3 Problems 
 
1. Derive Eqns. 3.3.1. 
2. The four sides of a square block are subjected to equal forces S, as illustrated.  The 

length of each side is l and the block has unit depth (into the page).  What normal and 
shear stresses act along the (dotted) diagonal? [Hint: draw a free body diagram of the 
upper left hand triangle.] 

 
3. A shaft is concreted firmly into the ground.  A thick steel rope is looped around the 

shaft and a force is applied normal to the shaft, as shown.  The shaft is in static 
equilibrium.  Draw a free body diagram of the shaft (from the top down to ground 
level) showing the forces/moments acting on the shaft (including the reaction forces at 
the ground-level; ignore the weight of the shaft).  Draw a free body diagram of the 
section of shaft from the top down to the cross section at A.  Draw a free body 
diagram of the section of shaft from the top to the cross section at B.  Roughly sketch 
the stresses acting over the (horizontal) internal surfaces of the shaft at A and B. 
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4. In Fig. 3.3.11, which of the stress components is/are negative? 
5. Label the following stress component acting on an internal material surface.  Is it a 

positive or negative stress? 
 

 
 
 
 
6. Label the following shear stresses.  Are they positive or negative? 
 

 
 
7. Label the following normal stresses.  Are they positive or negative? 
 

 
 
8. By the definition of the traction vector t which acts on the x z  plane, 

( )
yx yy yz    jt i j k .  Sketch these three stress components on the figure below. 
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3.4 Equilibrium of Stress 
 
Consider two perpendicular planes passing through a point p.  The stress components 
acting on these planes are as shown in Fig. 3.4.1a.  These stresses are usually shown 
together acting on a small material element of finite size, Fig. 3.4.1b.  It has been seen 
that the stress may vary from point to point in a material but, if the element is very small, 
the stresses on one side can be taken to be (more or less) equal to the stresses acting on 
the other side.  By convention, in analyses of the type which will follow, all stress 
components shown are positive. 
 

 
 
Figure 3.4.1: stress components acting on two perpendicular planes through a point; 

(a) two perpendicular surfaces at a point, (b) small material element at the point 
 
The four stresses can conveniently be written in the matrix form: 
 

xx xy

ij
yx yy

 


 
 

     
 

      (3.4.1) 

 
It will be shown below that the stress components acting on any other plane through p can 
be evaluated from a knowledge of only these stress components. 
 
 
3.4.1 Symmetry of the Shear Stress 
 
Consider the material element shown in Fig. 3.4.1b, reproduced in Fig. 3.4.2a below.  The 
element has dimensions is yx   and is subjected to uniform stresses over its sides.  
The resultant forces of the stresses acting on each side of the element act through the side-
centres, and are shown in Fig. 3.4.2b.  The stresses shown are positive, but note how 
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positive stresses can lead to negative forces, depending on the definition of the yx   
axes used.  The resultant force on the complete element is seen to be zero. 
 

 
 

Figure 3.4.2: stress components acting on a material element; (a) stresses, (b) 
resultant forces on each side 

 
By taking moments about any point in the block, one finds that {▲Problem 1} 
 

yxxy        (3.4.2) 

 
Thus the shear stresses acting on the element are all equal, and for this reason the yx  

stresses are usually labelled xy , Fig. 3.4.3a, or simply labelled  , Fig. 3.4.3b. 

 

 
 

Figure 3.4.3: shear stress acting on a material element 
 
 
3.4.2 Three Dimensional Stress 
 
The three-dimensional counterpart to the two-dimensional element of Fig. 3.4.2 is shown 
in Fig. 3.4.4.  Again, all stresses shown are positive. 
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Figure 3.4.4: a three dimensional material element 
 
Moment equilibrium in this case requires that 
 

zyyzzxxzyxxy   ,,         (3.4.3) 

 
The nine stress components, six of which are independent, can now be written in the 
matrix form 
 

 


















zzzyzx

yzyyyx

xzxyxx

ij





       (3.4.4) 

 
A vector F has one direction associated with it and is characterised by three components 

),,( zyx FFF .  The stress is a quantity which has two directions associated with it (the 

direction of a force and the normal to the plane on which the force acts) and is 
characterised by the nine components of Eqn. 3.4.4.  Such a mathematical object is called 
a tensor.  Just as the three components of a vector change with a change of coordinate 
axes (for example, as in Fig. 2.2.1), so the nine components of the stress tensor change 
with a change of axes.  This is discussed in the next section for the two-dimensional case.  
(The concept of a tensor will be examined more closely in Books II and especially IV.) 
 
 
3.4.3 Stress Transformation Equations 
 
Consider the case where the nine stress components acting on three perpendicular planes 
through a material particle are known.  These components are ,xx xy  , etc. when using 

, ,x y z  axes, and can be represented by the cube shown in Fig. 3.4.5a.  Rotate now the 
planes about the three axes – these new planes can be represented by the rotated cube 
shown in Fig. 3.4.5b; the axes normal to the planes are now labelled , ,x y z    and the 

corresponding stress components with respect to these new axes are ,xx xy   , etc. 
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Figure 3.4.5: a three dimensional material element; (a) original element, (b) rotated 

element 
 
There is a relationship between the stress components ,xx xy  , etc. and the stress 

components ,xx xy   , etc.  The relationship can be derived using Newton’s Laws.  The 

equations describing the relationship in the fully three-dimensional case are very lengthy 
– they will be discussed in Books II and IV.  Here, the relationship for the two-
dimensional case will be derived – this 2D relationship will prove very useful in 
analysing many practical situations. 
 
Two-dimensional Stress Transformation Equations 
 
Assume that the stress components of Fig. 3.4.6a are known.  It is required to find the 
stresses arising on other planes through p.  Consider the perpendicular planes shown in 
Fig. 3.4.65b, obtained by rotating the original element through a positive 
(counterclockwise) angle  .  The new surfaces are defined by the axes yx  . 
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Figure 3.4.6: stress components acting on two different sets of perpendicular 
surfaces, i.e. in two different coordinate systems; (a) original system, (b) rotated 

system  
 
To evaluate these new stress components, consider a triangular element of material at the 
point, Fig. 3.4.7.  Carrying out force equilibrium in the direction x , one has (with unit 
depth into the page) 
 

: cos sin sin cos 0x xx xx yyF AB OB OA OB OA                    (3.4.5) 

 
Since  sin,cos ABOAABOB  , and dividing through by AB , 

 
 2sinsincos 22  yyxxxx     (3.4.6) 

 

 
 

Figure 3.4.7: a free body diagram of a triangular element of material 
 

)a( )b(

x

y
xx


xx

yy

yy

x

y

xx 

yy 

xx 

yy 



 

 

x

y

 
xx 

y

x





B

A

xx





yy

O



Section 3.4 

Solid Mechanics Part I                                                                                Kelly 57

The forces can also be resolved in the y  direction and one obtains the relation 
 

 2coscossin)(  xxyy        (3.4.7) 

 
Finally, consideration of the element in Fig. 3.4.8 yields two further relations, one of 
which is the same as Eqn. 3.4.6. 
 

 
 

Figure 3.4.8: a free body diagram of a triangular element of material 
 
In summary, one obtains the stress transformation equations: 
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     2D Stress Transformation Equations (3.4.8) 

 
These equations have many uses, as will be seen in the next section. 
 
In matrix form,  
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Body Force, Acceleration and Non-Uniform Stress 
 
Here, it will be shown that the Stress Transformation Equations are valid also when (i) 
there are body forces, (ii) the body is accelerating and (iii) the stress and other quantities 
are not uniform. 
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Suppose that a body force    b b bx y
 F F i F j  acts on the material and that the material 

is accelerating with an acceleration x ya a a i j .  The components of body force and 

acceleration are shown in Fig. 3.4.9 (a reproduction of Fig. 3.4.7).  The body force will 
vary depending on the size of the material under consideration, e.g. the force of 
gravity b mF g  will be larger for larger materials; therefore consider a quantity which is 

independent of the amount of material: the body force per unit mass, /b mF . Then, Eqn 

3.4.5 now reads 
 

   
: cos sin sin cos

/ cos / sin cos sin 0

x xx xx yy

b b x yx

F AB OB OA OB OA

m m m m ma ma

        

   
     

    


F F
     (3.4.10) 

 
where m is the mass of the triangular portion of material.  The volume of the triangle is 

2
/ sin 2AB   so that, this time, when 3.4.10 is divided through by AB , one has 

 

    

2 2cos sin sin 2

/ / 2sin / / 2cos / 2sin / 2cos

xx xx yy

b b x yx
AB m m a a

      

    

   

   F F
 (3.4.11) 

 
where   is the density.  Now, as the element is shrunk in size down to the vertex O, 

0AB  , and Eqn. 3.4.6 is recovered.  Thus the Stress Transformation Equations are 

valid provided the material under consideration is very small; in the limit, they are valid 
“at the point” O. 
 

 
 

Figure 3.4.9: a free body diagram of a triangular element of material, including a 
body force and acceleration 

 
Finally, consider the case where the stress is not uniform over the faces of the triangular 
portion of material.  Intuitively, it can be seen that, if one again shrinks the portion of 
material down in size to the vertex O, the Stress Transformation Equations will again be 
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valid, with the quantities , ,xx xx yy    etc. being the values “at” the vertex.  To be more 

precise, consider the xx  stress acting over the face OB  in Fig. 3.4.10.  No matter how 

the stress varies in the material, if the distance OB  is small, the stress can be 

approximated by a linear stress distribution, Fig. 3.4.10b.  This linear distribution can 
itself be decomposed into two components, a uniform stress of magnitude o

xx  (the value 

of xx  at the vertex) and a triangular distribution with maximum value xx .  The 

resultant force on the face is then  / 2o
xx xxOB    .  This time, as the element is 

shrunk in size, 0xx   and Eqn. 3.4.6 is again recovered.  The same argument can be 

used to show that the Stress Transformation Equations are valid for any varying stress, 
body force or acceleration.  
 

 
 

Figure 3.4.10: stress varying over a face; (a) stress is linear over OB if OB is small, 
(b) linear distribution of stress as a uniform stress and a triangular stress 

 
 
Three Dimensions Re-visited 
 
As the planes were rotated in the two-dimensional analysis, no consideration was given to 
the stresses acting in the “third dimension”.  Considering again a three dimensional block, 
Fig. 3.4.11, there is only one traction vector acting on the x y  plane at the material 
particle, t.  This traction vector can be described in terms of the , ,x y z  axes as 

zx zy zz    t i j k , Fig 3.4.11a.  Alternatively, it can be described in terms of the 

, ,x y z    axes as zx zy zz         t i j k , Fig 3.4.11b. 
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Figure 3.4.11: a three dimensional material element; (a) original element, (b) rotated 

element (rotation about the z axis) 
 
With the rotation only happening in the x y  plane, about the z axis, one has 

,zz zz   k k .  One can thus examine the two dimensional x y  plane shown in Fig. 

3.4.12, with 
 

zx zy zx zy        i j i j .                                          (3.4.12) 

 
Using some trigonometry, one can see that 
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.                                       (3.4.13) 

 

 
 
Figure 3.4.12: the traction vector represented using two different coordinate systems 
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3.4.4 Problems 
 
1. Derive Eqns. 3.4.2 by taking moments about the lower left corner of the block in Fig. 

3.4.2. 
 
2. Suppose that the stresses acting on two perpendicular planes through a point are 

  





















11

12

yyyx

xyxx
ij 


  

Use the stress transformation formulae to evaluate the stresses acting on two new 
perpendicular planes through the point, obtained from the first set by a positive 
rotation of o30 .  Use the conventional notation yx   to represent the coordinate 
axes parallel to these new planes. 
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3.5 Plane Stress 
 
This section is concerned with a special two-dimensional state of stress called plane stress.  
It is important for two reasons: (1) it arises in real components (particularly in thin 
components loaded in certain ways), and (2) it is a two dimensional state of stress, and thus 
serves as an excellent introduction to more complicated three dimensional stress states. 
 
 
3.5.1 Plane Stress 
 
The state of plane stress is defined as follows: 
 
Plane Stress: 
If the stress state at a material particle is such that the only non-zero stress components act in 
one plane only, the particle is said to be in plane stress. 
 
The axes are usually chosen such that the yx   plane is the plane in which the stresses act, 
Fig. 3.5.1. 
 

 
 

Figure 3.5.1: non-zero stress components acting in the x – y plane 
 
The stress can be expressed in the matrix form 3.4.1. 
 
Example 
 
The thick block of uniform material shown in Fig. 3.5.2, loaded by a constant stress o  in 

the x  direction, will have 0 xx  and all other components zero everywhere.  It is 

therefore in a state of plane stress. 
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Figure 3.5.2: a thick block of material in plane stress 
 
 
3.5.2 Analysis of Plane Stress 
 
Next are discussed the stress invariants, principal stresses and maximum shear stresses 
for the two-dimensional plane state of stress, and tools for evaluating them.  These quantities 
are useful because they tell us the complete state of stress at a point in simple terms.  Further, 
these quantities are directly related to the strength and response of materials.  For example, 
the way in which a material plastically (permanently) deforms is often related to the 
maximum shear stress, the directions in which flaws/cracks grow in materials is often related 
to the principal stresses, and the energy stored in materials is often a function of the stress 
invariants. 
 
Stress Invariants 
 
A stress invariant is some function of the stress components which is independent of the 
coordinate system being used; in other words, they have the same value no matter where the 

yx   axes are drawn through a point.  In a two dimensional space there are two stress 

invariants, labelled 1I  and 2I .  These are 
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 Stress Invariants  (3.5.1) 

 
These quantities can be proved to be invariant directly from the stress transformation 
equations, Eqns. 3.4.8 {▲Problem 1}.  Physically, invariance of 1I  and 2I  means that they 
are the same for any chosen perpendicular planes through a material particle. 
 
Combinations of the stress invariants are also invariant, for example the important quantity 
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Principal Stresses 
 
Consider a material particle for which the stress, with respect to some yx   coordinate 
system, is 
 


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



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




11
12

yyyx

xyxx




             (3.5.3) 

 
The stress acting on different planes through the point can be evaluated using the Stress 
Transformation Equations, Eqns. 3.4.8, and the results are plotted in Fig. 3.5.3.  The original 
planes are re-visited after rotating o180 .  
 

  
 

Figure 3.5.3: stresses on different planes through a point 
 
It can be seen that there are two perpendicular planes for which the shear stress is zero, for  

 o58  and  o
58 90   .  In fact it can be proved that for every point in a material there are 

two (and only two) perpendicular planes on which the shear stress is zero (see below).  These 
planes are called the principal planes.  It will also be noted from the figure that the normal 
stresses acting on the planes of zero shear stress are either a maximum or minimum.  Again, 
this can be proved (see below).  These normal stresses are called principal stresses.  The 
principal stresses are labelled 1  and 2 , Fig. 3.5.4. 
 

 
 

Figure 3.5.4: principal stresses 
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The principal stresses can be obtained by setting 0xy  in the Stress Transformation 

Equations, Eqns. 3.4.8, which leads to the value of   for which the planes have zero shear 
stress: 
 

yyxx

xy








2

2tan  Location of Principal Planes  (3.5.4) 

 
For the example stress state, Eqn. 3.5.3, this leads  to 
 

 2arctan
2

1
  

 
and so the perpendicular planes are at   28.14872.31  and  3.58 . 
 
Explicit expressions for the principal stresses can be obtained by substituting the value of    
from Eqn. 3.5.4 into the Stress Transformation Equations, leading to (see the Appendix to 
this section, §3.5.8) 
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    Principal Stresses     (3.5.5) 

 
For the example stress state Eqn.3.5.3, one has 
 

38.0
2

53
,62.2

2

53
21 





   

 
Note here that one uses the symbol 1  to represent the maximum principal stress and 2  to 
represent the minimum principal stress.  By maximum, it is meant the algebraically largest 
stress so that, for example, 31  . 
 
From Eqns. 3.5.2, 3.5.5, the principal stresses are invariant; they are intrinsic features of the 
stress state at a point and do not depend on the coordinate system used to describe the stress 
state. 
 
The question now arises: why are the principal stresses so important?  One part of the answer 
is that the maximum principal stress is the largest normal stress acting on any plane through a 
material particle.  This can be proved by differentiating the stress transformation formulae 
with respect to , 
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         (3.5.6) 

 
The maximum/minimum values can now be obtained by setting these expressions to zero.   
One finds that the normal stresses are a maximum/minimum at the very value of   in Eqn. 
3.5.4 – the value of   for which the shear stresses are zero – the principal planes. 
 
Very often the only thing one knows about the stress state at a point are the principal stresses.  
In that case one can derive a very useful formula as follows: align the coordinate axes in the 
principal directions, so 
 

0,, 21  xyyyxx     (3.5.7) 

 
Using the transformation formulae with the relations )2cos1(sin 2
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      (3.5.8) 

 
Here,   is measured from the principal directions, as illustrated in Fig. 3.5.5. 
 

 
 

Figure 3.5.5: principal stresses and principal directions 
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The Third Principal Stress 
 
Although plane stress is essentially a two-dimensional stress-state, it is important to keep in 
mind that any real material is three-dimensional.  The stresses acting on the x y  plane are 

the normal stress zz  and the shear stresses zx  and zy , Fig. 3.5.6.  These are all zero (in 

plane stress).  It was discussed above how the principal stresses occur on planes of zero shear 
stress.  Thus the zz  stress is also a principal stress.  Technically speaking, there are always 

three principal stresses in three dimensions, and (at least) one of these will be zero in plane 
stress.  This fact will be used below in the context of maximum shear stress. 
 

 
 

Figure 3.5.6: stresses acting on the x – y plane 
 
 
Maximum Shear Stress 
 
Eqns. 3.5.8 can be used to derive an expression for the maximum shear stress.  
Differentiating the expression for shear stress with respect to  , setting to zero and solving, 
shows that the maximum/minimum occurs at 45 , in which case 
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Thus the shear stress reaches a maximum on planes which are oriented at  45  to the 
principal planes, and the value of the shear stress acting on these planes is as given above.  
Note that the formula Eqn. 3.5.9 does not let one know in which direction the shear stresses 
are acting but this is not usually an important issue.  Many materials respond in certain ways 
when the maximum shear stress reaches a critical value, and the actual direction of shear 
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stress is unimportant.  The direction of the maximum principal stress is, on the other hand, 
important – a material will in general respond differently according to whether the normal 
stress is compressive or tensile. 
 
The normal stress acting on the planes of maximum shear stress can be obtained by 
substituting 45  back into the formulae for normal stress in Eqn. 3.5.8, and one sees that 
 

2/)( 21   yyxx      (3.5.10) 

 
The results of this section are summarised in Fig. 3.5.7. 
 

 
 

Figure 3.5.7: principal stresses and maximum shear stresses acting on the x – y plane 
 
The maximum shear stress in the x y  plane was calculated above, Eqn. 3.5.9.  This is not 
necessarily the maximum shear stress acting at the material particle.  In general, it can be 
shown that the maximum shear stress is the maximum of the following three terms (see the 
Appendix to this section, §3.5.8): 
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The first term is the maximum shear stress in the 1 2  plane, i.e. the plane containing the 1  

and 2  stresses (and given by Eqn. 3.5.9).  The second term is the maximum shear stress in 

the 1 3  plane and the third term is the maximum shear stress in the 2 3  plane.  These are 
sketched in Fig. 3.5.8 below. 
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Figure 3.5.8: principal stresses and maximum shear stresses 
 
In the case of plane stress, 3 0zz   , and the maximum shear stress will be 
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                                (3.5.11) 

 
 
3.5.3 Stress Boundary Conditions 
 
When solving problems, information is usually available on what is happening at the 
boundaries of materials.  This information is called the boundary conditions.  Information is 
usually not available on what is happening in the interior of the material – information there 
is obtained by solving the equations of mechanics. 
 
A number of different conditions can be known at a boundary, for example it might be 
known that a certain part of the boundary is fixed so that the displacements there are zero.  
This is known as a displacement boundary condition.  On the other hand the stresses over a 
certain part of the material boundary might be known.  These are known as stress boundary 
conditions – this case will be examined here. 
 
General Stress Boundary Conditions 
 
It has been seen already that, when one material contacts a second material, a force, or 
distribution of stress arises.  This force F will have arbitrary direction, Fig. 3.5.9a, and can be 
decomposed into the sum of a normal stress distribution N  and a shear distribution S , Fig. 

3.5.9b.  One can introduce a coordinate system to describe the applied stresses, for example 
the yx   axes shown in Fig. 3.5.9c (the axes are most conveniently defined to be normal and 
tangential to the boundary). 
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Figure 3.5.9: Stress boundary conditions; (a) force acting on material due to contact 
with a second material, (b) the resulting normal and shear stress distributions, (c) 

applied stresses as stress components in a given coordinate system 
 
 
Figure 3.5.10 shows the same component as Fig. 3.5.9.  Shown in detail is a small material 
element at the boundary.  From equilibrium of the element, stresses yyxy  , , equal to the 

applied stresses, must be acting inside the material, Fig. 3.5.10a.  Note that the tangential 
stresses, which are the xx  stresses in this example, can take on any value and the element 

will still be in equilibrium with the applied stresses, Fig. 3.5.10b. 
 

 
 

Figure 3.5.10: Stresses acting on a material element at the boundary, (a) normal and 
shear stresses, (b) tangential stresses 

 
Thus, if the applied stresses are known, then so also are the normal and shear stresses acting 
at the boundary of the material.  
 
Stress Boundary Conditions at a Free Surface 
 
A free surface is a surface that has “nothing” on one side and so there is nothing to provide 
reaction forces.  Thus there must also be no normal or shear stress on the other side (the 
inside). 
 
This leads to the following, Fig. 3.5.11: 
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Stress boundary conditions at a free surface: 
the normal and shear stress at a free surface are zero 
 
This simple fact is used again and again to solve practical problems. 
 
Again, the stresses acting normal to any other plane at the surface do not have to be zero – 
they can be balanced as, for example, the tangential stresses T  and the stress   in Fig. 
3.5.11. 
 
 

 
 

Figure 3.5.11: A free surface - the normal and shear stresses there are zero 
 
 
Atmospheric Pressure 
 
There is something acting on the outside “free” surfaces of materials – the atmospheric 
pressure.  This is a type of stress which is hydrostatic, that is, it acts normal at all points, as 
shown in Fig. 3.5.12.  Also, it does not vary much.  This pressure is present when one 
characterises a material, that is, when its material properties are determined from tests and so 
on, for example, its Young’s Modulus (see Chapter 5).  The atmospheric pressure is therefore 
a datum – stresses are really measured relative to this value, and so the atmospheric pressure 
is ignored. 
 

 
 

Figure 3.5.12: a material subjected to atmospheric pressure 
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3.5.4 Thin Components 
 
Consider a thin component as shown in Fig. 3.5.13.  With the coordinate axes aligned as 
shown, and with the large face free of loading, one has 0 zzzyzx  .  Strictly 

speaking, these stresses are zero only at the free surfaces of the material but, because it is 
thin, these stresses should not vary much from zero within.  Taking the “z” stresses to be 
identically zero throughout the material, the component is in a state of plane stress1.  On the 
other hand, were the sheet not so thin, the stress components that were zero at the free-
surfaces might well deviate significantly from zero deep within the material. 
 

 
 

Figure 3.5.13: a thin material loaded in-plane, leading to a state of plane stress 
 
When analysing plane stress states, only one cross section of the material need be considered.  
This is illustrated in Fig. 3.5.14. 
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Figure 3.5.14: one two-dimensional cross-section of material 
 
Note that, although the stress normal to the plane, zz , is zero, the three dimensional sheet of 
material is deforming in this direction – it will obviously be getting thinner under the tensile 
loading shown in Fig. 3.5.14. 
 
Note that plane stress arises in all thin materials (loaded in –plane), no matter what they are 
made of. 
 
 
3.5.5 Mohr’s Circle 
 
Otto Mohr devised a way of describing the state of stress at a point using a single diagram, 
called the Mohr's circle.  
 
To construct the Mohr circle, first introduce the stress coordinates   , , Fig. 3.5.15; the 
abscissae (horizontal) are the normal stresses   and the ordinates (vertical) are the shear 
stresses  .  On the horizontal axis, locate the principal stresses 21 , , with 21   .  Next, 

draw a circle, centred at the average principal stress     0,2/, 21   ,  having radius 

  2/21   . 
 
The normal and shear stresses acting on a single plane are represented by a single point on 
the Mohr circle.  The normal and shear stresses acting on two perpendicular planes are 
represented by two points, one at each end of a diameter on the Mohr circle.  Two such 
diameters are shown in the figure. The first is horizontal.  Here, the stresses acting on two 
perpendicular planes are    0,, 1   and    0,, 2   and so this diameter represents 
the principal planes/stresses.  
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Figure 3.5.15: Mohr’s Circle 
 
The stresses on planes rotated by an amount   from the principal planes are given by Eqn. 
3.5.8.  Using elementary trigonometry, these stresses are represented by the points A and B 
in Fig. 3.5.15.  Note that a rotation of   in the physical plane corresponds to a rotation of 2  
in the Mohr diagram. 
 
Note also that the conventional labeling of shear stress has to be altered when using the Mohr 
diagram.  On the Mohr circle, a shear stress is positive if it yields a clockwise moment about 
the centre of the element, and is "negative" when it yields a negative moment.  For example, 
at point A the shear stress is "positive" ( 0 ), which means the direction of shear on face A 
of the element is actually opposite to that shown. This agrees with the formula 
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shear stress is "negative" ( 0 ), which again agrees with formula. 
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3.5.6 Stress Boundary Conditions (continued) 
 
Consider now in more detail a surface between two different materials, Fig. 3.5.16.  One says 
that the normal and shear stresses are continuous across the surface, as illustrated. 
 

 
 

Figure 3.5.16: normal and shear stress continuous across an interface between two 
different materials, material ‘1’ and material ‘2’ 

 
Note also that, since the shear stress xy  is the same on both sides of the surface, the shear 

stresses acting on both sides of a perpendicular plane passing through the interface between 
the materials, by the symmetry of stress, must also be the same, Fig. 3.5.17a. 
 

 
 

 Figure 3.5.17: stresses at an interface; (a) shear stresses continuous across the 
interface, (b) tangential stresses not necessarily continuous 

 
However, again, the tangential stresses, those acting parallel to the interface, do not have to 
be equal.  For example, shown in Fig. 3.5.17b are the tangential stresses acting in the upper 
material, )2(

xx  - they balance no matter what the magnitude of the stresses )1(
xx . 

 
Description of Boundary Conditions 
 
The following example brings together the notions of stress boundary conditions, stress 
components, equilibrium and equivalent forces.  

2 
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
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Example 
 
Consider the plate shown in Fig. 3.5.18.  It is of width a2 , height b and depth t.  It is 
subjected to a tensile stress r, pressure p and shear stresses s.  The applied stresses are 
uniform through the thickness of the plate.  It is welded to a rigid base. 
 

 
 

Figure 3.5.18: a plate subjected to stress distributions 
 
Using the yx   axes shown, the stress boundary conditions can be expressed as: 
 

Left-hand surface: 






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pya

xy

xx

),(

),(




,     by 0  
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




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xy

yy
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),(




,      axa   

Right-hand surface: 





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ya

xy

xx
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0),(



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Note carefully the description of the normal and shear stresses over each side and the signs of 
the stress components. 
 
The stresses at the lower edge are unknown (there is a displacement boundary condition 
there: zero displacement).  They will in general not be uniform.  Using the given yx   axes, 
these unknown reaction stresses, exerted by the base on the plate, are (see Fig 3.5.19) 
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b
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s
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Lower surface: 




)0,(

)0,(

x

x

xy

yy




,       axa   

 
Note the directions of the arrows in Fig. 3.5.19, they have been drawn in the direction of 
positive )0,(),0,( xx xyyy  . 

  

 
 

Figure 3.5.19: unknown reaction stresses acting on the lower edge 
 
For force equilibrium of the complete plate, consider the free-body diagram 3.5.20; shown 
are the resultant forces of the stress distributions.  Force equilibrium requires that 
 

0)0,(2

0)0,(2
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Figure 3.5.20: a free-body diagram of the plate in Fig. 3.5.18 showing the known 
resultant forces (forces on the lower boundary are not shown) 

 
For moment equilibrium, consider the moments about, for example, the lower left-hand  
corner.  One has 
 

)0,(xxy

)0,(xyy

x

y

ast2
art2

bst

bst

bpt



Section 3.5 

Solid Mechanics Part I                                                                                Kelly 78

  0)0,()2()(2)(2)2/(0  




dxxaxtabstaartbastbbptM
a

a

yy  

If one had taken moments about the top-left corner, the equation would read 
 

  0)0,()0,(

)2()(2)2/(0
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a

xy 
 

■ 
 
 
3.5.7 Problems 
 
1. Prove that the function yx   , i.e. the sum of the normal stresses acting at a point, is a 

stress invariant. [Hint: add together the first two of Eqns. 3.4.8.] 
 
2. Consider a material in plane stress conditions.  An element at a free surface of this 

material is shown below left.  Taking the coordinate axes to be orthogonal to the surface 
as shown (so that the tangential stress is xx ), one has 














00
0xx

yyyx

xyxx 



  

(a) what are the two in-plane principal stresses at the point?  Which is the maximum and 
which is the  minimum?  

(b) examine planes inclined at 45o to the free surface, as shown below right.  What are the 
stresses acting on these planes and what have they got to do with maximum shear 
stress? 

 

 
 
3. The stresses at a point in a state of plane stress are given by  














23
31

yyyx

xyxx




 

(a) Draw a little box to represent the point and draw some arrows to indicate the 
magnitude and direction of the stresses acting at the point. 

(b) What relationship exists between Oxy  and a second coordinate set yxO   , such that 
the shear stresses are zero in yxO  ? 

(c) Find the two in-plane principal stresses. 

xx 

y 

xx 

y 

o45

xy 

xy  xx 

yy 

y x
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(d) Draw another box whose sides are aligned to the principal directions and draw some 
arrows to indicate the magnitude and direction of the principal stresses acting at the 
point. 

(e) Check that the sum of the normal stresses at the point is an invariant. 
 

4. A material particle is subjected to a state of stress given by 

 

















000

0

0




 ij       

Find the principal stresses (all three), maximum shear stresses (see Eqn. 3.5.11), and the 
direction of the planes on which these stresses act. 
 

5. Consider the following state of stress (with respect to an , ,x y z  coordinate system): 
 

0 0

0 0

0 0 0



 
 
 
  

 

 
(a) Use the stress transformation equations to derive the stresses acting on planes 

obtained from the original planes by a counterclockwise rotation of 45o about z  axis. 
(b) What is the maximum normal stress acting at the point? 
(c) What is the maximum shear stress? On what plane(s) does it act? (See Eqn. 3.5.11.) 

 
6. Consider the two dimensional stress state 

  



 
 0

0
ij  

Show that this is an isotropic state of stress, that is, the stress components are the same 
on all planes through a material particle.  

 
7. (a) Is a trampoline (the material you jump on) in a state of plane stress?  When someone 

is actually jumping on it? 
(b) Is a picture hanging on a wall in a state of plane stress?  
(c) Is a glass window in a state of plane stress?  On a very windy day?  
(d) A piece of rabbit skin is stretched in a testing machine – is it in a state of plane stress? 

 
8. Consider the point shown below, at the boundary between a wall and a dissimilar 

material.  Label the stress components displayed using the coordinate system shown.  
Which stress components are continuous across the wall/material boundary?  (Add a 
superscript ‘w’ for the stresses in the wall.) 

 



Section 3.5 

Solid Mechanics Part I                                                                                Kelly 80

 
 
9. A thin metal plate of width b2 , height h and depth t is loaded by a pressure distribution 

)(xp  along axa   and welded at its base to the ground, as shown in the figure 
below.  Write down expressions for the stress boundary conditions (two on each of the 
three edges).  Write down expressions for the force equilibrium of the plate and moment 
equilibrium of the plate about the corner A. 

 

 
 
 
3.5.8 Appendix to §3.5 
 
A Note on the Formulae for Principal Stresses 
 
To derive Eqns. 3.5.5, first rewrite the transformation equations in terms of 2  using 

)2cos1(sin 2
12    and )2cos1(cos 2

12    to get 
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Next, from Eqn. 3.5.4,  
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Substituting into the rewritten transformation formulae then leads to 
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Here yyxx    so that the maximum principal stress is xx 1  and the minimum principal 

stress is yy 2 .  Here it is implicitly assumed that 02tan  , i.e. that 9020    or 

2702180   .  On the other hand one could assume that 02tan  , i.e. that 
180290    or 3602270   , in which case one arrives at the formulae 
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The results can be summarised as Eqn. 3.5.5, 
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These formulae do not tell one on which of the two principal planes the maximum principal 
stress acts.  This might not be an important issue, but if this information is required one needs 
to go directly to the stress transformation equations.  In the example stress state, Eqn. 3.5.3, 
one has 

 

)1(2sin)1(cos)2(sin
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yy

xx  

 
For   28.14872.31 , 62.2xx  and 38.0yy .  So one has the situation shown 

below.  
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If one takes the other angle,  3.58 , one has 38.0xx  and 62.2yy , and the situation 

below

 
 
 
A Note on the Maximum Shear Stress 
 
Shown below left is a box element with sides perpendicular to the 1,2, z  axes, i.e. aligned 
with the principal directions.  The stresses in the new ,x y   axis system shown are given by 
Eqns. 3.5.8, with   measured from the principal directions: 
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Now as well as rotating around in the 1 2  plane through an angle  , rotate also in the ,x z  
plane through an angle   (see below right).  This rotation leads to the new stresses 
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In plane stress, 0zz x z    , so one has the stresses 
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The shear stress can be written out in full: 
 

   1 1 1
1 2 1 22 2 2ˆ , sin 2 ( ) ( )cos2xy             . 

 
This is a function of two variables; its minimum value can be found by setting the partial 
derivatives with respect to these variables to zero.  Differentiating, 
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Setting to zero gives the solutions sin 2 0  , cos2 0  , i.e. 0  , o45  .  Thus the 

maximum shear stress occurs at o45  to the 1 2  plane, and in the 1 z , i.e. 1 3  plane (as in 

Fig. 3.5.8b).  The value of the maximum shear stress here is then 1
12ˆ xy  , which is the 

expression in Eqn. 3.5.11. 
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4  Strain 
 
The concept of strain is introduced in this Chapter.  The approximation to the true strain 
of the engineering strain is discussed.  The practical case of two dimensional plane 
strain is discussed, along with the strain transformation formulae, principal strains, 
principal strain directions and the maximum shear strain. 
 
 
 
 
 
 
 



 86

 



Section 4.1 

Solid Mechanics Part I                                                                                Kelly 87

4.1 Strain 
 
If an object is placed on a table and then the table is moved, each material particle moves 
in space.  The particles undergo a displacement.  The particles have moved in space as a 
rigid body.  The material remains unstressed.  On the other hand, when a material is acted 
upon by a set of forces, it changes size and/or shape, it deforms.  This deformation is 
described using the concept of strain.  The study of motion, without reference to the 
forces which cause such motion, is called kinematics. 
 
 
4.1.1 One Dimensional Strain 
 
The Engineering Strain 
 
Consider a slender rod, fixed at one end and stretched, as illustrated in Fig. 4.1.1; the 
original position of the rod is shown dotted. 
 

 
 
Figure 4.1.1: the strain at a point A in a stretched slender rod; AB is a line element in 

the unstretched rod, A B   is the same line element in the stretched rod 
 
There are a number of different ways in which this stretching/deformation can be 
described.  Here, what is perhaps the simplest measure, the engineering strain, will be 
used.  To determine the strain at point A, Fig. 4.1.1, consider a small line element AB 
emanating from A in the unstretched rod.  The points A and B move to A  and B  when 
the rod has been stretched. The (engineering) strain   at A is then1  
 

( )A A B AB

AB


  
                                        (4.1.1) 

 
The strain at other points in the rod can be evaluated in the same way. 
 
If a line element is stretched to twice its original length, the strain is 1.  If it is unstretched, 
the strain is 0.  If it is shortened to half its original length, the strain is 0.5 .  The strain is 
often expressed as a percentage; a 100% strain is a strain of 1, a 200% strain is a strain of 
2, etc.  Most engineering materials, such as metals and concrete, undergo very small 
strains in practical applications, in the range 610  to 210 ; rubbery materials can easily 
undergo large strains of 100%. 
 
Consider now two adjacent line elements AE and EB (not necessarily of equal length), 
which move to A E   and E B  , Fig. 4.1.2.  If the rod is stretching uniformly, that is, if all 
                                                 
1 this is the strain at point A. The strain at B is evidently the same – one can consider the line element AB to 
emanate fom point B (it does not matter whether the line element emanates out from the point to the “left” 
or to the “right”) 

fixed A B A B
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line elements are stretching in the same proportion along the length of the rod, then 
/ /A E AE E B EB    , and ( ) ( )A E  ; the strain is the same at all points along the rod. 

 

 
 

Figure 4.1.2: the strain at a point A and the strain at point E in a stretched rod 
 
In this case, one could equally choose the line element AB or the element AE in the 
calculation of the strain at A, since 
 

( )A A B AB A E AE

AB AE


    
   

 
In other words it does not matter what the length of the line element chosen for the 
calculation of the strain at A is.  In fact, if the length of the rod before stretching is 0L  and 

after stretching it is L , Fig. 4.1.3, the strain everywhere is (this is equivalent to choosing 
a “line element” extending the full length of the rod) 

 

 0

0

L L

L
 
                                        (4.1.2) 

 

 
 

Figure 4.1.3: a stretched slender rod 
 
On the other hand, when the strain is not uniform, for example / /A E AE E B EB    , 

then the length of the line element does matter.  In this case, to be precise, the line 
element AB in the definition of strain in Eqn. 4.1.1 should be “infinitely small”; the 
smaller the line element, the more accurate will be the evaluation of the strain.  The 
strains considered in this book will be mainly uniform; non-uniform strain will be dealt 
with in detail in Book II. 
 
Displacement, Strain and Rigid Body Motions 
 
To highlight the difference between displacement and strain, and their relationship, 
consider again the stretched rod of Fig 4.1.1.  Fig 4.1.4 shows the same rod: the two 
points A and B undergo displacements ( ) ( ),A Bu AA u BB   .  The strain at A, Eqn 

4.1.1, can be re-expressed in terms of these displacements: 

fixed A B A B 
E E

L

fixed 

0L
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( ) ( )

( )
B A

A u u

AB
 

                                        (4.1.3) 

 
In words, the strain is a measure of the change in displacement as one moves along the 
rod. 

 
 

Figure 4.1.4: displacements in a stretched rod 
 
Consider a line element emanating from the left-hand fixed end of the rod. The 
displacement at the fixed end is zero. However, the strain at the fixed end is not zero, 
since the line element there will change in length.  This is a case where the displacement 
is zero but the strain is not zero. 
 
Consider next the case where the rod is not fixed and simply moves/translates in space, 
without any stretching, Fig. 4.1.5.  This is a case where the displacements are all non-zero 
(and in this case everywhere the same) but the strain is everywhere zero.  This is in fact a 
feature of a good measure of strain: it should be zero for any rigid body motion; the strain 
should only measure the deformation. 
 

 
 

Figure 4.1.5: a rigid body translation of a rod 
 
Note that if one knows the strain at all points in the rod, one cannot be sure of the rod’s 
exact position in space – again, this is because strain does not include information about 
possible rigid body motion.  To know the precise position of the rod, one must also have 
some information about the displacements. 
 
The True Strain 
 
As mentioned, there are many ways in which deformation can be measured.  Many 
different strains measures are in use apart from the engineering strain, for example the 
Green-Lagrange strain and the Euler-Almansi strain: referring again to Fig. 4.1.1, these 
are 
 

Green-Lagrange 
2 2
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2

2
A A B AB

AB


  
 ,      Euler-Alamnsi 

2 2

( )
2

2
A A B AB

A B


  


 
       (4.1.4) 

 

original position new position 

fixed A B A B

( )Au ( )Bu
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Many of these strain measures are used in more advanced theories of material behaviour, 
particularly when the deformations are very large. Apart from the engineering strain, just 
one other measure will be discussed in any detail here: the true strain (or logarithmic 
strain), since it is often used in describing material testing (see Chapter 5). 
 
The true strain may be defined as follows: define a small increment in strain to be the 
change in length divided by the current length: /td dL L  .  As the rod of Fig. 4.11 

stretches (uniformly), this current length continually changes, and the total strain thus 
defined is the accumulation of these increments: 
 

0 0

ln
L

t

L

dL L

L L


 
   

 
 .                 (4.1.5) 

 
If a line element is stretched to twice its original length, the (true) strain is 0.69.  If it is 
unstretched, the strain is 0.  If it is shortened to half its original length, the strain is 0.69 .  
The fact that a stretching and a contraction of the material by the same factor results in 
strains which differ only in sign is one of the reasons for the usefulness of the true strain 
measure. 
 
Another reason for its usefulness is the fact that the true strain is additive.  For example, if 
a line element stretches in two steps from lengths 1L  to 2L  to 3L , the total true strain is 

 

3 2 3

2 1 1

ln ln lnt

L L L

L L L


     
       

     
, 

 
which is the same as if the stretching had occurred in one step.  This is not true of the 
engineering strain. 
 
The true strain and engineering strain are related through (see Eqn. 4.1.2, 4.1.5) 

 
    1lnt               (4.1.6) 

 
One important consequence of this relationship is that the smaller the deformation, the 
less the difference between the two strains.  This can be seen in Table 4.1 below, which 
shows the values of the engineering and true strains for a line element of initial length 
1mm, at different stretched lengths.  (In fact, using a Taylor series expansion, 

  2 31 1
2 3ln 1t          , for small   .)  Almost all strain measures in use are 

similar in this way: they are defined such that they are more or less equal when the 
deformation is small.  Put another way, when the deformations are small, it does not 
really matter which strain measure is used, since they are all essentially the same – in that 
case it is sensible to use the simplest measure. 
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0L (mm) L  (mm) 
t  

1 2 1 0.693 
1 1.5 0.5 0.405 
1 1.4 0.4 0.336 
1 1.3 0.3 0.262 
1 1.2 0.2 0.182 
1 1.1 0.1 0.095 
1 1.01 0.01 0.00995 
1 1.001 0.001 0.000995 

Table 4.1: true strain and engineering strain at different stretches 
 
 
It should be emphasised that one strain measure, e.g. engineering or true, is not more 
“correct” or better than the other; the usefulness of a strain measure will depend on the 
application. 
 
 
4.1.2 Two Dimensional Strain 
 
The two dimensional case is similar to the one dimensional case, in that material 
deformation can be described by imagining the material to be a collection of small line 
elements.  As the material is deformed, the line elements stretch, or get shorter, only now 
they can also rotate in space relative to each other.  This movement of line elements is 
encompassed in the idea of strain: the “strain at a point” is all the stretching, contracting 
and rotating of all line elements emanating from that point, with all the line elements 
together making up the continuous material, as illustrated in Fig. 4.1.6. 
 

 
Figure 4.1.6: a deforming material element;  original state of line elements and their 

final position after straining 
 
It turns out that the strain at a point is completely characterised by the movement of any 
two mutually perpendicular line-segments.  If it is known how these perpendicular line-
segments are stretching, contracting and rotating, it will be possible to determine how any 
other line element at the point is behaving, by using a strain transformation rule (see 
later).  This is analogous to the way the stress at a point is characterised by the stress 
acting on perpendicular planes through a point, and the stress components on other planes 
can be obtained using the stress transformation formulae. 
 

before deformation after deformation 
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So, for the two-dimensional case, consider two perpendicular line-elements emanating 
from a point.  When the material that contains the point is deformed, two things (can) 
happen: 

(1) the line segments will change length and 
(2) the angle between the line-segments changes. 

 
The change in length of line-elements is called normal strain and the change in angle 
between initially perpendicular line-segments is called shear strain. 
 
As mentioned earlier, a number of different definitions of strain are in use; here, the 
following, most commonly used, definition will be employed, which will be called the 
exact strain: 
 

Normal strain in direction x : (denoted by xx ) 

change in length (per unit length) of a line element originally lying in the x direction 
 

Normal strain in direction y : (denoted by yy ) 

change in length (per unit length) of a line element originally lying in the y direction 
 

Shear strain: (denoted by xy ) 

(half) the change in the original right angle between the two perpendicular line 
elements 

 
Referring to Fig. 4.1.7, the (exact) strains are 
 

 1
, ,

2xx yy xy

A B AB A C AC

AB AC
    

    
    .    (4.1.7) 

 

 
 

Figure 4.1.7: strain at a point A 
 
These 2D strains can be represented in the matrix form 
 

  xx xy

yx yy

 


 
 

  
 

                                                 (4.1.8) 

 
As with the stress, the strain matrix is symmetric, with, by definition, yzxy   . 

C 

A B

A

B




x

y

C
deforms 
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Note that the point A in Fig. 4.1.7 has also undergone a displacement u(A).  This 
displacement has two components, xu  and yu , as shown in Fig. 4.1.8 (and similarly for 

the points B and C).  
 

 
 

Figure 4.1.8: displacement of a point A 
 
The line elements not only change length and the angle between them changes – they can 
also move in space as rigid-bodies.  Thus, for example, the normal and shear strain in the 
three examples shown in Fig. 4.1.9 are the same, even though the displacements occurring 
in each case are different – strain is independent of rigid body motions. 
 

 
 

Figure 4.1.9: rigid body motions 
 
 
The Engineering Strain 
 
Suppose now that the deformation is very small, so that, in Fig. 4.1.10, *BABA   – 
here *BA  is the projection of BA   in the x   direction.  In that case,  
 

AB

ABBA
xx




*

 .         (4.1.9) 

 
Similarly, one can make the approximations 
 

* * *1
,

2yy xy

A C AC B B C C

AC AB AC
 

   
   

 
 ,    (4.1.10) 

 
the expression for shear strain following from the fact that, for a small angle, the angle 
(measured in radians) is approximately equal to the tan of the angle. 
 
 

)(Au

xu

yu

A

A

B
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Figure 4.1.10: small deformation 
 
This approximation for the normal strains is called the engineering strain or small strain 
or infinitesimal strain and is valid when the deformations are small.  The advantage of 
the small strain approximation is that the mathematics is simplified greatly. 
 
Example 
 
Two perpendicular lines are etched onto the fuselage of an aircraft.  During testing in a 
wind tunnel, the perpendicular lines deform as in Fig. 4.1.10.  The coordinates of the line 
end-points (referring to Fig. 4.1.10) are: 
 

: (0.0000,1.0000) : (0.0025,1.0030)

: (0.0000,0.0000) : (0.0000,0.0000)

: (1.0000,0.0000) : (1.0045,0.0020)

C C

A A

B B





 

 
The exact strains are, from Eqn. 4.1.9, (to 8 decimal places)  
 

2 2* *

2 2* *

* *

* *

1 0.00450199

1 0.00300312

1
arctan arctan 0.00224178

2

xx

yy

xy

A B B B

AB

A C C C

AC

B B C C

A B A C







 
  

 
  

     
      

         

 

 
The engineering strains are, from Eqns. 4.1.10-11, 
 

* * * *
1

1 0.0045, 1 0.003, 0.00225
2xx yy xy

A B A C B B C C

AB AC AB AC
  

    
         

 
 

 

 
As can be seen, for the small deformations which occurred, the errors in making the 
small-strain approximation are extremely small, less than 0.11% for all three strains. 

■ 

C 

A B
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B



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Small strain is useful in characterising the small deformations that take place in, for 
example, (1) engineering materials such as concrete, metals, stiff plastics and so on, (2) 
linear viscoelastic materials such as many polymeric materials (see Chapter 9), (3) some 
porous media such as soils and clays at moderate loads, (4) almost any material if the 
loading is not too high. 
 
Small strain is inadequate for describing large deformations that occur, for example, in 
many rubbery materials, soft tissues, engineering materials at large loads, etc.  In these 
cases the more precise definition 4.1.7 (or a variant of it), as developed and used in Book 
III, is required.  That said, the engineering strain and the concepts associated with it are an 
excellent introduction to the more involved large deformation strain measures. 
 
In one dimension, there is no distinction between the exact strain and the engineering 
strain – they are the same.  Differences arise between the two in the two-dimensional case 
when the material shears (as in the example above), or rotates as a rigid body (as will be 
discussed further below).  
 
Engineering Shear Strain and Tensorial Shear Strain 
 
The definition of shear strain introduced above is the tensorial shear strain xy .  The 

engineering shear strain2 xy  is defined as twice this angle, i.e. as   , and is often 

used in Strength of Materials and elementary Solid Mechanics analyses. 
 
 
4.1.3 Sign Convention for Strain 
 
A positive normal strain means that the line element is lengthening.  A negative normal 
strain means the line element is shortening. 
 
For shear strain, one has the following convention: when the two perpendicular line 
elements are both directed in the positive directions (say x  and y ), or both directed in the 
negative directions, then a positive shear strain corresponds to a decrease in right angle.  
Conversely, if one line segment is directed in a positive direction whilst the other is 
directed in a negative direction, then a positive shear strain corresponds to an increase in 
angle.  The four possible cases of shear strain are shown in Fig. 4.1.11a (all four shear 
strains are positive).  A box undergoing a positive shear and a negative shear are also 
shown, in Figs. 4.1.11b,c. 
 

                                                 
2 not to be confused with the term engineering strain, i.e. small strain, used throughout this Chapter 
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Figure 4.1.11: sign convention for shear strain; (a) line elements undergoing positive 

shear, (b) a box undergoing positive shear, (c) a box undergoing negative shear 
 

 
4.1.4 Geometrical Interpretation of the Engineering Strain 
 
Consider a small “box” element and suppose it to be so small that the strain is 
constant/uniform throughout - one says that the strain is homogeneous.  This implies that 
straight lines remain straight after straining and parallel lines remain parallel.  A few 
simple deformations are examined below and these are related to the strains. 
 
A positive normal strain 0xx  is shown in Fig. 4.1.12a.  Here the undeformed box 

element (dashed) has elongated.  Knowledge of the strain alone is not enough to 
determine the position of the strained element, since it is free to move in space as a rigid 
body.  The displacement over some part of the box is usually specified, for example the 
left hand end has been fixed in Fig. 4.1.12b.  A negative normal strain acts in Fig. 4.1.12c 
and the element has contracted. 
 

 
 

Figure 4.1.12: normal strain; (a) positive normal strain, (b) positive normal strain 
with the left-hand end fixed in space, (c) negative normal strain 

 
A case known as simple shear is shown in Fig. 4.1.13a, and that of pure shear is shown 
in Fig. 4.1.13b.  In both illustrations, 0xy .  A pure (rigid body) rotation is shown in 

Fig. 4.1.13c (zero strain). 
 

x

y

(a) (c)(b)
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d 
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Figure 4.1.13: (a) simple shear, (b) pure shear, (c) pure rotation 
 
Any shear strain can be decomposed into a pure shear and a pure rotation, as illustrated in 
Fig. 4.1.14. 
 

 
 

Figure 4.1.14: shear strain decomposed into a pure shear and a pure rotation 
 
 
4.1.5 Large Rotations and the Small Strain 
 
The example in section 4.2 above illustrated that the small strain approximation is good, 
provided the deformations are small.  However, this is provided also that any rigid body 
rotations are small.  To illustrate this, consider a square material element which 
undergoes a pure rigid body rotation of  , Fig. 4.1.15.  The exact strains remain zero.  
The small shear strain remains zero also.  However, the small normal strains are seen to 
be cos 1xx yy     .  Using a Taylor series expansion, this is equal to 

2 4/ 2 / 24xx yy        .  Thus, when   is small, the rotation-induced strains are 

of the magnitude/order 2 .  If  is of the same order as the strains themselves, i.e. in the 
range 6 210 10  , then 2  will be very much smaller than   and the rotation-induced 
strains will not introduce any inaccuracy; the small strains will be a good approximation 
to the actual strains.  If, however, the rotation is large, then the engineering normal strains 
will be wildly inaccurate.  For example, when o45  , the rotation-induced normal 
strains are 0.3  , and will likely be larger than the actual strains occurring in the 
material. 
 

x

y

)a( )b( )c(

y

x x

y

arbitrary shear strain 


pure shear pure rotation 


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Figure 4.1.15: an element undergoing a rigid body rotation 
 
As an example, consider a cantilevered beam which undergoes large bending, Fig. 4.1.16.  
The shaded element shown might well undergo small normal and shear strains.  However, 
because of the large rotation of the element, additional spurious engineering normal 
strains are induced.  Use of the precise definition, Eqn. 4.1.7, is required in cases such as 
this.  
 

 
 

Figure 4.1.16: Large rotations of an element in a bent beam 
 
 
4.1.6 Three Dimensional Strain 
 
The above can be generalized to three dimensions.  In the general case, there are three 
normal strains, zzyyxx  ,, , and three shear strains, zxyzxy  ,, .  The zz  strain 

corresponds to a change in length of a line element initially lying along the z axis.  The 

yz  strain corresponds to half the change in the originally right angle of two perpendicular 

line elements aligned with the y and z axes, and similarly for the zx  strain.  Straining in 

the y z  plane ( , ,yy zz yz   ) is illustrated in Fig. 4.1.17 below. 

 

 
 

Figure 4.1.17: strains occurring in the y – z plane 
 
The 3D strains can be represented in the (symmetric) matrix form 
 

x

y

z




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 
xx xy xz

yx yy yz

zx zy zz

  
   

  

 
   
  

                                                 (4.1.11) 

 
As with the stress (see Eqn. 3.4.4), there are nine components in 3D, with 6 of them being 
independent. 
 
 
4.1.7 Problems 
 
1. Consider a rod which moves and deforms (uniformly) as shown below. 

(a) What is the displacement of the left-hand end of the rod? 
(b) What is the engineering strain at the left-hand end of the rod 

 

 
 

2. A slender rod of initial length 2cm is extended (uniformly) to a length 4cm.  It is then 
compressed to a length of 3cm. 
(a) Calculate the engineering strain and the true strain for the extension 
(b) Calculate the engineering strain and the true strain for the compression 
(c) Calculate the engineering strain and the true strain for one step, i.e. an extension 

from 2cm to 3cm. 
(d) From your calculations in (a,b,c), which of the strain measures is additive? 

 
3. An element undergoes a homogeneous strain, as shown.  There is no normal strain in 

the element.  The angles are given by 001.0  and 002.0  radians.  What is the 
(tensorial) shear strain in the element?  

 

 
 
4. In a fixed yx   reference system established for the test of a large component, three 

points A, B and C on the component have the following coordinates before and after                           
loading (see figure):  

original position new position 

5cm 7cm 8cm

x

y




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)0000.0,0045.2(:)0000.0,0000.2(:

)0000.0,0000.0(:)0000.0,0000.0(:

)5030.1,0025.0(:)5000.1,0000.0(:

BB

AA

CC





 

 
Determine the actual strains and the small strains (at/near point A).  What is the error 
in the small strain compared to the actual strains? 

 
5. Sketch the deformed shape for the material shown below under the following strains 

(A, B constant): 
(i) 0 Axx  (taking 0 xyyy  ) – assume that the right-hand edge is fixed 

(ii) 0 Byy  (with 0 xyxx  ) – assume that the lower edge is fixed 

(iii) 0 Bxy  (with 0 yyxx  ) – assume that the left-hand edge is fixed 

 

 
 
6. The element shown below undergoes the change in position and dimensions shown 

(dashed square = undeformed). What are the three engineering strains , ,xx xy yy   ? 
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1 2
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4.2 Plane Strain 
 
A state of plane strain is defined as follows: 
 
Plane Strain: 
If the strain state at a material particle is such that the only non-zero strain components act 
in one plane only, the particle is said to be in plane strain. 
 
The axes are usually chosen such that the yx   plane is the plane in which the strains are 
non-zero, Fig. 4.2.1. 
 

 
 

Figure 4.2.1: non-zero strain components acting in the x – y plane 
 
Then 0xz yz zz     .  The fully three dimensional strain matrix reduces to a two 

dimensional one: 
 



























yyyx

xyxx

zzzyzx

yzyyyx

xzxyxx








                            (4.2.1) 

 
 
4.2.1 Analysis of Plane Strain 
 
Stress transformation formulae, principal stresses, stress invariants and formulae for 
maximum shear stress were presented in §4.4-§4.5.  The strain is very similar to the 
stress.  They are both mathematical objects called tensors, having nine components, and 
all the formulae for stress hold also for the strain.  All the equations in section 3.5.2 are 
valid again in the case of plane strain, with   replaced with  .  This will be seen in what 
follows. 
 
Strain Transformation Formula 
 
Consider two perpendicular line-elements lying in the coordinate directions x  and y , and 

suppose that it is known that the strains are xyyyxx  ,, , Fig. 4.2.2.  Consider now a 

second coordinate system, with axes yx , , oriented at angle   to the first system, and 
consider line-elements lying along these axes.  Using some trigonometry, it can be shown 
that the line-elements in the second system undergo strains according to the following 

x

y

xyyyxx  ,,
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(two dimensional) strain transformation equations (see the Appendix to this section, 
§4.2.5, for their derivation): 
 

xyxxyyxy

xyyyxxyy

xyyyxxxx





2cos)(cossin
2sincossin
2sinsincos

22

22





 Strain Transformation Formulae (4.2.2) 

 

 
 

Figure 4.2.2: A rotated coordinate system 
 
Note the similarity between these equations and the stress transformation formulae, Eqns. 
3.4.8.  Although they have the same structure, the stress transformation equations were 
derived using Newton’s laws, whereas no physical law is used to derive the strain 
transformation equations 4.2.2, just trigonometry. 
 
Eqns. 4.2.2 are valid only when the strains are small (as can be seen from their derivation 
in the Appendix to this section), and the engineering/small strains are assumed in all 
which follows.  The exact strains, Eqns. 4.1.7, do not satisfy Eqn. 4.2.2 and for this reason 
they are rarely used in 2D analyses – when the strains are large, other strain measures, 
such as those in Eqns. 4.1.4, are used.    
 
Principal Strains 
 
Using exactly the same arguments as used to derive the expressions for principal stress, 
there is always at least one set of perpendicular line elements which stretch and/or 
contract, but which do not undergo angle changes.  The strains in this special coordinate 
system are called principal strains, and are given by (compare with Eqns. 3.5.5) 
 

 
 

2 21 1
1 2 4

2 21 1
2 2 4

( )

( )

xx yy xx yy xy

xx yy xx yy xy

     

     

    

    
       Principal Strains (4.2.3) 

 
Further, it can be shown that 1  is the maximum normal strain occurring at the point, and 

that 2  is the minimum normal strain occurring at the point. 

 
The principal directions, that is, the directions of the line elements which undergo the 
principal strains, can be obtained from (compare with Eqns. 3.5.4) 
 

yyxx

xy








2

2tan      (4.2.4) 

x

y

x

y


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Here,   is the angle at which the principal directions are oriented with respect to the x  
axis, Fig. 4.2.2. 
 
 
Maximum Shear Strain 
 
Analogous to Eqn. 3.5.9, the maximum shear strain occurring at a point is 
 

 1 2max

1

2xy         (4.2.5) 

 
and the perpendicular line elements undergoing this maximum angle change are oriented 
at o45  to the principal directions. 
 
Example (of Strain Transformation) 
 
Consider the block of material in Fig. 4.2.3a.  Two sets of perpendicular lines are etched 
on its surface.  The block is then stretched, Fig. 4.2.3b. 
 

 
 

Figure 4.2.3: A block with strain measured in two different coordinate systems 
 
This is a homogeneous deformation, that is, the strain is the same at all points.  However, 
in the yx   description, 0xx  and 0 xyyy  , but in the yx   description, none of 

the strains is zero.  The two sets of strains are related through the strain transformation 
equations. 

■ 
 
Example (of Strain Transformation) 
 
As another example, consider a square material element which undergoes a pure shear, as 
illustrated in Fig. 4.2.4, with  

 
01.0,0  xyyyxx   
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Figure 4.2.4: A block under pure shear 
 
From Eqn. 4.2.3, the principal strains are 1 20.01, 0.01      and the principal 

directions are obtained from Eqn. 4.2.4 as  45 .  To find the direction in which the 
maximum normal strain occurs, put  45  in the strain transformation formulae to find 
that 1 0.01xx     , so the deformation occurring in a piece of material whose sides are 

aligned in these principal directions is as shown in Fig. 4.2.5. 
 

 
 

Figure 4.2.5: Principal strains for the block in pure shear 
 
The strain as viewed along the principal directions, and using the x y  system, are as 
shown in Fig. 4.2.6. 
 

 
 

Figure 4.2.6: Strain viewed from two different coordinate systems 
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Note that, since the original yx   axes were oriented at  45  to the principal directions, 

these axes are those of maximum shear strain – the original 01.0xy  is the maximum 

shear strain occurring at the material particle. 
■ 

 
 
4.2.2 Thick Components 
 
It turns out that, just as the state of plane stress often arises in thin components, a state of 
plane strain often arises in very thick components. 
 
Consider the three dimensional block of material in Fig. 4.2.7.  The material is 
constrained from undergoing normal strain in the z  direction, for example by preventing 
movement with rigid immovable walls – and so 0zz .  
 

 
Figure 4.2.7: A block of material constrained by rigid walls 

 
If, in addition, the loading is as shown in Fig. 4.2.7, i.e. it is the same on all cross sections 
parallel to the zy   plane (or zx   plane) – then the line elements shown in Fig. 4.2.8 
will remain perpendicular (although they might move out of plane). 
 

 
Figure 4.2.8: Line elements etched in a block of material – they remain 

perpendicular in a state of plane strain 
 
Then 0 yzxz  .  Thus a state of plane strain will arise.  
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The problem can now be analysed using the three independent strains, which simplifies 
matters considerable.  Once a solution is found for the deformation of one plane, the 
solution has been found for the deformation of the whole body, Fig. 4.2.9. 
 

 
 

Figure 4.2.9: three dimensional problem reduces to a two dimensional one for the 
case of plane strain 

 
Note that reaction stresses zz  act over the ends of the large mass of material, to prevent 

any movement in the z direction, i.e. zz  strains, Fig. 4.2.10.   

 

 
Figure 4.2.10: end-stresses required to prevent material moving in the z direction 

 
A state of plane strain will also exist in thick structures without end walls.  Material 
towards the centre is constrained by the mass of material on either side and will be 
(approximately) in a state of plane strain, Fig. 4.2.10. 
 

 
Figure 4.2.10: material in an approximate state of plane strain 

 
The concept of Plane Strain is useful when solving many types of problem involving thick 
components, even when the ends of the mass of material are allowed to move (as in Fig. 
4.2.10); this idea will be explored in the context of generalised plane strain and 
associated topics in Book II. 
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4.2.3 Mohr’s Circle for Strain 
 
Because of the similarity between the stress transformation equations 3.4.8 and the strain 
transformation equations 4.2.2, Mohr’s Circle for strain is identical to Mohr’s Cirlce for 
stress, section 3.5.5, with   replaced by   (and   replaced by xy ).  

 
 
4.2.4 Problems 
 
1. In Fig. 4.2.3, take o30  and 02.0xx . 

(a) Calculate the strains xyyyxx   ,, . 

(b) What are the principal strains?  
(c) What is the maximum shear strain? 
(d) Of all the line elements which could be etched in the block, at what angle   to 

the x axis are the perpendicular line elements which undergo the largest angle 
change from the initial right angle? 

 
2. Consider the undeformed rectangular element below left which undergoes a uniform 

strain as shown centre. 
(a) Calculate the engineering strains , ,xx yy xy     

(b) Calculate the engineering strains xyyyxx   ,,  .  Hint: use the two half-diagonals 

EC and ED sketched; by superimposing points ,E E  (to remove the rigid body 
motion of E), it will be seen that point D moves straight down and C moves left, 
when viewed along the ,x y   axes, as shown below right. 

(c) Use the strain transformation formulae 4.2.2 and your results from (a) to check 
your results from (b).  Are they the same? 

(d) What is the actual unit change in length of the half-diagonals?  Does this agree 
with your result from (b)? 

 

 
 

3. Repeat problem 2 only now consider the larger deformation shown below: 
(a) Calculate the engineering strains , ,xx yy xy     

(b) Calculate the engineering strains xyyyxx   ,,  

(c) Use the strain transformation formulae 2.4.2 and your results from (a) to check 
your results from (b).  Are they accurate?  

(d) What is the actual unit change in length of the half-diagonals?  Does this agree 
with your result from (b)? 
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4.2.5 Appendix to §4.2 
 
Derivation of the Strain Transformation Formulae 
 
Consider an element ABCD  undergoing a strain xx  with 0 xyyy   to DCBA   as 

shown in the figure below. 
 

 
 
In the yx   coordinate system, by definition, ABBBxx / .  In the yx   system, AE 

moves to AE , and one has 
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which is the first term of the first of Eqn. 4.2.2.  The remainder of the transformation 
formulae can be derived in a similar manner. 
 

A B

C

A B

C
1

1

1.5

0.5
x

y x

y

D

DE

E

x

y

A B
x



E

CCD

B

E

*E





Section 4.3 

Solid Mechanics Part I                                                                                Kelly 109

4.3 Volumetric Strain 
 
The volumetric strain is the unit change in volume due to a deformation.  It is an 
important measure of deformation and is discussed in what follows. 
 
 
4.3.1 Two-Dimensional Volumetric Strain 
 
Analogous to Eqn 3.5.1, the strain invariants are 
 

1

2
2

xx yy

xx yy xy

I

I

 

  

 

 
 Strain Invariants      (4.3.1) 

 
Using the strain transformation formulae, Eqns. 4.2.2, it will be verified that these 
quantities remain unchanged under any rotation of axes.  
 
The first of these has a very significant physical interpretation.  Consider the deformation 
of the material element shown in Fig. 4.3.1a.  The unit change in volume, called the 
volumetric strain, is 
 

( )( )

(1 )(1 ) 1xx yy

xx yy xx yy

V a a b b ab

V ab
 

   

     


   

  

                              (4.3.2) 

 
If the strains are small, the term xx yy   will be very much smaller than the other two 
terms, and the volumetric strain in that case is given by 
 

xx yy

V

V
 

   Volumetric Strain          (4.3.3) 

 

 
 

Figure 4.3.1: deformation of a material element; (a) normal deformation, (b) with 
shearing 

 
Since by Eqn. 4.3.1 the volume change is an invariant, the normal strains in any 
coordinate system may be used in its evaluation.  This makes sense: the volume change 
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cannot depend on the particular axes we choose to measure it.  In particular, the principal 
strains may be used: 
 

1 2
V

V
 

                                                        (4.3.4) 

 
The above calculation was carried out for stretching in the x and y directions, but the 
result is valid for any arbitrary deformation.  For example, for the general deformation 
shown in Fig. 4.3.1b, the volumetric strain is    / / /xx yy xx yyV V c a d b          , 
which again reduced to Eqns 4.3.3, 4.3.4, for small strains. 
 
An important consequence of Eqn. 4.3.3 is that normal strains induce volume changes, 
whereas shear strains induce a change of shape but no volume change. 
 
 
4.3.2 Three Dimensional Volumetric Strain 
 
A slightly different approach will be taken here in the three dimensional case, so as not to 
simply repeat what was said above. 
 
Consider the element undergoing strains xyxx  , , etc., Fig. 4.3.2a.  The same deformation 
is viewed along the principal directions in Fig. 4.3.2b, for which only normal strains arise. 
 
The volumetric strain is: 
 

1 2 3

1 2 3

( )( )( )

(1 )(1 )(1 ) 1

V a a b b c c abc

V abc
  

  

       


    
  

        (4.3.5) 

 
and the squared and cubed terms can be neglected because of the small-strain assumption. 
 
Since any elemental volume such as that in Fig. 4.3.2a can be constructed out of an 
infinite number of the elemental cubes shown in Fig. 4.3.3b, this result holds for any 
elemental volume irrespective of shape. 
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Figure 4.3.2: A block of deforming material; (a) subjected to an arbitrary strain; (a) 

principal strains 
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5  Material Behaviour and 
Mechanics Modelling 

 
In this Chapter, the real physical response of various types of material to different types 
of loading conditions is examined.  The means by which a mathematical model can be 
developed which can predict such real responses is considered.  
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5.1 Mechanics Modelling 
 
 
5.1.1 The Mechanics Problem 
 
Typical questions which mechanics attempts to answer were given in Section 1.1.  In the 
examples given, one invariably knows (some of) the forces (or stresses) acting on the 
material under study, be it due to the wind, water pressure, the weight of the human body, 
a moving train, and so on.  One also often knows something about the displacements 
along some portion of the material, for example it might be fixed to the ground and so the 
displacements there are zero.  A schematic of such a generic material is shown in Fig. 
5.1.1 below. 
 

 
 
Figure 5.1.1: a material component; force and displacement are known along some 

portion of the boundary 
 
The basic problem of mechanics is to determine what is happening inside the material.  
This means: what are the stresses and strains inside the material?  With this information, 
one can answer further questions: Where are the stresses high?  Where will the material 
first fail?  What can we change to make the material function better?  Where will the 
component move to?  What is going on inside the material, at the microscopic level?  
Generally speaking, what is happening and what will happen? 
 
One can relate the loads on the component to the stresses inside the body using 
equilibrium equations and one can relate the displacement to internal strains using 
kinematics relations.  For example, consider again the simple rod subjected to tension 
forces examined in Section 3.3.1, shown again in Fig. 5.1.2.  The internal normal stress 

N   on any plane oriented at an angle   to the rod cross-section is related to the external 
force F through the equilibrium equation 3.3.1: 2cos /N F A  , where A is the cross-
sectional area.  Similarly, if the ends undergo a separation/displacement of 0l l   , Fig. 
5.1.2b, the strain of any internal line element, at orientation  , is 2

0cos /N l   .  
However, there is no relationship between this internal stress and internal strain: for any 
given force, there is no way to determine the internal strain (and hence displacement of 
the rod); for any given displacement of the rod, there is no way to determine the internal 
stress (and hence force applied to the rod).  The required relationship between stress and 
strain is discussed next. 
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Known 
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Figure 5.1.2: a slender rod; (a) internal stress due to external force, (b) internal 
strain due to gross displacement of rod (dotted = before straining) 

 
 
5.1.2 Constitutive Equation 
 
Stress was discussed in Chapter 3 and strain in Chapter 4.  In all that discussion, no 
mention was made of the particular material under study, be it metallic, polymeric, 
biological or foodstuff (apart from the necessity that the strain be small when using the 
engineering strain).  The concept of stress and the resulting theory of stress 
transformation, principal stresses and so on, are based on physical principles (Newton’s 
Laws), which apply to all materials.  The concept of strain is based, essentially, on 
geometry and trigonometry; again, it applies to all materials.  However, it is the 
relationship between stress and strain which differs from material to material. 
 
The relationship between the stress and strain for any particular material will depend on 
the microstructure of that material – what constitutes that material.  For this reason, the 
stress-strain relationship is called the constitutive relation, or constitutive law.  For 
example, metals consist of a closely packed lattice of atoms, whereas a rubber consists of 
a tangled mass of long-chain polymer molecules; for this reason, the strain in a metal will 
be different to that in rubber, for any given stress. 
 
The constitutive equation allows the mechanics problem to be solved – this is shown 
schematically in Fig. 5.1.3. 
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Figure 5.1.3: the role of the constitutive equation in the equations of mechanics 
 
 
Example Constitutive Equations 
 
A constitutive equation will be of the general form 
 

 f  .                                                  (5.1.1) 
 
The simplest constitutive equation is a linear elastic relation, in which the stress is 
proportional to the strain: 
 

  .                                                        (5.1.2) 
 
Although no real material satisfies precisely Eqn. 5.1.2, many do so approximately – this 
type of relation will be discussed in Chapters 6-8.   More complex relations can involve 
the rate at which a material is strained or stressed; these types of relation will be 
discussed in Chapter 10. 
 
More on constitutive equations will follow in Section 5.3. 
 
 
5.1.3 Mathematical Model 
 
Some of the questions asked earlier can be answered using experimentation.  For 
example, one could use a car-crash test to determine the weakest points in a car.  
However, one cannot carry our multiple tests for each and every possible scenario – 
different car speeds, different obstacles into which it crashes, and so on; it would be too 
time-consuming and too expensive.  The only practical way in which these questions can 
be answered is to develop a mathematical model.  This model consists of the various 
equations of equilibrium and the kinematics, the constitutive relation, equations 
describing the shape of the material, etc. (see Fig. 5.1.3).  The mathematical model will 
have many approximations to reality associated with it.  For example, it might be 
assumed that the material is in the shape of a perfect sphere, when in fact it only 
resembles a sphere.  It may be assumed that a load is applied at a “point” when in fact it is 
applied over a region of the material’s surface.  Another approximation in the 
mathematical model is the constitutive equation itself; the relation between stress and 
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strain in any material can be extremely complex, and the constitutive equation can only 
be an approximation of the reality. 
 
Once the mathematical model has been developed, the various equations can be solved 
and the model can then be used to make a prediction.  The prediction of the model can 
now be tested against reality: a set of well-defined experiments can be carried out – does 
the material really move to where the model says it will move? 
 
Simple models (simple constitutive relations) should be used as a first step.  If the 
predictions of the model are wildly incorrect, the model can be adjusted (made more 
complicated), and the output tested again. 
 
The equations associated with simple models can often be solved analytically, i.e. using a 
pen and paper.  More complex models result in complex sets of equations which can only 
be solved approximately (though, hopefully, accurately) using a computer. 
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5.2 The Response of Real Materials 
 
The constitutive equation was introduced in the previous section.  The means by which 
the constitutive equation is determined is by carrying out experimental tests on the 
material in question.  This topic is discussed in what follows. 
 
 
5.2.1 The Tension Test 
 
Consider the following key experiment, the tensile test, in which a small, usually 
cylindrical, specimen is gripped and stretched, usually at some given rate of stretching.  A 
typical specimen would have diameter about 1cm and length 5cm, and larger ends so that 
it can be easily gripped, Fig. 5.2.1a.  Specialised machines are used, for example the 
Instron testing machine shown in Fig. 5.2.1b. 
 

 
 

Figure 5.2.1: the tension test; (a) test specimen, (b) testing machine 
 
As the specimen is stretched, the force required to hold the specimen at a given 
displacement/stretch is recorded1. 
 
The Engineering Materials 
 
For many of the (hard) engineering materials, the force/displacement curve will look 
something like that shown in Fig. 5.2.2.  It will be found that the force is initially 
proportional to displacement as with the linear portion OA  in Fig. 5.2.2.  The following 
observations will also be made: 
(1) if the load has not reached point A, and the material is then unloaded, the 

force/displacement curve will trace back along the line OA  down to zero force and 
zero displacement; further loading and unloading will again be up and down OA . 

(2) the loading curve remains linear up to a certain force level, the elastic limit of the 
material (point A).  Beyond this point, permanent deformations are induced2; on 

                                                 
1 the very precise details of how the test should be carried out are contained in the special standards for 
materials testing developed by the American Society for Testing and Materials (ASTM)  

1 

2 

Test specimen 
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unloading to zero force (from point B to C), the specimen will have a permanent 
elongation.  An example of this response (although not a tension test) can be seen 
with a paper clip – gently bend the clip and it will “spring back” (this is the OA 
behaviour); bend the clip too much (AB) and it will stay bent after you let go (C). 

(3) above the elastic limit (from A to B), the material hardens, that is, the force 
required to maintain further stretching, unsurprisingly, keeps increasing.  (However, 
some materials can soften, for example granular materials such as soils). 

(4) the rate (speed) at which the specimen is stretched makes little difference to the 
results observed (at least if the speed and/or temperature is not too high). 

(5) the strains up to the elastic limit are small, less than 1% (see below for more on 
strains). 

 

 
  

Figure 5.2.2: force/displacement curve for the tension test; typical response for 
engineering materials 

 
 
Stress-Strain Curve 
 
There are two definitions of stress used to describe the tension test.  First, there is the 
force divided by the original cross sectional area of the specimen 0A ; this is the nominal 
stress or engineering stress, 
 

0A

F
n             (5.2.1) 

 
Alternatively, one can evaluate the force divided by the (smaller) current cross-sectional 
area A, leading to the true stress 
 

                                                                                                                                                  
2 if the tension tests are carried out extremely carefully, one might be able to distinguish between a point 
where the stress-strain curve ceases to be linear (the proportional limit) and the elastic limit (which will 
occur at a slightly higher stress) 
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A

F
          (5.2.2) 

 
in which F and A are both changing with time.  For small elongations, within the linear 
range OA , the cross-sectional area of the material undergoes negligible change and both 
definitions of stress are more or less equivalent. 
 
Similarly, one can describe the deformation in two alternative ways.  As discussed in 
Section 4.1.1, one can use the engineering strain 
 

0

0

l

ll 
            (5.2.3) 

 
or the true strain 
 

0

lnt

l

l


 
  

 
                        (5.2.4) 

 
Here, 0l  is the original specimen length and l is the current length.  Again, at small 
deformations, the difference between these two strain measures is negligible. 
 
The stress-strain diagram for a tension test can now be described using the true 
stress/strain or nominal stress/strain definitions, as in Fig. 5.2.3.  The shape of the 
nominal stress/strain diagram, Fig. 5.2.3a, is of course the same as the graph of force 
versus displacement.  C here denotes the point at which the maximum force the specimen 
can withstand has been reached.  The nominal stress at C is called the Ultimate Tensile 
Strength (UTS) of the material.   
 
After the UTS is reached, the specimen “necks”, that is, the specimen begins to deform 
locally – with a very rapid reduction in cross-sectional area somewhere about the centre 
of the specimen until the specimen breaks, as indicated by the asterisk in Fig. 5.2.3.  The 
appearance of a test specimen at each of these stages of the stress-strain curve is shown 
top of Fig. 5.2.3a. 
 
For many materials, it will be observed that there is little or no volume change during the 
permanent deformation phase, so 0 0A l Al  and  1N    .  This nominal stress to 
true stress conversion formula will only be valid up to the point of necking. 
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Figure 5.2.3: typical stress-strain curve for an engineering material; (a) engineering 

stress and strain, (b) true stress and strain 
 
The stress-strain curves for mild steel and aluminium are shown in Fig. 5.2.4.  For mild 
steel, the stress at first increases after reaching the elastic limit, but then decreases.  The 
curve contains a distinct yield point; this is where a large increase in strain begins to 
occur with little increase in required stress3, i.e. little hardening.  There is no distinct yield 
point for aluminium (or, in fact, for most materials), Fig. 5.2.4b.  In this case, it is useful 
to define a yield strength (or offset yield point).  This is the maximum stress that can be 
applied without exceeding a specified value of permanent strain.  This offset strain is 
usually taken to be 0.1 or 0.2% and the yield strength is found by following a line parallel 
to the linear portion until it intersects the stress-strain curve. 
 

 
 

Figure 5.2.4: typical stress-strain curves for (a) mild steel, (b) aluminium 
 

                                                 
3 this is also called the lower yield point; the upper yield point is then the higher stress value just above 
the elastic limit 
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The Young’s Modulus 
 
The slope of the stress-strain curve over the linear region, before the elastic limit is 
reached, is the Young’s Modulus E: 
 

E



                                      (5.2.5) 

 
The Young’s Modulus has units of stress and is a measure of how “stiff” a material is. 
 
Eqn. 5.2.5 is a constitutive relation (see Eqn. 5.1.2); it is the one-dimensional linear 
elastic constitutive relation. 
 
Use of the Tension Test Data 
 
What is the data from the tension test used for?  First of all, it is of direct use in many 
structural applications.  Many structures, such as bridges, buildings and the human 
skeleton, are composed in part of relatively long and slender components.  In service, 
these components undergo tension and/or compression, very much like the test specimen 
in the tension test.  The tension test data (the Young’s Modulus, the Yield Strength and 
the UTS) then gives direct information on the amount of stress that these components can 
safely handle, before undergoing dangerous straining or all-out failure. 
 
More importantly, the tension test data (and similar test data – see below) can be used to 
predict what will happen when a component of complex three-dimensional shape is 
loaded in a complex way, nothing like as in the simple tension test.  This can be put 
another way: one must be able to predict the world around us without having to resort to 
complex, expensive, time-consuming materials testing – one should be able to use the test 
data from the tension test (and similar simple tests) to achieve this.  How this is actually 
done is a major theme of mechanics modelling and these Books. 
 
Test data for a number of metals are listed in Table 5.2.1 below.  Note that although some 
materials can have similar stiffnesses, for example Nickel and Steel, their relative 
strengths can be very different. 
 

Young’s 
Modulus 
E (GPa) 

0.2% Yield 
Strength 
(MPa) 

Ultimate Tensile 
Strength 
(MPa) 

Ni 200 70 400 
Mild steel 203 220 430 
Steel (AISI 1144) 210 540 840 
Cu 120 60 400 
Al 70 40 200 
Al Alloy (2014-T651) 73 415 485 

Table 5.2.1: Tensile test data for some metals (at room temperature) 
 
Data as listed above should be treated with caution – it should be used only as a rough 
guide to the actual material under study; the data can vary wildly depending on the purity 
and precise nature of the material.  For example, the tensile strength of glass as found in a 
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typical glass window is about 50MPa.  For fine glass fibres as used in fibre-reinforced 
plastics and composite materials, the tensile strength can be 4000MPa.  In fact, glass is a 
good reminder as to why the tensile values differ from material to material – it is due to 
the difference in microstructure.  The glass window has many very fine flaws and cracks 
in it, invisible to the naked eye, and so this glass is not very strong; very fine slivers of 
glass have no such flaws and are extremely strong – hence their use in engineering 
applications. 
 
The Poisson’s Ratio 
 
Another useful material parameter is the Poisson’s ratio  .4  As the material stretches in 
the tension test, it gets thinner; the Poisson’s ratio is a measure of the ease with which it 
thins: 
 

0

0

/
/

ww w

l l





   


                      (5.2.6) 

 
Here, 0 0,w w w w    are the change in thickness and original thickness of the specimen, 
Fig. 5.2.5; 0 0,l l l l    are the change in length and original length of the specimen; 

0 0( ) /w w w w    is the strain in the thickness direction.  A negative sign is included 
because w  is negative, making the Poisson’s ratio a positive number.  (It is implicitly 
assumed here that the material is getting thinner by the same amount in all directions; see 
below in the context of anisotropy for when this is not the case.) 
 
Most engineering materials have a Poisson’s Ratio of about 0.3.  Values for a range of 
materials are listed in Table 5.2.2 further below. 
 

 
 

Figure 5.2.5: Change in dimensions of a test specimen 
 
Recall from Section 4.3 that the volumetric strain is given by the sum of the normal 
strains.  There is no harm in re-calculating this for the tensile test specimen of Fig. 5.2.5.  
One has 2 2

0 0/ / 1V V w l w l   , so that, assuming the strains are small so that the terms 

w , 2
w  and 2

w  can be neglected, / 2 wV V      (this is the sum of the normal 

                                                 
4 this is the Greek letter nu, not the letter “v” 
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strains, xx yy zz    , Fig. 5.2.4).  Using the definition of the Poisson’s ratio, Eqn. 5.2.6, 
one has  
 

 1 2V

V
 

                     (5.2.7) 

 
A material which undergoes little volume change thus has a Poisson’s Ratio close to 0.5; 
rubber and other soft tissues, for example biological materials, have Poisson’s Ratios very 
close to 0.5.  A material which undergoes zero volume change ( 0.5  ) is called 
incompressible (see more on incompressibility in Section 5.2.4 below).  At the other 
extreme, materials such as cork can have Poisson’s Ratios close to zero.  The reason for 
this can be seen from the microstructure of cork shown in Fig.  5.2.6; when tested in 
compression, the hexagonal honeycomb structure simply folds down, with no necessary 
lateral expansion. 
 

 
 

Figure 5.2.6: Microstructure of Cork 
 
Auxetic materials are materials which have a negative Poisson’s Ratio; when they are 
stretched, they get thicker.  Examples can be found amongst polymers, foams, rocks and 
biological materials.  These materials obviously have a very particular microstructure.  A 
typical example is the network microstructure shown in Fig. 5.2.7. 
 

 
 

Figure 5.2.7: Auxetic material (a) before loading, (b) after loading 
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Ductile and Brittle Materials 
 
The engineering materials can be grouped into two broad classes: the ductile materials 
and the brittle materials.  The ductile materials undergo large permanent deformations, 
stretching and necking before failing5.  The term ductile rupture is usually reserved for 
materials which fail in this way.  The separate pieces of the specimen pull away from 
each other gradually, leaving rough surfaces.  A simple measure of ductility is the 
engineering strain at failure.  The brittle materials are generally more stiff and strong, but 
fail without undergoing much permanent deformation – the tension specimen undergoes a 
sudden clean break – a fracture.  The UTS in the case of a brittle material is the same as 
the failure/fracture stress.  Ceramics and glasses are extremely brittle – they fractures 
suddenly without undergoing any permanent deformation.  The difference is illustrated 
schematically in Fig. 5.2.8 below. 
 

 
 

Figure 5.2.8: the difference between ductile and brittle materials 
 
Ductility will depend on temperature – a very cold metal will tend to shatter suddenly, 
whereas it will stretch more easily when hot. 
 
Soft Materials 
 
Tension test data for non-engineering materials can be very different to that given above.  
For example, the typical response of a “soft” material, such as rubber, is shown in Fig. 
5.2.9.  For many soft materials, the elastic limit (or yield strength) can be very high on the 
stress-strain curve, close to failure.  Most of the curve is elastic, meaning that when one 
unloads the material, the unloading curve traces over the loading curve back down to zero 
stress and zero strain: the material does not undergo any permanent deformation6.  Note 
that the stress-strain curve is non-linear (curved), unlike the straight line elastic portion 
for a typical metal, Fig. 5.2.2-4, so these materials do not have a single Young’s Modulus 
through which their response can be described. 
 

                                                 
5 the term ductile is used for a specimen in tension; the analogous term for compression is malleability – a 
malleable material is easily “squashed” 
6 here, as elsewhere, these statements should not be taken literally; a real rubber will undergo some 
permanent deformation, only it will often be so small that it can be discounted, and an unload curve will 
never “exactly” trace over a loading curve 
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Figure 5.2.9: typical load/unload curves for rubber 
 
 
5.2.2 Compression Tests 
 
Many materials are used, or designed for use, in compression only, for example soils and 
concrete.  These materials are tested in compression.  A common testing method for 
concrete is to place a cylindrical specimen between two parallel plates and bring the 
plates together.  The typical response of concrete is shown in Fig. 5.2.10a; at failure, the 
concrete crushes catastrophically, as in the specimen shown in Fig. 5.2.10b.  Nominal 
stresses in the region 20-70MPa are typical and a good concrete would strain to much less 
than 1% at failure.   
 

 
 

Figure 5.2.10: typical compressive response of concrete; (a) stress-strain curve, (b) 
specimen at failure 

 
For many materials, e.g. metals, a compression test will lead to similar results as the 
tensile stress.  The yield strength in compression will be approximately the same as (the 
negative of) the yield strength in tension.  If one plots the true stress versus true strain 
curve for both tension and compression (absolute values for the compression), and the 
two curves more or less coincide, this would indicate that the behaviour of the material 
under compression is broadly similar to that under tension.  However, if one were to use 
the nominal stress and strain, then the two curves would not coincide even if the real 
tensile/compressive behaviour was similar (although they would of course in the small-
strain linear region); this is due to the definition of the engineering strain/stress. 
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5.2.3 Shear Tests 
 
In the shear test, the material is subjected to a shear strain 2 xy   by applying a shear 
stress7 xy  , Fig. 5.2.11a.  The resulting shear stress-strain curve will be similar to the 
tensile stress-strain curve, Fig. 5.2.11b.  The shear stress at failure, the shear strength, 
can be greater or smaller than the UTS.  The shear yield strength, on the other hand, is 
usually in the region of 0.5-0.75 times the tensile yield strength.  In the linear small-strain 
region, the shear stress will be proportional to the shear strain; the constant of 
proportionality is the shear modulus G: 
 

G



                                      (5.2.8) 

 
For many of the engineering materials, 0.4G E . 
 

 
 
Figure 5.2.11: the shear test; (a) specimen subjected to shear stress and shear strain 

(dotted = undeformed), (b) shear stress-strain curve 
 
 
5.2.4 Compressibility 
 
In the confined compression test, a sample is placed in a container and a piston is used 
to compress it at some pressure p, Fig. 5.2.12a.  This test can be used to determine how 
compressible a material is.  When a material is compressed by equal pressures on all 
sides, the ratio of applied pressure p to (unit) volume change, i.e. volumetric strain 

/V V , is called the Bulk Modulus K, Fig. 5.2.12b (this is not quite the situation in Fig. 
5.2.12a – the reaction pressures on the side walls will only be about half the applied 
surface pressure p; see Section 6.2): 
 

/
p

K
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 
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                               (5.2.9) 

 
The negative sign is included since a positive pressure implies a negative volumetric 
strain, so that the Bulk Modulus is a positive value.   
 

                                                 
7 there are many ways that this can be done, for example by pushing blocks of the material over each other, 
or using more sophisticated methods such as twisting thin tubes of the material (see Section 7.2) 
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Figure 5.2.12: the confined compression test; (a) specimen subjected to confined 
compression, (b) pressure plotted against volume change 

 
A material which can be easily compressed has a low Bulk Modulus.  As mentioned 
earlier, a material which cannot be compressed at all is called incompressible ( K  ).  
 
No real material is incompressible, but some can be regarded as incompressible so as to 
make the mechanics modelling easier.  For example, the Shear Modulus of rubber is very 
much smaller than its Bulk Modulus, Table 5.2.2.  Essentially, this means that the shape 
of rubber can be easily changed as compared to its volume.  Thus, in applications where a 
rubber component is being deformed or subjected to arbitrary stressing, it is perfectly 
reasonable to simply assume that rubber is incompressible.  The same applies, only more 
so, to water; the Shear Modulus is effectively zero and there is no resistance to change in 
shape (which will be observed on pouring a glass of water on to the ground); it is thus 
regarded almost always as completely incompressible.  On the other hand, even though 
the Bulk Modulus of the metals and other engineering materials is very much larger than 
that of water or rubber, they are still regarded as compressible in applications – the 
extremely small changes in volume are significant. 
 

Young’s Modulus E 
(GPa) 

Shear Modulus G 
(GPa) 

Bulk Modulus K 
(GPa) 

Poissons 
Ratio 

Ni 200 76 180 0.31 

Mild steel 203 78 138 0.30 

Steel (AISI 1144) 210 80 140             0.31 

Cu 120 46 142 0.34 

Al 70 26 76 0.35 

Rubber 
414.9 10  45 10  1 0.49 

Water 
1410  1410  2.2  

Table 5.2.2: Moduli and Poisson’s Ratios for a number of materials 
 
 
5.2.5 Cyclic Tests 
 
Many materials are subjected to complex loading regimes when in service, not simply a 
one-off stretching, shearing or compression.  A classic example are the wings of an 
aircraft which are continually loaded in tension, then compression, then tension and so on, 
as in Fig. 5.2.13.  Anything moving back and forward is likely to be subjected to this 
tension/compression-type cyclic loading.  Another example would be the stresses 
experienced by cardiac tissue in a pumping heart.   

(a) (b)

p p

/V V
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Figure 5.2.13: cyclic loading; alternating between tension (positive stress) and 
compression (negative stress) over time t 

 
Cyclic tests can be carried out to determine the response of materials to such loading 
cycles.  An example is shown in Fig. 5.2.14a, the stress-strain response of a Stainless 
Steel.  The Steel is first cycled between two strain values (one positive, one negative, 
differing only in sign) a number of times.  The stress is seen to increase on each 
successive cycle.  The strain is then increased for a number of further cycles, and so on. 
 
One does not have to move from tension to compression; many materials cycle in only 
tension or compression.  For example, the response to cyclic (compressive) loading of 
polyurethane foam is shown in Fig. 5.2.14b (note how the loading curve is similar to that 
in 5.2.9). 
 

 
 

Figure 5.2.14: cyclic loading; (a) cyclic straining of a Stainless Steel, (b) cyclic 
loading (in compression) of a polyurethane foam 

 
 
5.2.6 Other Tests 
 
There are other important tests, for example the Vickers and Brinell hardness tests, and 
the three-point bending test.  The hardness tests will be discussed in Book II.  The 
bending test is discussed in section 7.4.9, in the context of beam theory.  Another two 
very important tests, the creep test and the stress relaxation test, will be discussed in 
Chapter 10. 
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5.2.7 Isotropy and Anisotropy 
 
Many materials have a strong direction-dependence.  The classic example is wood, which 
has a clear structure –along the grain, along which fine lines can be seen, and against the 
grain, Fig. 5.2.15.  The wood is stiffer and stronger along the grain than against the grain.  
A material which has this direction-dependence of mechanical (and physical) properties is 
called anisotropic. 
 

 
 

Figure 5.2.15: Wood 
 
Fig. 5.2.16 shows stress-strain curves for human ligament tissue; in one test, the ligament 
is stretched along its length (the longitudinal direction), in the second, across the width 
of the ligament (the transverse direction).  It can be seen that the stiffness is much higher 
in the longitudinal direction.  Another example is bone – it is much stiffer along the 
length of the bone than across the width of the bone.  In fact, many biological materials 
are strongly anisotropic. 
 

 
 

Figure 5.2.16: Anisotropic response of human ligament 
 
A material whose properties are the same in all directions is called isotropic.  In 
particular, the relationship between stress and strain at any single location in a material is 
the same in all directions.  This implies that if a specimen is cut from an isotropic material 
and subjected to a load, it would not matter in which orientation the specimen is cut, the 

9 

8 



Section 5.2 

Solid Mechanics Part I                                                                                Kelly 132

resulting deformation would be the same – as illustrated in Fig. 5.2.17.  Most metals and 
ceramics can be considered to be isotropic (see Section 5.4). 
 

 
 

Figure 5.2.17: Illustration of Isotropy; the stress-strain response is the same no 
matter in what “direction” the test specimen is cut from the material 

 
Anisotropy will be examined in more detail in §6.3.  It will be shown there, for example, 
that an anisotropic material can have a Poisson’s ratio greater than 0.5.8 
 
 
5.2.8 Homogeneous Materials 
 
The term homogeneous means that the mechanical properties are the same at each point 
throughout the material.  In other words, the relationship between stress and strain is the 
same for all material particles.  Most materials can be assumed to be homogeneous. 
 
In engineering applications, it is sometimes beneficial to design materials/components 
which are specifically not homogeneous, i.e. inhomogeneous.  Such materials whose 
properties vary gradually throughout are called Functionally Graded Materials, and 
have been gaining popularity since the 1980s-90s in advanced technologies. 
 
Note that a material can be homogeneous and not isotropic, and vice versa – 
homogeneous refers to different locations whereas isotropy refers to the same location. 
 
 
5.2.9 Problems 
 
1. Steel and aluminium can be considered to be isotropic and homogeneous materials.  Is 

the composite sandwich-structure shown here isotropic and/or homogeneous?  
Everywhere in the sandwich? 

 

 
 

                                                 
8 cork was mentioned earlier and it was pointed out that it has a near-zero Poisson’s Ratio; actually, cork is 
quite anisotropic and the Poisson’s Ratio in other “directions” will be different (close to 1.0) 
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5.3 Material Models 
 
The response of real materials to various loading conditions was discussed in the previous 
section.  Now comes the task of creating mathematical models which can predict this 
response.  To this end, it is helpful to categorise the material responses into ideal models.  
There are four broad material models which are used for this purpose: (1) the elastic 
model, (2) the viscoelastic model, (3) the plastic model, and (4) the viscoplastic model.  
These models will be discussed briefly in what follows, and in more depth throughout the 
rest of this book. 
 
 
5.3.1 The Elastic Model 
 
An ideal elastic material has the following characteristics: 

(i) the unloading stress-strain path is the same as the loading path 
(ii) there is no dependence on the rate of loading or straining 
(iii) it does not undergo permanent deformation; it returns to its precise original shape 

when the loads are removed 
 
Typical stress-strain curves for an ideal elastic model subjected to a tension (or 
(compression) test are shown in Fig. 5.3.1.  The response of a linear elastic material, 
where the stress is proportional to the strain, is shown in Fig. 5.3.1a and that for a non-
linear elastic material is shown in Fig. 5.3.1b. 
 
From the discussion in the previous section, the linear elastic model will well represent 
the engineering materials up to their elastic limit (see, for example, Figs. 5.2.2-4).  It will 
also represent the complete stress-strain response up to the point of fracture of many very 
brittle materials.  The model can also be used to represent the response of almost any 
material, provided the stresses are sufficiently small. 
 
The non-linear elastic model is useful for predicting the response of soft materials like 
rubber and biological soft tissue (see, for example Fig. 5.2.9). 
 

 
 

Figure 5.3.1: The Elastic Model; (a) linear elastic, (b) non-linear elastic 
 
It goes without saying that there is no such thing as a purely elastic material.  All 
materials will undergo at least some permanent deformations, even at low loads; no 
material’s response will be exactly the same when stretched at different speeds, and so on.  









load 

unload 

)a( )b(



Section 5.3 

Solid Mechanics Part I                                                                                Kelly 135

However, if these occurrences and differences are small enough to be neglected, the ideal 
elastic model will be useful.  
 
Note also that a prediction of a material’s response may be made with accuracy using the 
elastic model in some circumstances, but not in others.  An example would be metal; the 
elastic model might well be able to predict the response right up to high stress levels 
when the metal is cold, but not so well when the temperature is high, when inelastic 
effects may not be so easily disregarded (see below). 
 
 
5.3.2 Viscoelasticity 
 
When solid materials have some “fluid-like” characteristics, they are said to be 
viscoelastic.  A fluid is something which flows easily when subjected to loading – it 
cannot keep to any particular shape.  If a fluid is one (the “viscous”) extreme and the 
elastic solid is at the other extreme, then the viscoelastic material is somewhere in 
between. 
 
The typical response of a viscoelastic material is sketched in Fig. 5.3.2.  The following 
will be noted: 

(i) the loading and unloading curves do not coincide, Fig. 5.3.2a, but form a 
hysteresis loop 

(ii) there is a dependence on the rate of straining dtd / , Fig. 5.3.2b; the faster the 
stretching, the larger the stress required  

(iii) there may or may not be some permanent deformation upon complete unloading, 
Fig. 5.3.2a 

 

 
 
Figure 5.3.2: Response of a Viscoelastic material in the Tension test; (a) loading and 
unloading with possible permanent deformation (non-zero strain at zero stress), (b) 

different rates of stretching 
 
The effect of rate of stretching shows that the viscoelastic material depends on time.  This 
contrasts with the elastic material; it makes no difference whether an elastic material is 
loaded to some given stress level for one second or one day, or quickly or slowly, the 
resulting strain will be the same.  This rate effect can be seen when you push your hand 
through water – it is easier to do so when you push slowly than when you push fast. 
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Depending on how “fluid-like” or “solid-like” a material is, it can be considered to be a 
viscoelastic fluid, for example blood or toothpaste, or a viscoelastic solid, for example 
Silly Putty™ or foam.  That said, the model for both and the theory behind each will be 
similar. 
 
Viscoelastic materials will be discussed in detail in Chapter 10. 
 
 
5.3.3 Plasticity 
 
Plasticity has the following characteristics: 

(i) The loading is elastic up to some threshold limit, beyond which permanent 
deformations occur 

(ii) The permanent deformation, i.e. the plasticity, is time independent 
 
This plasticity can be seen in Figs. 5.2.2-4.  The threshold limit – the elastic limit – can be 
quite high but it can also be extremely small, so small that significant permanent 
deformations occur at almost any level of loading.  The plasticity model is particularly 
useful in describing the permanent deformations which occur in metals, soils and other 
engineering materials.  It will be discussed in further detail in Chapter 11. 
 
 
5.3.4 Viscoplasticity 
 
Finally, the viscoplastic model is a combination of the viscoelastic and plastic models.  In 
this model, the plasticity is rate-dependent.  One of the main applications of the model is 
in the study of metals at high temperatures, but it is used also in the modeling of a huge 
range of materials and other applications, for example asphalt, concrete, clay, paper pulp, 
biological cells growth, etc.  This model will be discussed in Chapter 12. 
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5.4 Continuum Models and Micromechanics 
 
The models mentioned in the previous section are continuum models.  What this means 
is explained in what follows. 
 
 
5.4.1 Stress and Scale 
 
In the definition of the traction vector, §3.3.1, it was assumed that the ratio of force over 
area would reach some definite limit as the area S  of the surface upon which the force 

F  acts was shrunk to zero.  This issue can be explored further by considering Fig. 5.4.1.  
Assume first that the plane upon which the force acts is fairly large; it is then shrunk and 
the ratio SF /  tracked.  A schematic of this ratio is shown in Fig. 5.4.2.  At first (to the 
right of Fig. 5.4.2) the ratio SF /  undergoes change, assuming the stress to vary within 
the material, as it invariably will if the material is loaded in some complex way.  
Eventually the plane will be so small that the ratio changes very little, perhaps with some 
small variability  .  If the plane is allowed to get too small, however, down below some 
distance *h  say and down towards the atomic level, where one might encounter 
“intermolecular space”, there will be large changes in the ratio and the whole concept of a 
force acing on a single surface breaks down.  
 

 
 
Figure 5.4.1: A force acting on an internal surface; allowing the plane on which the 

force acts to get progressively smaller 
 
In a continuum model, it is assumed that the ratio SF /  follows the dotted path shown in 
Fig. 5.4.2; a definite limit is reached as the plane shrinks to zero size.  It should be kept in 
mind that the traction in a real material should be evaluated through 
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where *h  is some minimum dimension below which there is no acceptable limit.  On the 
other hand, it is necessary to take the limit to zero in the mathematical modelling of 
materials since that is the basis of calculus (this will become more necessary in Book II, 
where calculus is used more extensively).  
 

 
 
Figure 5.4.2: the change in traction as the plane upon which a force acts is reduced 

in size 
 
In a continuum model, then, there is a minimum sized element one can consider, say of 
size 3*)(hV  .  When one talks about the stress on this element, the mass of this 
element, the density, velocity and acceleration of this element, one means the average of 
these quantities throughout or over the surface of the element – the discrete atomic 
structure within the element is ignored and is “smeared” out into a continuum element. 
 
The continuum element is also called a representative volume element (RVE), an 
element of material large enough for the heterogeneities to be replaced by homogenised 
mean values of their properties.  The order of the dimensions of RVE’s for some common 
engineering materials would be approximately (see the metal example which follows) 
 

Metal:   0.1mm 
Polymers/composites: 1mm 
Wood:   10mm 
Concrete:  100mm 

 
One does not have any information about what is happening inside the continuum 
element – it is like a “black box”.  The scale of the element (and higher) is called the 
macroscale – continuum mechanics is mechanics on the macroscale.  The scale of 
entities within the element is termed the microscale – continuum models cannot give any 
information about what happens on the microscale. 
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5.4.2 Example: Metal  
 
Metal, from a distance, appears fairly uniform.  With the help of a microscope, however, 
it will be seen to consist of many individual grains of metal.  For example, the metal 
shown in Fig. 5.4.3 has grains roughly 0.05mm across, and each one has very individual 
properties (the crystals in each grain are aligned in different directions). 
 

 
 

Figure 5.4.3: metal grains 
 
If one is interested in the gross deformation of a moderately sized component of this 
metal, it would be sufficient to consider deformations that are averaged over volumes 
which are large compared to individual grains, but small compared to the whole 
component.  A minimum dimension of, say, mm5.0* h for the metal of Fig. 5.4.3 would 
suffice, and this would be the macro/micro-scale boundary, with a minimum surface area 
of dimension 2* )(h  for the definition of stress. 
 
When one measures physical properties of the metal “at a point”, for example the density, 
one need only measure an average quantity over an element of the order, say, 3mm)5.0(  
or higher.  It is not necessary to consider the individual grains of metal – these are inside 
the “black box”.  The model will return valuable information about the deformation of the 
gross material, but it will not be able to furnish any information about movement of 
individual grains. 
 
It was shown how to evaluate the Young’s Modulus and other properties of a metal in 
Section 5.2.1.  The test specimens used for such tests are vastly larger than the continuum 
elements discussed above.  Thus the test data is perfectly adequate to describe the 
response of the metal, on the macroscale. 
 
What if the response of individual grains to applied loads is required?  In that case a 
model would have to be constructed which accounted for the different mechanical 
properties of each grain.  The metal could no longer be considered to be a uniform 
material, but a complex one with many individual grains, each with different properties 
and orientation.  The macro/micro boundary could be set at about m0.1* h .  There are 
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now two problems which need to be dealt with: (1) experiments such as the tensile test 
would have to be conducted on specimens much smaller than the grain size in order to 
provide data for any mathematical model, and (2) the mathematical model will be more 
complex and difficult to solve.   
 
 
5.4.3 Micromechanical Models 
 
Consider the schematic of a continuum model shown in Fig. 5.4.4 below.  One can 
determine the material’s properties, such as the Young’s modulus E, through 
experimentation, and the resulting mathematical continuum model can be used to make 
predictions about the material’s response.  With the improved power of computers, 
especially since the 1990s, it has now become possible to complement continuum models 
with micromechanical models.  These models take into account more fine detail of the 
material’s structure (for example of the individual grains of the metal discussed earlier).   
Usually, one will have a micromechanical model of a small (typical) RVE of material.  
This then provides information regarding the properties of the RVE to be included in a 
continuum model (rather than having a micromechanical model of the complete material, 
which is in most cases still not practical).  The means by which the properties at the micro 
scale are averaged (for example into a “smeared out” single E value) and passed “up” to 
the continuum model is through homogenisation theory.  Such micromechanical models 
can provide further insight into material behaviour than the simpler continuum model.  
 

 
 

Figure 5.4.4: continuum model and micromechanical model 
 
 
5.4.4 Problems 
 
1. You want to evaluate the stiffness E of a metal for inclusion in a mechanics model.  

What minimum size specimen would you use in your test  - m10 , 0.1mm, 5mm  or 
5cm ? 

 
2. Individual rice grains are separate solid particles.  However, rice flowing down a 

chute at a food processing plant can be considered to be a fluid, and the flow of rice 
can be solved using the equations of mechanics.  What minimum dimension *h  
should be employed for measurements in this case to ensure the validity of a 
continuum model of flowing rice? 

E

continuum 
element 

macro-to-
micro scale 
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6 Linear Elasticity 
 
 
The simplest constitutive law for solid materials is the linear elastic law, which assumes a 
linear relationship between stress and engineering strain.  This assumption turns out to be 
an excellent predictor of the response of components which undergo small deformations, 
for example steel and concrete structures under large loads, and also works well for 
practically any material at a sufficiently small load. 
 
The linear elastic model is discussed in this chapter and some elementary problems 
involving elastic materials are solved.  Anisotropic elasticity is discussed in Section 6.3.  
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6.1 The Linear Elastic Model 
 
 
6.1.1 The Linear Elastic Model 
 
Repeating some of what was said in Section 5.3: the Linear Elastic model is used to 
describe materials which respond as follows: 

(i) the strains in the material are small1 
(ii) the stress is proportional to the strain,    (linear) 
(iii) the material returns to its original shape when the loads are removed, and the 

unloading path is the same as the loading path (elastic) 
(iv) there is no dependence on the rate of loading or straining 

 
From the discussion in the previous chapter, this model well represents the engineering 
materials up to their elastic limit.  It also models well almost any material provided the 
stresses are sufficiently small. 
 
The stress-strain (loading and unloading) curve for the Linear Elastic solid is shown in 
Fig. 6.1.1a.  Other possible responses are shown in Figs. 6.1.1b,c.  Fig. 6.1.1b shows the 
typical response of a rubbery-type material and many biological tissues; these are non-
linear elastic materials (see Book IV).  Fig. 6.1.1c shows the typical response of 
viscoelastic materials (see Chapter 10) and that of many plastically and viscoplastically 
deforming materials (see Chapters 11 and 12). 
 

 
 

Figure 6.1.1: Different stress-strain relationships; (a) linear elastic, (b) non-linear 
elastic, (c) viscoelastic/plastic/viscoplastic 

 
It will be assumed at first that the material is isotropic and homogeneous.  The case of an 
anisotropic elastic material is discussed in Section 6.3. 
 
 
 
 
 

                                                 
1 if the small-strain approximation is not made, the stress-strain relationship will be inherently non-linear; 
the actual strain, Eqn. 4.1.7, involves (non-linear) squares and square-roots of lengths  


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6.1.2 Stress-Strain Law 
 
Consider a cube of material subjected to a uniaxial tensile stress xx , Fig. 6.1.2a.  One 

would expect it respond by extending in the x direction, 0xx , and to contract laterally, 

so 0 zzyy  , these last two being equal because of the isotropy of the material.  With 

stress proportional to strain, one can write 
 

xxzzyyxxxx EE
  ,

1
        (6.1.1) 

 

 
 
Figure 6.1.2: an element of material subjected to a uniaxial stress; (a) normal strain, 

(b) shear strain 
 
The constant of proportionality between the normal stress and strain is the Young’s 
Modulus, Eqn. 5.2.5, the measure of the stiffness of the material.  The material parameter 
  is the Poisson’s ratio, Eqn. 5.2.6.  Since xxzzyy   , it is a measure of the 

contraction relative to the normal extension. 
 
Because of the isotropy/symmetry of the material, the shear strains are zero, and so the 
deformation of Fig. 6.1.2b, which shows a non-zero xy , is not possible – shear strain can 

arise if the material is not isotropic. 
 
One can write down similar expressions for the strains which result from a uniaxial 
tensile yy  stress and a uniaxial zz  stress: 

 

zzyyxxzzzz

yyzzxxyyyy

EE

EE









,
1

,
1

        (6.1.2) 

 
Similar arguments can be used to write down the shear strains which result from the 
application of a shear stress: 
 

xzxzyzyzxyxy 









2

1
,

2

1
,

2

1
            (6.1.3) 
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The constant of proportionality here is the Shear Modulus  , Eqn. 5.2.8, the measure of 
the resistance to shear deformation (the letter G was used in Eqn. 5.2.8 – both G and   
are used to denote the Shear Modulus, the latter in more “mathematical” and “advanced” 
discussions) . 
 
The strain which results from a combination of all six stresses is simply the sum of the 
strains which result from each2: 
 

  

  

  yyxxzzzz

yzyzzzxxyyyy

xzxzxyxyzzyyxxxx

E

E

E






















1

2

1
,

1

,
2

1
,

2

1
,

1

 (6.1.4) 

 
These equations involve three material parameters.  It will be proved in §6.3 that an 
isotropic linear elastic material can have only two independent material parameters and 
that, in fact,  
 

 



12

E
     (6.1.5) 

 
This relation will be verified in the following example. 
 
Example: Verification of Eqn. 6.1.5 
 
Consider the simple shear deformation shown in Fig. 6.1.3, with 0xy  and all other 

strains zero.  With the material linear elastic, the only non-zero stress is xyxy  2 .   

 

  
Figure 6.1.3: a simple shear deformation 

 

                                                 
2 this is called the principle of linear superposition: the "effect" of a sum of "causes" is equal to the sum 
of the individual "effects" of each "cause".  For a linear relation, e.g. E  , the effects of two causes  

,1 2   are 1E  and 2E , and the effect of the sum of the causes 1 2   is indeed equal to the sum of the 

individual effects: 1 2 1 2( )E E E     .  This is not true of a non-linear relation, e.g. 2E  , since 
2 2 2

1 2 1 2( )E E E      

xy

x

y
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Using the strain transformation equations, Eqns. 4.2.2, the only non-zero strains in a 
second coordinate system yx  , with x  at o45  from the x axis (see Fig. 6.1.3), are 

xyxx    and xyyy   .  Because the material is isotropic, Eqns 6.1.4 hold also in this 

second coordinate system and so the stresses in the new coordinate system can be 
determined by solving the equations 
 

  

  

  yyxxzzzz

yzyzzzxxyyxyyy

xzxzxyxyzzyyxxxyxx

E
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



1
0

2

1
0,

1

,
2

1
0,

2

1
0,

1

   (6.1.6) 

 
which results in 
 

xyyyxyxx v

E

v

E 






1

,
1

                              (6.1.7) 

 
But the stress transformation equations, Eqns. 3.4.8, with xyxy  2 , give 

xyxx  2  and xyyy  2  and so Eqn. 6.1.5 is verified. 

■ 
 
Relation 6.1.5 allows the Linear Elastic Solid stress-strain law, Eqn. 6.1.4, to be written 
as 
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   Stress-Strain Relations     (6.1.8) 

 
This is known as Hooke’s Law.  These equations can be solved for the stresses to get 
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    Stress-Strain Relations    (6.1.9)  

 
Values of E and   for a number of materials are given in Table 6.1.1 below (see also 
Table 5.2.2). 
 

 
Table 6.1.1: Young’s Modulus E and Poisson’s Ratio ν for a selection of materials at 

20oC 
 
 
Volume Change 
 
Recall that the volume change in a material undergoing small strains is given by the sum 
of the normal strains (see Section 4.3).  From Hooke’s law, normal stresses cause normal 
strain and shear stresses cause shear strain.  It follows that normal stresses produce 
volume changes and shear stresses produce distortion (change in shape), but no volume 
change. 
 
 
6.1.3 Two Dimensional Elasticity 
 
The above three-dimensional stress-strain relations reduce in the case of a two-
dimensional stress state or a two-dimensional strain state. 
 

Material E (GPa) 
Grey Cast Iron 100 0.29
A316 Stainless Steel 196 0.3
A5 Aluminium 68 0.33
Bronze 130 0.34
Plexiglass 2.9 0.4
Rubber 0.001-2 0.4-0.49
Concrete 23-30 0.2
Granite 53-60 0.27
Wood (pinewood)
fibre direction 
transverse direction 

17
1

0.45
0.79
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Plane Stress 
 
In plane stress (see Section 3.5), 0 zzyzxz  , Fig. 6.1.5, so the stress-strain 

relations reduce to 
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 
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 Stress-Strain Relations (Plane Stress)   (6.1.10) 
 
with 

 

 

0

0,





yzxzzz

yzxzyyxxzz E




                   (6.1.11) 

 

 
 

Figure 6.1.5: Plane stress 
 
Note that the zz  strain is not zero.  Physically, zz  corresponds to a change in thickness 
of the material perpendicular to the direction of loading. 
 
Plane Strain 
 
In plane strain (see Section 4.2), 0 zzyzxz  , Fig. 6.1.6, and the stress-strain 

relations reduce to 
 

y

x
z
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Stress-Strain Relations (Plane Strain)   (6.1.12) 
 
with 

 

  0,

0





yzxzyyxxzz

yzxzzz
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              (6.1.13) 

 
Again, note here that the stress component zz  is not zero.  Physically, this stress 
corresponds to the forces preventing movement in the z direction. 
 

 
 

Figure 6.1.6 Plane strain - a thick component constrained in one direction 
 
 
Similar Solutions 
 
The expressions for plane stress and plane strain are very similar.  For example, the plane 
strain constitutive law 6.1.12 can be derived from the corresponding plane stress 
expressions 6.1.10 by making the substitutions  
 




 



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1

,
1 2

E
E           (6.1.14) 

 
in 6.1.10 and then dropping the primes.  The plane stress expressions can be derived from 
the plane strain expressions by making the substitutions  
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in 6.1.12 and then dropping the primes.  Thus, if one solves a plane stress problem, one 
has automatically solved the corresponding plane strain problem, and vice versa. 
 
 
6.1.4 Problems 
 
1. Consider a very thin sheet of material subjected to a normal pressure p on one of its 

large surfaces.  It is fixed along its edges.  This is an example of a plate problem, an 
important branch of elasticity with applications to boat hulls, aircraft fuselage, etc. 
(a) write out the complete three dimensional stress-strain relations for this case (both 

cases, stress in terms of strain, strain in terms of stress) - simplify the  relations 
using the fact that the sheet is thin, the stress boundary condition on the large face 
and the coordinate system shown (just substitute in appropriate values for yzxz  ,  

and zz ) 
(b) assuming that the through thickness change in the sheet can be neglected, show 

that 
 yyxxp    

 

 
 
2. A strain gauge at a certain point on the surface of a thin A5 Aluminium component 

(loaded in-plane) records strains of μm15μm,30μm,60  xyyyxx   .  

Determine the principal stresses.  (See Table 6.1.1 for the material properties.) 
 
3. Use the stress-strain relations to prove that, for a linear elastic solid,  
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and, indeed, 
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Note: from Eqns. 3.5.4 and 4.2.4, these show that the principal axes of stress and 
strain coincide for an isotropic elastic material 
 

4. Consider the case of hydrostatic pressure in a linearly elastic solid: 
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as might occur, for example, when a spherical component is surrounded by a fluid 
under high pressure, as illustrated in the figure below.  Show that the volumetric strain 
is equal to 

p
x

y

z
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 
E

p
213 

 , 

so that the Bulk Modulus, Eqn. 5.2.9, is 

 3 1 2

E
K





 

 

 
 
5. Consider again Problem 2 from §3.5.7.   

(a) Assuming the material to be linearly elastic, what are the strains?  Draw a second 
material element (superimposed on the one shown below) to show the deformed 
shape of the square element – assume the displacement of the box-centre to be 
zero and that there is no rotation.  Note how the free surface moves, even though 
there is no stress acting on it. 

(b) What are the principal strains 1  and 2 ?  You will see that the principal 
directions of stress and strain coincide (see Problem 3) – the largest normal stress 
and strain occur in the same direction. 

 
 
6. A thin linear elastic plate is subjected to a uniform compressive stress 0  as shown 

below.  Show that the slope of the plate diagonal shown after deformation is given by 

  0

0

1 /
tan

1 /

b E

a E

 


 
    

 

What is the magnitude of   for a steel plate ( GPa210E , 3.0 ) of dimensions 
2cm2020  with MPa10  ? 
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6.2 Homogeneous Problems in Linear Elasticity 
 
A homogeneous stress (strain) field is one where the stress (strain) is the same at all 
points in the material.  Homogeneous conditions will arise when the geometry is simple 
and the loading is simple. 
 
 
6.2.1 Elastic Rectangular Cuboids 
 
Hooke’s Law, Eqns. 6.1.8 or 6.1.9, can be used to solve problems involving 
homogeneous stress and deformation.  Hoooke’s law is 6 equations in 12 unknowns (6 
stresses and 6 strains).  If some of these unknowns are given, the rest can be found from 
the relations. 
 
Example 
 
Consider the block of linear elastic material shown in Fig. 6.2.1.  It is subjected to an 
equi-biaxial stress of 0  yyxx . 

 
Since this is an isotropic elastic material, the shears stresses and strains will be all zero for 
such a loading.  One thus need only consider the three normal stresses and strains. 
 
There are now 3 equations (the first 3 of Eqns. 6.1.8 or 6.1.9) in 6 unknowns.  One thus 
needs to know three of the normal stresses and/or strains to find a solution.  From the 
loading, one knows that xx   and yy  .  The third piece of information comes 

from noting that the surfaces parallel to the yx   plane are free surfaces and so 0zz .   
 
From Eqn. 6.1.8 then, the strains are 
 

0,2,)1(  yzxzxyzzyyxx EE
  

 
As expected, yyxx    and 0zz . 

 

 
 

Figure 6.2.1: A block of linear elastic material subjected to an equi-biaxial stress 
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6.2.2 Problems 
 
1. A block of isotropic linear elastic material is subjected to a compressive normal stress 

o  over two opposing faces.  The material is constrained (prevented from moving) in 

one of the direction normal to these faces.  The other faces are free. 
(a) What are the stresses and strains in the block, in terms of Eo ,, ? 

(b) Calculate three maximum shear stresses, one for each plane (parallel to the faces 
of the block).  Which of these is the overall maximum shear stress acting in the 
block? 

 
2. Repeat problem 1a, only with the free faces now fixed also. 
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7 Applications of 
Elasticity 

 
 
The linear elastic model was introduced in the previous chapter and some elementary 
problems involving elastic materials were solved there (in particular in section 6.2).  In 
this Chapter, five important, practical, theories are presented concerning elastic materials; 
they all have specific geometries and are subjected to particular types of load.  In §7.1, 
the geometry is that of a long slender bar and the load is one which acts along the length 
of the bar; in §7.2, the geometry is that of a long slender circular bar and the load is one 
which twists the bar; in §7.3 the geometry is that of a thin-walled cylindrical or spherical 
component, and the load is normal to these walls; in §7.4 the geometry is that of a long 
and slender beam, and the load is transverse to the beam length.  Finally, in §7.5, the 
geometry is a column, fixed at one end and loaded at the other so that it deflects.  These 
five particular situations allow for simplifications (or approximations) to be made to the 
full three-dimensional linear elastic stress-strain relations; this allows one to write down 
simple expressions for the stress and strain and so solve some important practical 
problems analytically. 
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7.1 One Dimensional Axial Deformations 
 
In this section, a specific simple geometry is considered, that of a long and thin straight 
component loaded in such a way that it deforms in the axial direction only.  The x-axis is 
taken as the longitudinal axis, with the cross-section lying in the yx   plane, Fig. 7.1.1. 
 

 
 

Figure 7.1.1: A slender straight component; (a) longitudinal axis, (b) cross-section 
 
 
7.1.1 Basic relations for Axial Deformations 
 
Any static analysis of a structural component involves the following three considerations: 

(1) constitutive response 
(2) kinematics 
(3) equilibrium 

 
In this Chapter, it is taken for (1) that the material responds as an isotropic linear elastic 
solid.  It is assumed that the only significant stresses and strains occur in the axial 
direction, and so the stress-strain relations 6.1.8-9 reduce to the one-dimensional equation 

xxxx E   or, dropping the subscripts, 

 
 E          (7.1.1) 

 
Kinematics (2), the study of deformation, was the subject of Chapter 4.  In the theory 
developed here, known as axial deformation, it is assumed that the axis of the 
component remains straight and that cross-sections that are initially perpendicular to the 
axis remain perpendicular after deformation.  This implies that, although the strain might 
vary along the axis, it remains constant over any cross section.  The axial strain occurring 
over any section is defined by Eqn. 4.1.2, 
 

0

0

L

LL 
            (7.1.2) 

 
This is illustrated in Fig. 7.1.2, which shows a (shaded) region undergoing a compressive 
(negative) strain. 
 
Recall that individual particles/points undergo displacements whereas regions/line-
elements undergo strain.  In Fig. 7.1.2, the particle originally at A has undergone a 
displacement )(Au  whereas the particle originally at B has undergone a displacement 

)(Bu .  From Fig. 7.1.2, another way of expressing the strain in the shaded region is (see 
Eqn. 4.1.3) 
 

x

y

z
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0

)()(

L

AuBu 
     (7.1.3) 

 

 
 

Figure 7.1.2: axial strain; (a) before deformation, (b) after deformation 
 
Both displacements )(Au  and )(Bu  of Fig. 7.1.2 are positive, since the particles displace 
in the positive x direction – if they moved to the left, for consistency, one would say they 
underwent negative displacements.  Further, positive stresses are as shown in Fig. 7.1.3a 
and negative stresses are as shown in Fig. 7.1.3b.  From Eqn. 7.1.1, a positive stress 
implies a positive strain (lengthening) and a compressive stress implies a negative strain 
(contracting) 
 

 
 
Figure 7.1.3: Stresses arising in the slender component; (a) positive (tensile) stress, 

(b) negative (compressive) stress 
 
Equilibrium, (3), will be considered in the individual examples below. 
 
Note that, in the previous Chapter, problems were solved using only the stress-strain law 
(1).  Kinematics (2) and equilibrium (3) were not considered, the reason being the 
problems were so simple, with uniform (homogeneous) stress and strain (as indeed also in 
the first example which follows).  Whenever more complex problems are encountered, 
with non-uniform stress and strains, (3) and perhaps (2) need to be considered to solve for 
the stress and strain. 
 
 
7.1.2 Structures with Uniform Members 
 
A uniform axial member is one with cross-section A and modulus E constant along its 
length, and loaded with axial forces at its ends only. 
 

x

x

(a)

(b)

0L

L

 

 

)(Au

)(Bu

A B

x
00

x
00

(a) (b)
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Example 
 
Consider the bar of initial length L shown in Fig. 7.1.4, subjected to equal and opposite 
end-forces F.  The free-body (equilibrium) diagram of a section of the bar shown in Fig. 
7.1.4b shows that the internal force is also F everywhere along the bar.  The stress is thus 
everywhere AF /  and the strain is everywhere 
 

EA

F
      (7.1.4) 

 
and, from Eq. 7.1.2, the bar extends in length by an amount 
 

EA

FL
                                                           (7.1.5) 

 
Note that although the force acting on the left-hand end is negative (acting in the x  
direction), the stress there is positive (see Fig. 7.1.3). 
 

 
 
Figure 7.1.4: A uniform axial member; (a) subjected to axial forces F, (b) free-body 

diagram 
 
Displacements need to be calculated relative to some datum displacement1.  For example, 
suppose that the displacement at the centre of the bar is zero, 0)( Bu , Fig. 7.1.4.  Then, 
from Eqn. 7.1.3, 
 

2
)()()(

2
)()()(

4
)()()(

L

EA

F
BABuAu

L

EA

F
BDBuDu

L

EA

F
BCBuCu













        (7.1.6) 

■ 
 

                                                 
1 which is another way of saying that one can translate the bar left or right as a rigid body without affecting 
the stress or strain – but it does affect the displacements 

FF

L

F

(a)

(b)


B

 
A C D

F
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Example 
 
Consider the two-element structure shown in Fig. 7.1.5.  The first element is built-in at 
end A, is of length 1L , cross-sectional area 1A  and Young’s modulus 1E .  The second 

element is attached at B and has properties 222 ,, EAL .  External loads F  and P are 
applied at B and C as shown.  An unknown reaction force R acts at A.  This can be 
determined from the force equilibrium equation for the structure: 
 

0 PFR                             (7.1.7) 
 
As usual, the reaction is first assumed to act in the positive (x) direction.  With R known, 
the stress )1(  in the first element can be evaluated using the free-body diagram 7.1.5b, 
and )1(  using Fig. 7.1.5c: 
 

2

)2(

1

)1( ,
A

P

A

FP



                      (7.1.8) 

 
and so the strain is 
 

22

)2(

11

)1( ,
AE

P

AE

FP



        (7.1.9) 

 
Note that the stress and strain are discontinuous at B 2. 
 

 
 

Figure 7.1.5: A two-element structure (a) subjected to axial forces F and P, (b,c) 
free-body diagrams 

 
For each element, the total elongations i  are 

 

                                                 
2 this result, which can be viewed as a violation of equilibrium at B, is a result of the one-dimensional 
approximation of what is really a two-dimensional problem 

P

1L
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 
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F
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 

22

2
2

11

1
1

)()(

)()(

AE

PL
BuCu

AE

LFP
AuBu






     (7.1.10) 

 
If FP  , then 01   as expected, with 0R  and 0 . 
 
Thus far, the stress and strain (and elongations) have been obtained.  If one wants to 
evaluate the displacements, then one needs to ensure that the strains in each of the two 
elements are compatible, that is, that the elements fit together after deformation just like 
they did before deformation.  In this example, the displacements at B and C are 
  

21 )()(,)()(  BuCuAuBu                                (7.1.11) 
 
A compatibility condition, bringing together the separate relations in 7.1.11, is then 
 

 
22

2

11

1)()(
AE

PL

AE

LFP
AuCu 


          (7.1.12) 

 
ensuring that )(Bu  is unique.  As in the previous example, the displacements can now be 
calculated if the displacement at any one (datum) point is known.  Indeed, it is known that 

0)( Au . 
■ 

 
 
Example 
 
Consider next the similar situation shown in Fig. 7.1.6.  Here, both ends of the two-
element structure are built-in and there is only one applied force, F, at B.  There are now 
two reaction forces, at ends A and C, but there is only one equilibrium equation to 
determine them: 
 

0 CA RFR                    (7.1.13) 

 
Any structure for which there are more unknowns than equations of equilibrium, so that 
the stresses cannot be determined without considering the deformation of the structure, is 
called a statically indeterminate structure3. 
 

                                                 
3 See the end of §2.3.3 
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Figure 7.1.6: A two-element structure built-in and both ends; (a) subjected to an 
axial force F, (b,c) free-body diagrams 

 
 
In terms of the unknown reactions, the strains are 
 

222

)2(
)2(

11111

)1(
)1( ,

AE

R

EAE

RF

AE

R

E
CCA 




    (7.1.14) 

 
and, for each element, the total elongations are 
 

22

2
2

11

1
1 ,

AE

LR

AE

LR CA                (7.1.15) 

 
Finally, compatibility of both elements implies that the total elongation 021  .  
Using this relation with Eqn. 7.1.13-14 then gives 
 

112221

221

112221

112 ,
AELAEL

AEL
FR

AELAEL

AEL
FR CA 




      (7.1.16) 

 
The displacements can now be evaluated, for example, 
 

222111 //

1
)(

LAELAE
FBu


      (7.1.17) 

 
so that a positive F displaces B to the right and a negative F displaces B to the left. 

■ 
 
Note the general solution procedure in this last example, known as the basic force 
method: 
 

Equilibrium + Compatibility of Strain in terms of unknown Forces  
 Solve equations for unknown Forces 

 

1L

(a)

(b)

B

 

A C

F
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(c)
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The Stiffness Method 
 
The stiffness method (also known as the displacement method) is a slight modification 
of the above solution procedure, where the final equations to be solved involve known 
forces and unknown displacements only: 
 

Equilibrium in terms of Displacement 
 Solve equations for unknown Displacements 

 
If one deals in displacements, one does not need to ensure compatibility (it will 
automatically be satisfied); compatibility only needs to be considered when dealing in 
strains (as in the previous example). 
 
Example (The Stiffness Method) 
 
Consider a series of three bars of cross-sectional areas 321 ,, AAA , Young’s moduli 

321 ,, EEE  and lengths 321 ,, LLL , Fig. 7.1.7.  The first and third bars are built-in at points 

A and D, bars one and two meet at B and bars two and three meet at C.  Forces BP  and CP  

act at B and C respectively. 
 
The force is constant in each bar, and for each bar there is a relation between the force iF , 

and elongation, i , Eqn. 7.1.5: 

 

iii kF      where     
i

ii
i L

EA
k                (7.1.18) 

 
Here, ik  is the effective stiffness of each bar.  The elongations are related to the 

displacements, AB uu 1  etc., so that, with 0 DA uu , 
 

  CBCB ukFuukFukF 332211 ,,               (7.1.19) 

 
There are two degrees of freedom in this problem, that is, two nodes are free to move.  
One therefore needs two equilibrium equations.  One could use any two of 
 

0,0,0 322131  FPFFPFFPPF CBCB         (7.1.20) 

 
In the stiffness method, one uses the second and third of these; the second is the “node B” 
equation and the third is the “node C” equation.  Substituting Eqns. 7.1.19 into 7.1.20 
leads to the system of two equations  
 

 
  CCB

BCB
Pukkuk
Pukukk



322

221     (7.1.21) 

 
which can be solved for the two unknown nodal displacements 
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Figure 7.1.7: three bars in series; (a) subjected to external loads, (b,c,d) free-body 
diagrams 

 
Note that it was not necessary to evaluate the reactions to obtain a solution.  Once the 
forces have been found, the reactions can be found using the free-body diagram of Fig. 
7.1.7d. 
 
The stiffness method is a very systematic procedure.  It can be used to solve for structures 
with many elements, with the two equations 7.1.21 replaced by a large system of 
equations which can be solved numerically using a computer. 
 
 
7.1.3 Structures with Non-uniform Members 
 
Consider the structure shown in Fig. 7.1.8, an axial bar consisting of two separate 
components bonded together.  The components have Young’s moduli 21 , EE  and cross-

sectional areas 21 , AA .  The bar is subjected to equal and opposite forces F as shown, in 
such a way that axial deformations occur, that is, the cross-sections remain perpendicular 
to the x axis throughout the deformation. 
 
Since there are only axial deformations, the strain is constant over a cross-section.  
However, the stress is not uniform, with  11 E  and  22 E ; on any cross-section, 
the stress is higher in the stiffer component.  The resultant force acting on each 
component is 111 AEF   and 222 AEF  .  Since FFF  21 , the total elongation is 
 

2211 AEAE

FL


                (7.1.22) 
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Figure 7.1.8: A bar consisting of two separate materials bonded together 
 
 
7.1.4 Resultant Force and Moment 
 
Consider the force and moments acting over any cross-section, Fig. 7.1.9.  The resultant 
force is the integral of the stress times elemental area over the cross section, Eqn. 3.1.2, 
 

dAF
A
                                           (7.1.23) 

 
There are two moments; the moment yM  about the y axis and zM  about the z axis, 

 

dAyMdAzM
A

z

A

y    ,             (7.1.24) 

 
Positive moments are defined through the right hand rule, i.e. with the thumb of the 
right hand pointing in the positive y direction, the closing of the fingers indicates the 
positive yM ; the negative sign in Eqn. 7.1.24b is due to the fact that a positive stress with 

0y  would lead to a negative moment zM . 
 
 

 
 

Figure 7.1.9: Resultants on a cross-section; (a) resultant force, (b) resultant 
moments 

 
Consider now the case where the stress is constant over a cross-section.  Since it is 
assumed that the strain is constant over the cross-section, from Eqn. 7.1.1 this will occur 
when the Young’s modulus is constant.  In that case, Eqns. 7.1.23-24 can be re-written as 
 

dAyMdAzMAF
A

z

A

y    ,,                  (7.1.25) 
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The quantities dAz
A  and dAy

A  are the first moments of area about, respectively, 

the y and z axes.  These are equal to Az  and Ay , where ),( zy  are the coordinates of 
the centroid of the section (see Eqn. 3.2.2).  Taking the x axis to run through the 
centroid, 0 zy  results in 0 zy MM .  Thus, a resultant axial force which 

acts through the centroid of the cross-section ensures that there is no 
moment/rotation of that cross-section, the main assumption of this section. 
 
For the non-uniform member of Fig. 7.1.8, since the resultant of a constant stress over an 
area is a force acting through the centroid of that area, the forces 21 , FF  act through the 

centroids of the respective areas 21 , AA .  The precise location of the total resultant force F 

can be determined by taking the moments of the forces 21 , FF  about the y and z axes, and 
equating this to the moment of the force F about these axes.  
 
 
7.1.5 Problems 
 
1. Consider the rigid beam supported by two deformable bars shown below.  The bars 

have properties 11, AL  and 12 , AL  and have the same Young’s modulus E.  They are 
separated by a distance L.  The beam supports an arbitrary load at position x, as 
shown.  What is x if the beam is to remain horizontal after deformation. 

 

 x

1L 2L

L
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7.2 Torsion 
 
In this section, the geometry to be considered is that of a long slender circular bar and the 
load is one which twists the bar.  Such problems are important in the analysis of twisting 
components, for example lug wrenches and transmission shafts. 
 
 
7.2.1 Basic relations for Torsion of Circular Members 
 
The theory of torsion presented here concerns torques1 which twist the members but 
which do not induce any warping, that is, cross sections which are perpendicular to the 
axis of the member remain so after twisting.  Further, radial lines remain straight and 
radial as the cross-section rotates – they merely rotate with the section. 
 
For example, consider the member shown in Fig. 7.2.1, built-in at one end and subject to 
a torque T at the other.  The x axis is drawn along its axis.  The torque shown is positive, 
following the right-hand rule (see §7.1.4).  The member twists under the action of the 
torque and the radial plane ABCD  moves to DCAB  . 
 

 
 

Figure 7.2.1: A cylindrical member under the action of a torque 
 
Whereas in the last section the measure of deformation was elongation of the axial 
members, here an appropriate measure is the amount by which the member twists, the 
rotation angle  .  The rotation angle will vary along the member – the sign convention is 
that   is positive in the same direction as positive T  as indicated by the arrow in Fig. 
7.2.1.  Further, whereas the measure of strain used in the previous section was the normal 
strain xx , here it will be the engineering shear strain xy  (twice the tensorial shear strain 

xy ).  A relationship between   (dropping the subscripts) and   will next be established. 

 
As the line BC  deforms into CB  , Fig. 7.2.1, it undergoes an angle change  .  As 
defined in §4.1.2, the shear strain   is the change in the original right angle formed by 

BC  and a tangent at B (indicated by the dotted line – this is the y axis to be used in xy ). 

If   is small, then 
 

L

LR

BC

CC )(
tan

 


      (7.2.1) 

 

                                                 
1 the term torque is usually used instead of moment in the context of twisting shafts such as those 
considered in this section 

T

x
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where L is the length, R the radius of the member and )(L  means the magnitude of 
  at L.  Note that the strain is constant along the length of the member although   is 
not.  Considering a general cross-section within the member, as in Fig. 7.2.2, one has 
 

x

xR )(                (7.2.2) 

 

 
 

Figure 7.2.2: A section of a twisting cylindrical member 
 
The shear strain at an arbitrary radial location r, Rr 0 , is 
 

x

xr
r

)(
)(

                             (7.2.3) 

 
showing that the shear strain varies from zero at the centre of the shaft to a 
maximum  xxRLLR /)(/)(    on the outer surface of the shaft. 
 
Considering a free-body diagram of any portion of the shaft of Fig. 7.2.1, a torque T 
acts on all cross-sections.  This torque must equal the resultant of the shear stresses 
acting over the section, as schematically illustrated in Fig. 7.2.3a.  The elemental 
force acting over an element with sides dr  and rd  is  rdrddA  , Fig. 7.2.3b, 
and so the resultant moment about 0r  is 
 

drrrdrdrrT
RR

)(2)(
0

2
2

0 0

2    


        (7.2.4) 

 
Hooke’s law is 
 

 G          (7.2.5) 
 
where G is the shear modulus (the   of Eqn. 6.1.5).  But r/  is a constant and so 
therefore also is r/  (provided G is) and Eqn. 7.2.4 can be re-written as 
 

r

Jr
drr

r

r
T

R )(
2

)(

0

3 









                (7.2.6) 

 
The quantity in square brackets is called the polar moment of inertia of the cross-
section (also called the polar second moment of area) and is denoted by J.  For this 
circular cross-section it is given by 

T

EB

A F
E
 

x
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322
2

44

0

3 DR
drrJ

R                    (7.2.7) 

 
where D is the diameter.  In general, for a cross-section of arbitrary shape, 
 

dArJ
A
 2  Polar Moment of Area                          (7.2.8) 

 
where dA  is an element of area and the integration is over the complete cross-section. 
 

 
 

Figure 7.2.3: Shear stresses acting over a cross-section; (a) shear stress, (b) 
moment for an elemental area 

 
From Eqn. 7.2.6, the shear stress at any radial location is given by 
 

J

rT
r )(                          (7.2.9) 

 
From Eqn. 7.2.1, 7.2.5  and 7.2.9, the angle of twist at the end of the member – or the 
twist at one end relative to that at the other end – is  
 

GJ

TL
                     (7.2.10) 

 
Example 
 
Consider the problem shown in Fig.7.2.4, two torsion members of lengths 21 , LL , 

diameters 21 , dd  and shear moduli 21 ,GG , built-in at A and subjected to torques BT  and 

CT .  Equilibrium of moments can be used to determine the unknown torques acting in 

each member: 
 

0,0 21  CCB TTTTT        (7.2.11) 

 
so that CB TTT 1  and CTT 2 . 
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Figure 7.2.4: A structure consisting of two torsion members; (a) subjected to torques 

BT  and CT , (b,c) free-body diagrams 
 
The shear stresses in each member are therefore 
 

 
2

2
1

1 ,
J

rT

J

TTr CCB 


             (7.2.12) 

 
where 32/4

11 dJ   and 32/4
22 dJ  . 

 
From Eqn. 7.2.10, the angle of twist at B is given by 1111 / JGLTB  .  The angle of twist 
at C is then 
 

BC JG

LT
 

22

22             (7.2.13) 

■ 
 
Statically indeterminate problems can be solved using methods analogous to those used in 
the section 7.1 for uniaxial members. 
 
Example 
 
Consider the structure in Fig. 7.2.5, similar to that in Fig. 7.2.4 only now both ends are 
built-in and there is only a single applied torque, BT .   
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Figure 7.2.5: A structure consisting of two torsion members; (a) subjected to a 
Torque BT , (b) free-body diagram, (c) separate elements 

 
Referring to the free-body diagram of Fig. 7.2.5b, there is only one equation of 
equilibrium with which to determine the two unknown member torques: 
 

021  TTT B             (7.2.14) 
 
and so the deformation of the structure needs to be considered.  A systematic way of 
dealing with this situation is to consider each element separately, as in Fig. 7.2.5c.  The 
twist in each element is 
 

22

22
2

11

11
1 ,

JG

LT

JG

LT
                        (7.2.15) 

 
The total twist is zero and so 021   which, with Eqn. 7.2.14, can be solved to obtain 
 

BB T
JGLJGL

JGL
TT

JGLJGL

JGL
T

112221

221
2

112221

112
1 ,





         (7.2.16) 

 
The rotation at B can now be determined, 21  B . 

■ 
 
 
7.2.2 Stress Distribution in Torsion Members 
 
The shear stress in Eqn. 7.2.9 is acting over a cross-section of a torsion member.  
From the symmetry of the stress, it follows that shear stresses act also along the 
length of the member, as illustrated to the left of Fig. 7.2.6.  Shear stresses do not act 
on the surface of the element shown, as it is a free surface. 
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Any element of material not aligned with the axis of the cylinder will undergo a 
complex stress state, as shown to the right of Fig. 7.2.6.  The stresses acting on an 
element are given by the stress transformation equations, Eqns. 3.4.8: 
 

 2cos,2sin,2sin  xyyyxx              (7.2.17) 

 

 
 

Figure 7.2.6: Stress distribution in a torsion member 
 
From Eqns. 3.5.4-5, the maximum normal (principal) stresses arise on planes at o45  
and are  1  and  2 .  Thus the maximum tensile stress in the member occurs at 

o45  to the axis and arises at the surface.  The maximum shear stress is simply  , with 
0 . 

 
 
7.2.3 Problems 
 
1. A shaft of length L and built-in at both ends is subjected to two external torques, T  at 

A and T2  at B, as shown below.  The shaft is of diameter d and shear modulus G.  
Determine the maximum (absolute value of) shear stress in the shaft and determine 
the angle of twist at B. 
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7.4 The Elementary Beam Theory 
 
In this section, problems involving long and slender beams are addressed.  As with 
pressure vessels, the geometry of the beam, and the specific type of loading which will be 
considered, allows for approximations to be made to the full three-dimensional linear 
elastic stress-strain relations. 
 
The beam theory is used in the design and analysis of a wide range of structures, from 
buildings to bridges to the load bearing bones of the human body.  
 
 
7.4.1 The Beam 
 
The term beam has a very specific meaning in engineering mechanics: it is a component 
that is designed to support transverse loads, that is, loads that act perpendicular to the 
longitudinal axis of the beam, Fig. 7.4.1.  The beam supports the load by bending only.  
Other mechanisms, for example twisting of the beam, are not allowed for in this theory. 
 

 
Figure 7.4.1: A supported beam loaded by a force and a distribution of pressure 

 
It is convenient to show a two-dimensional cross-section of the three-dimensional beam 
together with the beam cross section, as in Fig. 7.4.1.  The beam can be supported in 
various ways, for example by roller supports or pin supports (see section 2.3.3).  The 
cross section of this beam happens to be rectangular but it can be any of many possible 
shapes. 
 
It will assumed that the beam has a longitudinal plane of symmetry, with the cross 
section symmetric about this plane, as shown in Fig. 7.4.2.  Further, it will be assumed 
that the loading and supports are also symmetric about this plane.  With these conditions, 
the beam has no tendency to twist and will undergo bending only1.   
 

 
Figure 7.4.2: The longitudinal plane of symmetry of a beam 

 

                                                 
1 certain very special cases, where there is not a plane of symmetry for geometry and/or loading, can lead 
also to bending with no twist, but these are not considered here 
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of symmetry 

roller support pin support 

applied force 
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Imagine now that the beam consists of many fibres aligned longitudinally, as in Fig. 
7.4.3.  When the beam is bent by the action of downward transverse loads, the fibres near 
the top of the beam contract in length whereas the fibres near the bottom of the beam 
extend.  Somewhere in between, there will be a plane where the fibres do not change 
length.  This is called the neutral surface.  The intersection of the longitudinal plane of 
symmetry and the neutral surface is called the axis of the beam, and the deformed axis is 
called the deflection curve. 
 

 
 

Figure 7.4.3: the neutral surface of a beam 
 
A conventional coordinate system is attached to the beam in Fig. 7.4.3.  The x axis 
coincides with the (longitudinal) axis of the beam, the y axis is in the transverse direction 
and the longitudinal plane of symmetry is in the yx   plane, also called the plane of 
bending. 
 
 
7.4.2 Moments and Forces in a Beam 
 
Normal and shear stresses act over any cross section of a beam, as shown in Fig. 7.4.4.  
The normal and shear stresses acting on each side of the cross section are equal and 
opposite for equilibrium, Fig. 7.4.4b.  The normal stresses   will vary over a section 
during bending.  Referring again to Fig. 7.4.3, over one part of the section the stress will 
be tensile, leading to extension of material fibres, whereas over the other part the stresses 
will be compressive, leading to contraction of material fibres.  This distribution of normal 
stress results in a moment M acting on the section, as illustrated in Fig. 7.4.4c.  Similarly, 
shear stresses   act over a section and these result in a shear force V. 
 
The beams of Fig. 7.4.3 and Fig. 7.4.4 show the normal stress and deflection one would 
expect when a beam bends downward.  There are situations when parts of a beam bend 
upwards, and in these cases the signs of the normal stresses will be opposite to those 
shown in Fig. 7.4.4.  However, the moments (and shear forces) shown in Fig. 7.4.4 will 
be regarded as positive.  This sign convention to be used is shown in Fig. 7.4.5. 
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Figure 7.4.4: stresses and moments acting over a cross-section of a beam 
 
 

 
 

Figure 7.4.5: sign convention for moments and shear forces 
 

Note that the sign convention for the shear stress in the beam theory conflicts with the 
sign convention for shear stress used in the rest of mechanics, introduced in Chapter 3.  
This is shown in Fig. 7.4.6. 
 

 
 

Figure 7.4.6: sign convention for shear stress in beam theory 
 

The moments and forces acting within a beam can in many simple problems be evaluated 
from equilibrium considerations alone.  Some examples are given next. 
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Example 1 
 
Consider the simply supported beam in Fig. 7.4.7.  From the loading, one would expect 
the beam to deflect something like as indicated by the deflection curve drawn.  The 
reaction at the roller support, end A, and the vertical reaction at the pin support2, end B, 
can be evaluated from the equations of equilibrium, Eqns. 2.3.3: 
 

3/2,3/ PRPR ByAy                (7.4.1) 

 

 
 

Figure 7.4.7: a simply supported beam 
 
The moments and forces acting within the beam can be evaluated by taking free-body 
diagrams of sections of the beam.  There are clearly two distinct regions in this beam, to 
the left and right of the load.  Fig. 7.4.8a shows an arbitrary portion of beam representing 
the left-hand side.  A coordinate system has been introduced, with x measured from A.3  
An unknown moment M and shear force V act at the end.  A positive moment and force 
have been drawn in Fig. 7.4.8a.  From the equilibrium equations, one finds that the shear 
force is constant but that the moment varies linearly along the beam: 
 

x
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V
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,
3

           )
3

2
0(

l
x     (7.4.2) 

 

 
 

Figure 7.4.8: free body diagrams of sections of a beam 
 

                                                 
2 the horizontal reaction at the pin is zero since there are no applied forces in this direction; the beam theory 
does not consider such types of load 
3 the coordinate x can be measured from any point in the beam; in this example it is convenient to measure 
it from point A 
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Cutting the beam to the right of the load, Fig. 7.4.8b, leads to 
 

 xl
P

M
P

V 
3

2
,

3

2
   )

3

2
( lx

l
                   (7.4.3) 

 
The shear force is negative, so acts in the direction opposite to that initially assumed in 
Fig. 7.4.8b. 
 
The results of the analysis can be displayed in what are known as a shear force diagram 
and a bending moment diagram, Fig. 7.4.9.  Note that there is a “jump” in the shear 
force at 3/2lx   equal to the applied force, and in this example the bending moment is 
everywhere positive. 
 

 
 

Figure 7.4.9: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

■ 
 
Example 2 
 
Fig. 7.4.10 shows a cantilever, that is, a beam supported by clamping one end (refer to 
Fig. 2.3.8), and loaded by a force at its mid-point and a (negative) moment at its end. 
 

 
 

Figure 7.4.10: a cantilevered beam loaded by a force and moment 
 
Again, positive unknown reactions AM  and AV  are considered at the support A.  From 
the equilibrium equations, one finds that 
 

kN5,kNm11  AA VM           (7.4.4) 
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As in the previous example, there are two distinct regions along the beam, to the left and 
to the right of the applied concentrated force.  Again, a coordinate x is introduced and the 
beam is sectioned as in Fig. 7.4.11.  The unknown moment M and shear force V can then 
be evaluated from the equilibrium equations: 
 

 
 6x3kNm4,0

3x0kNm511,kN5



MV
xMV                 (7.4.5) 

 

 
 

Figure 7.4.11: free body diagrams of sections of a beam 
 
The results are summarized in the shear force and bending moment diagrams of Fig. 
7.4.12. 
 

 
 

Figure 7.4.12: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

 
In this example the beam experiences negative bending moment over most of its length. 

  ■ 
 
 
Example 3 
 
Fig. 7.4.13 shows a simply supported beam subjected to a distributed load (force per unit 
length).  The load is uniformly distributed over half the length of the beam, with a 
triangular distribution over the remainder. 
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Figure 7.4.13: a beam subjected to a distributed load 
 
The unknown reactions can be determined by replacing the distributed load with statically 
equivalent forces as in Fig. 7.4.14 (refer to §3.1.2).  The equilibrium equations then give 
 

N140,N220  CA RR              (7.4.6) 

 

 
 

Figure 7.4.14: equivalent forces acting on the beam of Fig. 7.4.13 
 
Referring again to Fig. 7.4.13, there are two distinct regions in the beam, that under the 
uniform load and that under the triangular distribution of load.  The first case is 
considered in Fig. 7.4.15. 
 

 
 

Figure 7.4.15: free body diagram of a section of a beam 
 
The equilibrium equations give 
 

 6x020220,40220 2  xxMxV       (7.4.7) 
 
The region beneath the triangular distribution is shown in Fig. 7.4.16.  Two possible 
approaches are illustrated: in Fig. 7.4.16a, the free body diagram consists of the complete 
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length of beam to the left of the cross-section under consideration; in Fig. 7.4.16b, only 
the portion to the right is considered, with distance measured from the right hand end, as 

x12 .  The problem is easier to solve using the second option.  From Fig. 7.4.16b then, 
with the equilibrium equations, one finds that 

 
 12x69/)12(10)12(140,3/)12(10140 32  xxMxV    (7.4.8) 

 

 
 

Figure 7.4.16: free body diagrams of sections of a beam 
 
The results are summarized in the shear force and bending moment diagrams of Fig. 
7.4.17. 
 

 
 

Figure 7.4.17: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

 
  ■ 

 
 
7.4.3 The Relationship between Loads, Shear Forces and 

Bending Moments 
 
Relationships between the applied loads and the internal shear force and bending moment 
in a beam can be established by considering a small beam element, of width x , and 
subjected to a distributed load )(xp  which varies along the section of beam, and which is 
positive upward, Fig. 7.4.18. 

)a( )b(

V M
600

140

m6 m6

220

m6 m6

x x12

220 140

V

M VM

)a( )b(



Section 7.4 

Solid Mechanics Part I                                                                                Kelly 200

 

 
 

Figure 7.4.18: forces and moments acting on a small element of beam 
 
At the left-hand end of the free body, at position x, the shear force, moment and 
distributed load have values )(xF , )(xM  and )(xp  respectively.  On the right-hand end, 
at position xx  , their values are slightly different: )( xxF  , )( xxM   and 

)( xxp  .  Since the element is very small, the distributed load, even if it is varying, can 
be approximated by a linear variation over the element.  The distributed load can 
therefore be considered to be a uniform distribution of intensity )(xp  over the length x  
together with a triangular distribution, 0 at x  and p  say, a small value, at xx  .  
Equilibrium of vertical forces then gives 
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       (7.4.9) 

 
Now let the size of the element decrease towards zero.  The left-hand side of Eqn. 7.4.9 is 
then the definition of the derivative, and the second term on the right-hand side tends to 
zero, so 
 

)(xp
dx

dV
         (7.4.10) 

 
This relation can be seen to hold in Eqn. 7.4.7 and Fig. 7.4.17a, where the shear force 
over 60  x  has a slope of 40  and the pressure distribution is uniform, of intensity 

N/m40 .  Similarly, over 126  x , the pressure decreases linearly and so does the 
slope in the shear force diagram, reaching zero slope at the end of the beam. 
 
It also follows from 7.4.10 that the change in shear along a beam is equal to the area 
under the distributed load curve: 
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Consider now moment equilibrium, by taking moments about the point A in Fig. 7.4.18: 
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Again, as the size of the element decreases towards zero, the left-hand side becomes a 
derivative and the second and third terms on the right-hand side tend to zero, so that 
 

)(xV
dx

dM
         (7.4.13) 

 
This relation can be seen to hold in Eqns. 7.4.2-3, 7.4.5 and 7.4.7-8.  It also follows from 
Eqn. 7.4.13 that the change in moment along a beam is equal to the area under the shear 
force curve: 
 

  dxxVxMxM
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2

1

)()( 12        (7.4.14) 

 
 
7.4.4 Deformation and Flexural Stresses in Beams 
 
The moment at any given cross-section of a beam is due to a distribution of normal stress, 
or flexural stress (or bending stress) across the section (see Fig. 7.4.4).  As mentioned, 
the stresses to one side of the neutral axis are tensile whereas on the other side of the 
neutral axis they are compressive.  To determine the distribution of normal stress over the 
section, one must determine the precise location of the neutral axis, and to do this one 
must consider the deformation of the beam. 
 
Apart from the assumption of there being a longitudinal plane of symmetry and a neutral 
axis along which material fibres do not extend, the following two assumptions will be 
made concerning the deformation of a beam: 
 
1. cross sections which are plane and are perpendicular to the axis of the undeformed 

beam remain plane and remain perpendicular to the deflection curve of the deformed 
beam.  In short: “plane sections remain plane”.  This is illustrated in Fig. 7.4.19.  It 
will be seen later that this assumption is a valid one provided the beam is sufficiently 
long and slender. 

 
2. deformation in the vertical direction, i.e. the transverse strain yy , may be neglected in 

deriving an expression for the longitudinal strain xx .  This assumption is summarised 

in the deformation shown in Fig. 7.4.20, which shows an element of length l and 
height h undergoing transverse and longitudinal strain. 
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Figure 7.4.19: plane sections remain plane in the elementary beam theory 
 
 

 
 

Figure 7.4.20: transverse strain is neglected in the elementary beam theory 
 
With these assumptions, consider now the element of beam shown in Fig. 7.4.21.  Here, 
two material fibres ab  and pq , of length x  in the undeformed beam, deform to ba   
and qp  .  The deflection curve has a radius of curvature R.  The above two assumptions 
imply that, referring to the figure: 
 

2/ qbabap  (assumption 1) 

qbbqpaap  ,  (assumption 2)        (7.4.15) 

 
Since the fibre ab  is on the neutral axis, by definition abba  .  However the fibre 

pq , a distance y from the neutral axis, extends in length from x  to length x .  The 
longitudinal strain for this fibre is 
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         (7.4.16) 

 
As one would expect, this relation implies that a small R (large curvature) is related to a 
large strain and a large R (small curvature) is related to a small strain.  Further, for 0y  
(above the neutral axis), the strain is negative, whereas if 0y  (below the neutral axis), 
the strain is positive4, and the variation across the cross-section is linear. 
 

                                                 
4 this is under the assumption that R is positive, which means that the beam is concave up; a negative R 
implies that the centre of curvature is below the beam 
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Figure 7.4.21: deformation of material fibres in an element of beam 
 
To relate this deformation to the stresses arising in the beam, it is necessary to postulate 
the stress-strain law for the material out of which the beam is made.  Here, it is assumed 
that the beam is isotropic linear elastic5.  Since there are no forces acting in the z 
direction, the beam is in a state of plane stress, and the stress-strain equations are (see 
Eqns. 6.1.10) 
 

 

 

 

0,
1

1

1












yzxzxyxy

yyxxzz

xxyyyy

yyxxxx

E

E

E

E









   (7.4.17) 

 
Yet another assumption is now made, that the transverse normal stresses, yy , may be 

neglected in comparison with the flexural stresses xx .  This is similar to the above 

assumption #2 concerning the deformation, where the transverse normal strain was 
neglected in comparison with the longitudinal strain.  It might seem strange at first that 
the transverse stress is neglected, since all loads are in the transverse direction.  However, 
just as the tangential stresses are much larger than the radial stresses in the pressure 
vessel, it is found that the longitudinal stresses in a beam are very much greater than the 
transverse stresses.  With this assumption, the first of Eqn. 7.4.17 reduces to a one-
dimensional equation: 
 

Exxxx /       (7.4.18) 

                                                 
5 the beam theory can be extended to incorporate more complex material models (constitutive equations) 
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and, from Eqn. 7.4.16, dropping the subscripts on  , 
 

y
R

E
                 (7.4.19) 

 
Finally, the resultant force of the normal stress distribution over the cross-section must be 
zero, and the resultant moment of the distribution is M, leading to the conditions 
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and the integration is over the complete cross-sectional area A.  The minus sign in the 
second of these equations arises because a positive moment and a positive y imply a 
compressive (negative) stress (see Fig. 7.4.4). 
 

The quantity dAy
A  is the first moment of area about the neutral axis, and is equal to Ay , 

where y  is the centroid of the section (see, for example, §3.2.1).  Note that the horizontal 
component of the centroid will always be at the centre of the beam due to the symmetry 
of the beam about the plane of bending.  Since the first moment of area is zero, it follows 
that 0y  : the neutral axis passes through the centroid of the cross-section. 
 

The quantity dAy
A

2  is called the second moment of area or the moment of inertia 

about the neutral axis, and is denoted by the symbol I.  It follows that the flexural stress is 
related to the moment through 
 

I

My
  Flexural stress in a beam    (7.4.21) 

 
This is one of the most famous and useful formulas in mechanics. 
 
The Moment of Inertia 
 
The moment of inertia depends on the shape of a beam’s cross-section.  Consider the 
important case of a rectangular cross section.  Before determining the moment of inertia 
one must locate the centroid (neutral axis).  Due to symmetry, the neutral axis runs 
through the centre of the cross-section.  To evaluate I for a rectangle of height h and 
width b, consider a small strip of height dy  at location y, Fig. 7.4.22.  Then 
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32/
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dyybdAyI
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    (7.4.22) 
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This relation shows that the “taller” the cross-section, the larger the moment of inertia, 
something which holds generally for I.  Further, the larger is I, the smaller is the flexural 
stress, which is always desirable. 
 

 
 

Figure 7.4.22: Evaluation of the moment of inertia for a rectangular cross-section 
 
For a circular cross-section with radius R, consider Fig. 7.4.23.  The moment of inertia is 
then 
 

2 4
2 3 2

0 0

sin
4

R

A

R
I y dA r drd

                                            (7.4.23) 

 
 

 
 

Figure 7.2.23: Moment of inertia for a circular cross-section 
 
Example 
 
Consider the beam shown in Fig. 7.4.24.  It is loaded symmetrically by two concentrated 
forces and has a circular cross-section of radius 100mm.  The reactions at the two 
supports are found to be 100N.  Sectioning the beam to the left of the forces, and then to 
the right of the first force, one finds that 

 
 
 225025000,0

2500100,100

l/xMV

xxMV




                     (7.4.24) 

 
where l is the length of the beam. 
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Figure 7.4.24: a loaded beam with circular cross-section 
 
The maximum tensile stress is then 
 

MPa8.31
4/

25000)(
4

maxmax
max 




r

r

I

yM


        (7.4.25) 

 
and occurs at all sections between the two loads. 

  ■ 
 
 
 
7.4.5 Shear Stresses in Beams 
 
In the derivation of the flexural stress formula, Eqn. 7.4.21, it was assumed that plane 
sections remain plane.  This implies that there is no shear strain and, for an isotropic 
elastic material, no shear stress, as indicated in Fig. 7.4.25. 
 

 
 

Figure 7.4.25: a section of beam before and after deformation 
 
This fact will now be ignored, and an expression for the shear stress   within a beam will 
be developed.  It is implicitly assumed that this shear stress has little effect on the 
calculation of the flexural stress. 
 
As in Fig. 7.4.18, consider the equilibrium of a thin section of beam, as shown in Fig. 
7.4.26.  The beam has rectangular cross-section (although the theory developed here is 
strictly for rectangular cross sections only, it can be used to give approximate shear stress 
values in any beam with a plane of symmetry).  Consider the equilibrium of a section of 
this section, at the upper surface of the beam, shown hatched in Fig. 7.4.26.  The stresses 
acting on this section are as shown.  Again, the normal stress is compressive at the 
surface, consistent with the sign convention for a positive moment.  Note that there are no 
shear stresses acting at the surface – there may be distributed normal loads or forces 
acting at the surface but, for clarity, these are not shown, and they are not necessary for 
the following calculation. 
 
From equilibrium of forces in the horizontal direction of the surface section: 

mm250 mm250

mm100r

shear stresses would 
produce an angle change 

before deformation 
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
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 xbdAdA
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       (7.4.26) 

 
The third term on the left here assumes that the shear stress is uniform over the section – 
this is similar to the calculations of §7.4.3 – for a very small section, the variation in 
stress is a small term and may be neglected.  Using the bending stress formula, Eqn. 
7.4.21,  
 

0
)()(





  bdA

I

y

x

xMxxM

A

       (7.4.27) 

 
and, with Eqn. 7.4.13, as 0x , 

 

Ib

VQ
      Shear stress in a beam         (7.4.28) 

 

where Q is the first moment of area dAy
A  of the surface section of the cross-section.   

 

 
 
Figure 7.4.26: stresses and forces acting on a small section of material at the surface 

of a beam 
 
As mentioned, this formula 7.4.28 can be used as an approximation of the shear stress in a 
beam of arbitrary cross-section, in which case b can be regarded as the depth of the beam 
at that section.  For the rectangular beam, one has 
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so that 
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The maximum shear stress in the cross-section arises at the neutral surface: 
 

A

V

bh

V

2

3

2

3
max          (7.4.31) 

 
and the shear stress dies away towards the upper and lower surfaces.  Note that the 
average shear stress over the cross-section is AV /  and the maximum shear stress is 
150% of this value. 
 
Finally, since the shear stress on a vertical cross-section has been evaluated, the shear 
stress on a longitudinal section has been evaluated, since the shear stresses on all four 
sides of an element are the same, as in Fig.7.4.6. 
 
Example 
 
Consider the simply supported beam loaded by a concentrated force shown in Fig. 7.4.27.  
The cross-section is rectangular with height mm100 and width mm50 .  The reactions at 
the supports are kN5  and kN15 .  To the left of the load, one has kN5V  and 

kNm5xM  .  To the right of the load, one has kN15V  and kNm1530 xM  . 
 
The maximum shear stress will occur along the neutral axis and will clearly occur where 
V is largest, so anywhere to the right of the load: 
 

MPa5.4
2

3 max
max 

A

V
         (7.4.32) 

 

 
 

Figure 7.4.27: a simply supported beam 
 
As an example of general shear stress evaluation, the shear stress at a point 25 mm below 
the top surface and 1 m in from the left-hand end is, from Eqn 7.4.30, MPa125.1 .  
The shear stresses acting on an element at this location are shown in Fig. 7.4.28. 
 

 
 

Figure 7.4.28: shear stresses acting at a point in the beam 
 ■ 

 

MPa125.1

m1

kN20m5.1 m5.0
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7.4.6 Approximate nature of the beam theory 
 
The beam theory is only an approximate theory, with a number of simplifications made to 
the full equations of elasticity.  The accuracy of the theory is briefly explored in this 
section. 
 
When a beam is in pure bending, that is when the shear force is everywhere zero, the full 
elasticity solution shows that plane sections do actually remain plane and the beam theory 
is exact.  For more complex loadings, plane sections do actually deform.  For example, it 
will be shown in Book II that the initially plane sections of a cantilever subjected to an 
end force, Fig. 7.4.29, do not remain plane.  Nevertheless, the beam theory prediction for 
normal and shear stress is exact in this simple case. 
 

 
 

Figure 7.4.29: a cantilevered beam loaded by a force and moment 
 
Consider next a cantilevered beam of length l and rectangular cross section, height h and 
width b, subjected to a uniformly distributed load p.  With x measured from the 
cantilevered end, the shear force and moment are given by )( xlpV   and 

 22 )/(2/21)2/( lxlxplM  .  The shear stress is 
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3 4

6            (7.4.33) 

 
which turns out to be exact.  The flexural stresses at the cantilevered end, at the upper 
surface, are 
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          (7.4.34) 

 
The exact solution is, however (see Book II),  
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    (7.4.35) 

 
It can be seen that the beam theory is a good approximation for the case when hl /  is 
large, in which case the term 1/5 is negligible. 
 

deformed section not plane 
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In summary, for most configurations, the elementary beam theory formulae for flexural 
stress and transverse shear stress are accurate to within about 3% for beams whose length-
to-height ratio is greater than about 4. 
 
 
7.4.7 Beam Deflection 
 
Consider the deflection curve of a beam.  The displacement of the neutral axis is denoted 
by v, positive upwards, as in Fig. 7.4.30.  The slope at any point is then given by the first 
derivative, dxdv / . 
 
For any type of material, provided the displacement is small, it can be shown that the 
radius of curvature R is related to the second derivative 22 / dxvd  through (see the 
Appendix to this section, §7.4.10) 
 

2

21

dx

vd

R
       (7.4.36) 

  
and for this reason 22 / dxvd  is called the curvature of the beam.  Using Eqn. 7.4.19, 

REy / , and the flexural stress expression, Eqn. 7.4.21, IMy / , one has the 
moment-curvature equation 
 

2

2

)(
dx

vd
EIxM   moment-curvature equation     (7.4.37) 

 

 
 

Figure 7.4.30: the deflection of a beam 
 
With the moment known, this differential equation can be integrated twice to obtain the 
deflection.  Boundary conditions must be supplied to obtain constants of integration. 
 
Example 
 
Consider the cantilevered beam of length L shown in Fig. 7.4.31, subjected to an end-
force F and end-moment 0M .  The moment is found to be 0)()( MxLFxM  , with x 

measured from the clamped end.  The moment-curvature equation is then 
 

21
32

0

1
2

0

02

2

6

1
)(

2

1
2

1
)(

)(

CxCFxxMFLEIv

CFxxMFL
dx

dv
EI

FxMFL
dx

vd
EI







       (7.4.38) 
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The boundary conditions are that the displacement and slope are both zero at the clamped 
end, from which the two constant of integration can be obtained: 
 

00)0(

00)0(
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2


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Cv

Cv
   (7.4.39) 

 

 
 

Figure 7.4.31: a cantilevered beam loaded by an end-force and moment 
 
The slope and deflection are therefore 
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The maximum deflection occurs at the end, where 
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■ 

 
The term EI  in Eqns. 7.4.40-41 is called the flexural rigidity, since it is a measure of the 
resistance of the beam to deflection. 
 
Example 
 
Consider the simply supported beam of length L shown in Fig. 7.4.32, subjected to a 
uniformly distributed load p over half its length.  In this case, the moment is given by 
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Figure 7.4.32: a simply supported beam subjected to a uniformly distributed load 
over half its length 

 
It is necessary to apply the moment-curvature equation to each of the two regions 

2/0 Lx   and LxL 2/  separately, since the expressions for the moment in these 
regions differ.  Thus there will be four constants of integration: 
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(7.4.43) 
 
The boundary conditions are: (i) no deflection at pin support, 0)0( v  and (ii) no 

deflection at roller support, 0)( Lv , from which one finds that 02 C  and 

LDpLD 1
4

2 24/  .  The other two necessary conditions are the continuity conditions 
where the two solutions meet.  These are that (i) the deflection of both solutions agree at 

2/Lx   and (ii) the slope of both solutions agree at 2/Lx  .  Using these conditions, 
one finds that 
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         (7.4.45) 

 
The deflection is shown in Fig. 7.4.33.  Note that the maximum deflection occurs in 

2/0 Lx  ; it can be located by setting 0/ dxdv  there and solving. 
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Figure 7.4.33: deflection of a beam 
■ 

 
 
7.4.8 Statically Indeterminate Beams 
 
Consider the beam shown in Fig. 7.4.34.  It is cantilevered at one end and supported by a 
roller at its other end.  A moment is applied at its centre.  There are three unknown 
reactions in this problem, the reaction force at the roller and the reaction force and 
moment at the built-in end.  There are only two equilibrium equations with which to 
determine these three unknowns and so it is not possible to solve the problem from 
equilibrium considerations alone.  The beam is therefore statically indeterminate (see the 
end of section 2.3.3). 
 

 
 

Figure 7.4.34: a cantilevered beam supported also by a roller 
 
More examples of statically indeterminate beam problems are shown in Fig. 7.4.35.  To 
solve such problems, one must consider the deformation of the beam.  The following 
example illustrates how this can be achieved. 
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Figure 7.4.35: examples of statically indeterminate beams 
 
Example 
 
Consider the beam of length L shown in Fig. 7.4.36, cantilevered at end A and supported 
by a roller at end B.  A moment 0M  is applied at B. 

 

 
 

Figure 7.4.36: a statically indeterminate beam 
 
The moment along the beam can be expressed in terms of the unknown reaction force at 
end B: 0)()( MxLRxM B  .  As before, one can integrate the moment-curvature 

equation: 
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         (7.4.46) 

 
There are three boundary conditions, two to determine the constants of integration and 
one can be used to determine the unknown reaction BR .  The boundary conditions are (i) 

00)0( 2  Cv , (ii) 00)0(/ 1  Cdxdv  and (iii) 0)( Lv  from which one finds 

that LMRB 2/3 0 .  The slope and deflection are therefore 
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One can now return to the equilibrium equations to find the remaining reactions acting on 
the beam, which are BA RR   and BA LRMM  0  

■ 
 
 
7.4.9 The Three-point Bending Test 
 
The 3-point bending test is a very useful experimental procedure.  It is used to gather data 
on materials which are subjected to bending in service.  It can also be used to get the 
Young’s Modulus of a material for which it might be more difficult to get via a tension or 
other test. 
 
A mouse bone is shown in the standard 3-point bend test apparatus in Fig. 7.4.37a.  The 
idealised beam theory model of this test is shown in Fig. 7.4.37b.  The central load is P, 
so the reactions at the supports are / 2P .  The moment is zero at the supports, varying 
linearly to a maximum / 4PL  at the centre. 
 

 
 

Figure 7.4.37: the three-point bend test; (a) a mouse bone specimen, (b) idealised 
model 

 
The maximum flexural stress then occurs at the outer fibres at the centre of the beam: for 
a circular cross-section, 3

max /FL R  .  Integrating the moment-curvature equation, 

and using the fact that the deflection is zero at the supports and, from symmetry, the slope 
is zero at the centre, the maximum deflection is seen to be 3 4

max / 12v FL R E .  If one 

plots the load F against the deflection maxv , one will see a straight line (initially, before 

the elastic limit is reached); let the slope of this line be Ê .  The Young’s modulus can 
then be evaluated through 
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With E  , the maximum strain is 3 2
max max/ 12 /FL ER Rv L   .  By carrying the 

test on beyond the elastic limit, the strength of the material at failure can be determined. 
 
 
7.4.10 Problems 
 
1. The simply supported beam shown below carries a vertical load that increases 

uniformly from zero at the left end to a maximum value of 9 kN/m at the right end.  
Draw the shearing force and bending moment diagrams 

 

 
 
 
2. The beam shown below is imply supported at two points and overhangs the supports 

at each end.  It is subjected to a uniformly distributed load of 4 kN/m as well as a 
couple of magnitude 8 kN m applied to the centre.  Draw the shearing force and 
bending moment diagrams 

 

 
 
3. Evaluate the centroid of the beam cross-section shown below (all measurements in 

mm) 
 

 
 
4. Determine the maximum tensile and compressive stresses in the following beam (it 

has a rectangular cross-section with height 75 mm and depth 50 mm) 
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5. Consider the cantilever beam shown below.  Determine the maximum shearing stress 

in the beam and determine the shearing stress 25 mm from the top surface of the beam 
at a section adjacent to the supporting wall.  The cross-section is the “T” shape shown, 
for which 46 mm1040I . 
[note: use the shear stress formula derived for rectangular cross-sections – as 
mentioned above, in this formula, b is the thickness of the beam at the point where the 
shear stress is being evaluated] 

 
 

 
 
6. Obtain an expression for the maximum deflection of the simply supported beam 

shown here, subject to a uniformly distributed load of N/mw . 
 

 
 
7. Determine the equation of the deflection curve for the cantilever beam loaded by a 

concentrated force P as shown below. 
  

 
 
8. Determine the reactions for the following uniformly loaded beam clamped at both 

ends. 
 

m2

kN50

125

50

200

50

m5

kN1

N/mw

L

L

Pa
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7.4.11 Appendix to §7.4 
 
Curvature of the deflection curve 
 
Consider a deflection curve with deflection )(xv  and radius of curvature )(xR , as shown 
in the figure below.  Here, deflection is the transverse displacement (in the y direction) of 
the points that lie along the axis of the beam.  A relationship between )(xv  and )(xR  is 
derived in what follows. 
 

 
 
First, consider  a curve (arc) s.  The tangent to some point p makes an angle   with the x 
– axis, as shown below.  As one move along the arc,   changes. 
 

 
 
Define the curvature   of the curve to be the rate at which   increases relative to s, 
 

ds

d   

 
Thus if the curve is very “curved”,   is changing rapidly as one moves along the curve 
(as one increase s) and the curvature will be large. 

N/mw

L

x

)(, xvy

)(xv

)(xR



p

x

y

dx

dy
ds
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From the above figure,  
 

2
22

)/(1
)()(

,tan dxdy
dx

dydx

dx

ds

dx

dy



 , 

 
so that 
 

  
 

   2/32

22

2

2

2

/1

/

/1

1/arctan

dxdy

dxyd

ds

dx

dx

yd

dxdyds

dx

dx

dxdyd

ds

dx

dx

d

ds

d









 

 
Finally, it will be shown that the curvature is simply the reciprocal of the radius of 
curvature.  Draw a circle to the point p with radius R .  Arbitrarily measure the arc length 
s from the point c, which is a point on the circle such that cop .  Then arc length 

Rs  , so that 
 

Rds

d 1


  

 

 
 
Thus 
 

2

3
2

2

2

1

1






















dx

dv

dx

vd

R
 

 
If one assumes now that the slopes of the deflection curve are small, then 1/ dxdv  and 
  

2

21

dx

vd

R
  

 
 
Images used: 
1. http://www.mc.vanderbilt.edu/root/vumc.php?site=CenterForBoneBiology&doc=20412 

x




pc

o

x

o

d

d

ds

R
R
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Answers to Selected Problems: Chapter 2  
 
2.2 
 
1. cable rope31.4 kN, 56.4 kNF F   
2. 150 N  
3 N6.563/10 g  
 
2.3 
 
3. N600F , FRR yCxC  N,1000  
4. Nm25.6M , i.e. clockwise.  Anywhere. 
 
 



 A1

Answers to Selected Problems: Chapter 3  
 
3.1 
 
1. (a) N8.0F , (b) Nm3021.0 M , (c) Nm3005.0 M  
2. Nm3005.0,0  MF  
3. 2000N/m, 1600N/mA BR R   
4. 2kPa  
 
3.2 
 

1. 
3
1,

3
1

 cc yx  

 
3.3 
 
2. 0,/  sN lS   
 
3.  at A:                     No stress at B. 
 
4. yz  is negative 
5. yz  (positive) 
6. bottom left: xz  (negative), top: zx  (negative), bottom right: yz  (positive) 
7. bottom left: xx  (positive), top: zz  (positive), bottom right: yy  (positive) 
 
3.4 
 
2. 933.0,116.2,884.0 1222   xx  
 
3.5 
 
2. (a) 0, 21   xx , (b) 2/,2/ xxxyxxyyxx    

3. (b) o32  , (c) 85.2,85.3 21    
4. 1 2 32 , 0, 0      , Max shear is  , the original planes are planes of maximum 

shearing stress. 
5. (b) 1  , (c) Max shear is 1

2 , acts on planes oriented at o45  to the principal planes 
acting in the 2-3 plane and the 1-3 plane 

8. (2) ( ) (2) ( ),w w
xx xx xy xy      

9. 
0)()()0,()(

0)()0,(,0)0,(




























dxxpbxtdxxbxt

dxxptdxxtdxxt

a

a

b

b

yy

a

a

b

b

yy

b

b

xy




 



 A1

Answers to Selected Problems: Chapter 4  
 
4.1 
 
1. 
(a) 12cm 
(b) 0.6  
 
2. 
(a) 1.0  , 0.693t   
(b) 0.25   , 0.288t    
(c) 0.5  , 0.405t   
 
3. 

0.0015xy   
 
4. 
Small strains: 0.00225, 0.002, 0.00083xx yy xy        

Actual strains: 3 40.00225, 2.001386 10 , 8.3166823 10xx yy xy          
Errors: 0%, 0.069%, 0.200%  
 
5. 
(i) 

 
(ii) 

 
(iii) 

 
6. 

3 40, 3.8053 10 , 1.6646 10xx yy xy          
 
 
 

y

x

y

x

y

x



 A2

 
4.2 
 
1. 
(a)  

0,02.0  xyyyxx   
30.015, 0.005, 8.66 10xx yy xy           

(b) 1 20.02, 0    

(c)  max 0.01xy   
(d) 45 degrees. 
 
2. 
(a) 0.01, 0.01, 0xx yy xy       
(b) 0, 0, 0.01xx yy xy        
(c) the same as (b) using 45   
(d) 1.0001 1 . Close to (b). 
 
3. 
(a) 0.5, 0.5, 0xx yy xy       
(b)                                                                                                                                                                          

0, 0, 0.5xx yy xy        
(c) the same as (b) using 45   
 (d) 2 1 0.414  . Not the same as (b). 
 
 
 



 A1

Answers to Selected Problems: Chapter 5  
 
5.2 
 
1.  Each component treated separately would be homogeneous and isotropic; the complete 

structure is not homogeneous; it is not isotropic along the interfaces between the separate 
components. 

 
5.4 
 
1. 5mm 



 A1

Answers to Selected Problems: Chapter 6  
 
6.1 
 
Q.2 

15.92308 MPa, 11.07692 MPa, 2.42308 MPaxx yy xy      

1 2 316.927, 10.073, 0      
 
5. 
(a) 0 0/ , / , 0xx yy zz xy xz yzE E               
(b) 1 0 2 3 0/ , /E E         
 
6. 6101.3   rads 
 
 
6.2 
 
1. 
normal strains: EE oo /)1(,/)1(,0 2    
normal stresses: 0,, 00   ,  (b) 2/o  
 
2 
normal strains: 0,)1/()1)(21(,0 Eo    
normal stresses: )1/(,),1/( 000   ]  
 
 
6.3 
 
2. 5

132 10463.8MPa,5360.0MPa,6969.0    
 

3. 
   

ft

tf

ft

ft pp


















1
1

,
1

1
32  

 
4. 
(a) 82.4,75.36,25.48 621    
(b) 5

621 104486.3,1623.0,0317.0    
(c) kPa9.69G , 0904.0Pa,200 212  E  
(d) principal stresses ( 0 ): 0,35,50  

principal strains 02.20 ): 0317.0,1623.0 21  pp   
(e) No. 
 
5. o2.48 . 



 A1

Answers to Selected Problems: Chapter 7 
 
 
7.1 
 
1.  1221 /1/ LALAL   
 
7.2 
 
1. 3

max /20 dT   , 4/12 GdLTB    
 
7.3 
 
1.  0.25 MPa 
2. / 2t  
3.  (a) 15MPa, 30MPa, (b) 15MPa, (c) 750N 
4.  0.13, 0.03, -0.07 ( 310 ), 0.015mm 
 
7.4 
 
1. kN75.09 2xV  , mkN25.09 3xxM   
2. mkN72242;2102;10102;2 2222  xxxxxxxM  
3. mm3.152y  
4. MPa107  
5. MPa43.0MPa;78.4   
6.    EIwL 384/5 4

max   
7.    3 2 3( / 6)( / ) 3 / ; ( / 6) 3 / 1EIv Pa x a x a EIv Pa x a       

8. 12/;2/ 2wLMwLR   
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1 Differential Equations 
for Solid Mechanics 

 
 
Simple problems involving homogeneous stress states have been considered so far, 
wherein the stress is the same throughout the component under study.  An exception to 
this was the varying stress field in the loaded beam, but there a simplified set of elasticity 
equations was used.   Here the question of varying stress and strain fields in materials is 
considered.  In order to solve such problems, a differential formulation is required.  In this 
Chapter, a number of differential equations will be derived, relating the stresses and body 
forces (equations of motion), the strains and displacements (strain-displacement 
relations) and the strains with each other (compatibility relations).  These equations are 
derived from physical principles and so apply to any type of material, although the latter 
two are derived under the assumption of small strain.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2
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1.1 The Equations of Motion 
 
In Part I, balance of forces and moments acting on any component was enforced in order 
to ensure that the component was in equilibrium.  Here, allowance is made for stresses 
which vary continuously throughout a material, and force equilibrium of any portion of 
material is enforced. 
 
One-Dimensional Equation 
 
Consider a one-dimensional differential element of length xΔ  and cross sectional area A, 
Fig. 1.1.1.  Let the average body force per unit volume acting on the element be b and the 
average acceleration and density of the element be a and ρ .  Stresses σ  act on the 
element. 
 

 
 

Figure 1.1.1: a differential element under the action of surface and body forces 
 

The net surface force acting is AxAxx )()( σσ −Δ+ .  If the element is small, then the 
body force and velocity can be assumed to vary linearly over the element and the average 
will act at the centre of the element.  Then the body force acting on the element is xAbΔ  
and the inertial force is xaAΔρ .  Applying Newton’s second law leads to 
 

ab
x

xxx

xAaxAbAxAxx

ρσσ
ρσσ

=+
Δ

−Δ+
→

Δ=Δ+−Δ+
)()(

)()(
         (1.1.1) 

 
so that, by the definition of the derivative, in the limit as 0→Δx , 

 

ab
dx

d ρσ
=+  1-d Equation of Motion (1.1.2) 

 
which is the one-dimensional equation of motion.  Note that this equation was derived 
on the basis of a physical law and must therefore be satisfied for all materials, whatever 
they be composed of. 
 
The derivative dxd /σ  is the stress gradient – physically, it is a measure of how rapidly 
the stresses are changing. 
 
Example 
 
Consider a bar of length l which hangs from a ceiling, as shown in Fig. 1.1.2.   

A

xΔ

)(xσ

)( xx Δ+σ

x xx Δ+

ab,
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Figure 1.1.2: a hanging bar 
 
The gravitational force is mgF =  downward and the body force per unit volume is thus 

gb ρ= .  There are no accelerating material particles.  Taking the z axis positive down, an 
integration of the equation of motion gives 
 

cgzg
dz

d
+−=→=+ ρσρσ 0    (1.1.3) 

 
where c is an arbitrary constant.  The lower end of the bar is free and so the stress there is 
zero, and so 
 

( )zlg −= ρσ                      (1.1.4) 
 

■ 
 
Two-Dimensional Equations 
 
Consider now a two dimensional infinitesimal element of width and height xΔ  and yΔ  
and unit depth (into the page). 
 
Looking at the normal stress components acting in the x −direction, and allowing for 
variations in stress over the element surfaces, the stresses are as shown in Fig. 1.1.3. 
 

 
 

Figure 1.1.3: varying stresses acting on a differential element 
 
Using a (two dimensional) Taylor series and dropping higher order terms then leads to the 
linearly varying stresses illustrated in Fig. 1.1.4. (where ( )yxxxxx ,σσ ≡  and the partial 
derivatives are evaluated at ( )yx, ), which is a reasonable approximation when the 
element is small. 
 

yΔ

xΔ
),( yxxxσ

),( yyxxx Δ+σ

),( yxxxx Δ+σ

),( yyxxxx Δ+Δ+σ

l
z
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Figure 1.1.4: linearly varying stresses acting on a differential element 
 
The effect (resultant force) of this linear variation of stress on the plane can be replicated 
by a constant stress acting over the whole plane, the size of which is the average stress.  
For the left and right sides, one has, respectively, 
 

y
y xx

xx ∂
∂

Δ+
σ

σ
2
1 ,    

y
y

x
x xxxx

xx ∂
∂

Δ+
∂
∂

Δ+
σσ

σ
2
1    (1.1.5) 

 
One can take away the stress yy xx ∂∂Δ /)2/1( σ  from both sides without affecting the net 
force acting on the element so one finally has the representation shown in Fig. 1.1.5. 
 

 
 

Figure 1.1.5: net stresses acting on a differential element 
 
Carrying out the same procedure for the shear stresses contributing to a force in the 
x −direction leads to the stresses shown in Fig. 1.1.6. 
 

 
 

Figure 1.1.6: normal and shear stresses acting on a differential element 
 
Take xx ba ,  to be the average acceleration and body force, and ρ  to be the average 
density.  Newton’s law then yields 
 

xxσ

y
y xx

xx ∂
∂

Δ+
σσ

x
x xx

xx ∂
∂

Δ+
σσ

y
y

x
x xxxx

xx ∂
∂

Δ+
∂
∂

Δ+
σσσ

),( yxxxσ x
x xx

xx ∂
∂

Δ+
σσ

2xΔ

1xΔ

),( yxxyσ

x
x

xx
xx Δ

∂
∂

+
σσ

11 ,vb

),( yxxxσ

y
y
xy

xy Δ
∂
∂

+
σ

σ
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yxayxby
y

yxy
x

xy xx
xy

xyxy
xx

xxxx ΔΔ=ΔΔ+Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ++Δ−Δ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

Δ++Δ− ρ
σ

σσ
σ

σσ  

(1.1.6) 
 

which, dividing through by yxΔΔ  and taking the limit, gives 
 

xx
xyxx ab

yx
ρ

σσ
=+

∂

∂
+

∂
∂

        (1.1.7) 

 
A similar analysis for force components in the y −direction yields another equation and 
one then has the two-dimensional equations of motion: 
 

yy
yyxy

xx
xyxx

ab
yx

ab
yx

ρ
σσ

ρ
σσ

=+
∂

∂
+

∂

∂

=+
∂

∂
+

∂
∂

     2-D Equations of Motion (1.1.8) 

 
Three-Dimensional Equations 
 
Similarly, one can consider a three-dimensional element, and one finds that 
 

zz
zzzyzx

yy
yzyyyx

xx
xzxyxx

ab
zyx

ab
zyx

ab
zyx

ρ
σσσ

ρ
σσσ

ρ
σσσ

=+
∂
∂

+
∂

∂
+

∂
∂

=+
∂

∂
+

∂

∂
+

∂

∂

=+
∂
∂

+
∂

∂
+

∂
∂

     3-D Equations of Motion (1.1.9) 

 
These three equations express force-balance in, respectively, the zyx ,,  directions. 
 
 
 



Section 1.1 

Solid Mechanics Part II                                                                                Kelly 7

 
 

Figure 1.1.7: from Cauchy’s Exercices de Mathematiques (1829) 
 
The Equations of Equlibrium 
 
If the material is not moving (or is moving at constant velocity) and is in static 
equilibrium, then the equations of motion reduce to the equations of equilibrium, 
 

0

0

0

=+
∂
∂

+
∂

∂
+

∂
∂

=+
∂

∂
+

∂

∂
+

∂

∂

=+
∂
∂

+
∂

∂
+

∂
∂

z
zzzyzx

y
yzyyyx

x
xzxyxx

b
zyx

b
zyx

b
zyx

σσσ

σσσ

σσσ

     3-D Equations of Equilibrium (1.1.10) 

 
These equations express the force balance between surface forces and body forces in a 
material.  The equations of equilibrium may also be used as a good approximation in the 
analysis of materials which have relatively small accelerations. 

 

1.1.2 Problems 
 
1. What does the one-dimensional equation of motion say about the stresses in a bar in 

the absence of any body force or acceleration? 
 
2. Does equilibrium exist for the following two dimensional stress distribution in the 

absence of body forces? 

0

32

262/

843

22

22

22

=====

++=

−−==

−+=

yzzyxzzxzz

yy

yxxy

xx

yxyx

yxyx

yxyx

σσσσσ

σ

σσ

σ
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3. The elementary beam theory predicts that the stresses in a circular beam due to 
bending are 

)4/(3/)(,/ 422 RIIyRVIMy yxxyxx πσσσ =−===  
and all the other stress components are zero.  Do these equations satisfy the equations 
of equilibrium? 

 
4. With respect to axes xyz0  the stress state is given in terms of the coordinates by the 

matrix 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
xzz

zyzy

yxy

zzzyzx

yzyyyx

xzxyxx

ij
2

22

2

0

0

σσσ
σσσ
σσσ

σ  

Determine the body force acting on the material if it is at rest. 
 
5. What is the acceleration of a material particle of density -3kgm3.0=ρ , subjected to 

the stress  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

42

42

42

222
222
222

zzyzxz
yzyyxy
xzxyxx

ijσ  

and gravity (the z  axis is directed vertically upwards from the ground). 
 
6. A fluid at rest is subjected to a hydrostatic pressure p and the force of gravity only. 

(a)  Write out the equations of motion for this case. 
(b)  A very basic formula of hydrostatics, to be found in any elementary book on fluid 

mechanics, is that giving the pressure variation in a static fluid, 
ghp ρ=Δ  

where ρ  is the density of the fluid, g is the acceleration due to gravity, and h  is 
the vertical distance between the two points in the fluid (the relative depth).  
Show that this formula is but a special case of the equations of motion. 
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1.2 The Strain-Displacement Relations 
 
The strain was introduced in Book I: §4.  The concepts examined there are now extended 
to the case of strains which vary continuously throughout a material. 
 
 
1.2.1 The Strain-Displacement Relations 
 
Normal Strain 
 
Consider a line element of length x  emanating from position ),( yx  and lying in the x - 
direction, denoted by AB  in Fig. 1.2.1.  After deformation the line element occupies 

BA  , having undergone a translation, extension and rotation. 
 

 
 

Figure 1.2.1: deformation of a line element 
 
The particle that was originally at x  has undergone a displacement ),( yxux  and the other 

end of the line element has undergone a displacement ),( yxxux  .  By the definition of 

(small) normal strain,  
 

x

yxuyxxu

AB

ABBA xx
xx 







),(),(*

         (1.2.1) 

 
In the limit 0x  one has  

 

x

ux
xx 


       (1.2.2) 

 
This partial derivative is a displacement gradient, a measure of how rapid the 
displacement changes through the material, and is the strain at ),( yx .  Physically, it 
represents the (approximate) unit change in length of a line element, as indicated in Fig. 
1.2.2. 
 

x

 
A





B

A

B),( yxux

),( yxxux 

x xx 

y

*B
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Figure 1.2.2: unit change in length of a line element 
 
Similarly, by considering a line element initially lying in the y direction, the strain in the y 
direction can be expressed as 

 

y

u y
yy 


       (1.2.3) 

 
Shear Strain 
 
The particles A and B in Fig. 1.2.1 also undergo displacements in the y direction and this 
is shown in Fig. 1.2.3.  In this case, one has 
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u
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*     (1.2.4) 

 

 
 

Figure 1.2.3: deformation of a line element 
 
A similar relation can be derived by considering a line element initially lying in the y 
direction.  A summary is given in Fig. 1.2.4.  From the figure, 
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provided that (i)   is small and (ii) the displacement gradient xux  /  is small.  A similar 

expression for the angle   can be derived, and hence the shear strain can be written in 
terms of displacement gradients. 
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Figure 1.2.4: strains in terms of displacement gradients 
 
 
The Small-Strain Stress-Strain Relations 
 
In summary, one has 
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 2-D Strain-Displacement relations      (1.2.5) 

 
 
1.2.2 Geometrical Interpretation of Small Strain 
 
A geometric interpretation of the strain was given in Book I: §4.1.4.  This interpretation is 
repeated here, only now in terms of displacement gradients. 
 
Positive Normal Strain 
 
Fig. 1.2.5a,  
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Negative Normal Strain 
 
Fig 1.2.5b, 
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Figure 1.2.5: some simple deformations; (a) positive normal strain, (b) negative 
normal strain, (c) simple shear 

 
Simple Shear 
 
Fig. 1.2.5c, 
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Pure Shear 
 
Fig 1.2.6a, 
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1.2.3 The Rotation 
 
Consider an arbitrary deformation (omitting normal strains for ease of description), as 
shown in Fig. 1.2.6.  As usual, the angles   and   are small, equal to their tangents, and 

/yu x    , /xu y    .  

 

 
 

Figure 1.2.6: arbitrary deformation (shear and rotation) 
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Now this arbitrary deformation can be decomposed into a pure shear and a rigid rotation 
as depicted in Fig. 1.2.7.  In the pure shear,  1

2xy        .  In the rotation, the 

angle of rotation is then  1
2   . 

 

 
 

Figure 1.2.7: decomposition of a strain into a pure shear and a rotation 
 
This leads one to define the rotation of a material particle, z , the “z” signifying the axis 
about which the element is rotating: 
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z 2

1           (1.2.10) 

 
The rotation will in general vary throughout a material.  When the rotation is everywhere 
zero, the material is said to be irrotational. 
 
For a pure rotation, note that 
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arbitrary shear strain 

x

y

x

uy






y

ux






  
















y

u

x

u
xy

z 2

1

2

1 

z

rotation 
(no strain) pure 

shear 

 1 1

2 2
yx

xy

uu

y x
  

 
      

zxy
xy



Section 1.2 

Solid Mechanics Part II                                                                                Kelly 14

1.2.4 Fixing Displacements 
 
The strains give information about the deformation of material particles but, since they do 
not encompass translations and rotations, they do not give information about the precise 
location in space of particles.  To determine this, one must specify three displacement 
components (in two-dimensional problems).  Mathematically, this is equivalent to saying 
that one cannot uniquely determine the displacements from the strain-displacement 
relations 1.2.5. 
 
Example 
 
Consider the strain field 0,01.0  xyyyxx  .  The displacements can be obtained by 

integrating the strain-displacement relations: 
 

)(

)(01.0

xgdyu

yfxdxu

yyy

xxx









        (1.2.12) 

 
where f and g are unknown functions of y and x respectively.  Substituting the 
displacement expressions into the shear strain relation gives 
 

)()( xgyf  .           (1.2.13) 
 
Any expression of the form )()( yGxF   which holds for all x and y implies that F and G 
are constant1.  Since gf ,  are constant, one can integrate to get 

CxBxgDyAyf  )(,)( .  From 1.2.13, DC  , and 
 

CxBu
CyAxu

y

x


 01.0
     (1.2.14) 

 
There are three arbitrary constants of integration, which can be determined by specifying 
three displacement components.  For example, suppose that it is known that 
 

bauuu xyx  ),0(,0)0,0(,0)0,0( .  (1.2.15) 

 
In that case, abCBA /,0,0  , and, finally,  
 

xabu
yabxu

y

x
)/(

)/(01.0



    (1.2.16) 

 
which corresponds to Fig. 1.2.8, with )/( ab  being the (tan of the small) angle by which 
the element has rotated. 
 
 

                                                 
1 since, if this was not so, a change in x would change the left hand side of this expression but would not 
change the right hand side and so the equality cannot hold 
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Figure 1.2.8: an element undergoing a normal strain and a rotation 
 

■ 
 
In general, the displacement field will be of the form 
 

CxBu
CyAu

y

x






      (1.2.17) 

 
and indeed Eqn. 1.2.16 is of this form.  Physically, A, B and C represent the possible rigid 
body motions of the material as a whole, since they are the same for all material particles.  
A corresponds to a translation in the x  direction, B corresponds to a translation in the x  
direction, and C corresponds to a positive (counterclockwise) rotation. 
 
 
1.2.5 Three Dimensional Strain 
 
The three-dimensional stress-strain relations analogous to Eqns. 1.2.5 are 
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3-D Stress-Strain relations      (1.2.18) 
 
The rotations are 
 

1 1 1
, ,

2 2 2
y yx x z z

z y x

u uu u u u

x y z x y z
  

                          
     (1.2.19) 

 
 
1.2.6 Problems 
 
1. The displacement field in a material is given by 

  2,3 AxyuyxAu yx   

where A is a small constant. 

x

y

a

b
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(a) Evaluate the strains.  What is the rotation z ?  Sketch the deformation and any 
rigid body motions of a differential element at the point )1,1(  

(b) Sketch the deformation and rigid body motions at the point )2,0( , by using a pure 
shear strain superimposed on the rotation. 

 
2. The strains in a material are given by 

  xyyyxx x ,0,  

Evaluate the displacements in terms of three arbitrary constants of integration, in the 
form of Eqn. 1.2.17,  

CxBu
CyAu

y

x






 

What is the rotation? 
 
3. The strains in a material are given by 

AxAyAxy xyyyxx   ,, 2  

where A is a small constant.  Evaluate the displacements in terms of three arbitrary 
constants of integration.  What is the rotation? 
 

4. Show that, in a state of plane strain ( 0zz ) with zero body force, 
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e xxz














 

 

where e is the volumetric strain (dilatation), the sum of the normal strains: 

zzyyxxe    (see Book I, §4.3). 
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1.3 Compatibility of Strain 
 
As seen in the previous section, the displacements can be determined from the strains 
through integration, to within a rigid body motion.  In the two-dimensional case, there are 
three strain-displacement relations but only two displacement components.  This implies 
that the strains are not independent but are related in some way.  The relations between 
the strains are called compatibility conditions. 
 
 
1.3.1 The Compatibility Relations 
 
Differentiating the first of 1.2.5 twice with respect to y , the second twice with respect to 
x  and the third once each with respect to x  and y  yields 
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It follows that 
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∂∂
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+

∂
∂ εεε 2

2

2

2

2

2  2-D Compatibility Equation   (1.3.1) 

 
This compatibility condition is an equation which must be satisfied by the strains at all 
material particles. 
 
Physical Meaning of the Compatibility Condition 
 
When all material particles in a component deform, translate and rotate, they need to meet 
up again very much like the pieces of a jigsaw puzzle must fit together.  Fig. 1.3.1 
illustrates possible deformations and rigid body motions for three line elements in a 
material.  Compatibility ensures that they stay together after the deformation. 
 

 
 

Figure 1.3.1: Deformation and Compatibility 
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deformed 
- compatibility not satisfied 
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The Three Dimensional Case 
 
There are six compatibility relations to be satisfied in the three dimensional case : 
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    (1.3.2) 

 
By inspection, it will be seen that these are satisfied by Eqns. 1.2.19. 
 
 
1.3.2 Problems 
 
1. The displacement field in a material is given by 

2, AyuAxyu yx == , 
where A is a small constant.  Determine 
(a) the components of small strain 
(b) the rotation 
(c) the principal strains  
(d) whether the compatibility condition is satisfied 
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7 3D Elasticity 
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7.1 Vectors, Tensors and the Index Notation 
 
The equations governing three dimensional mechanics problems can be quite lengthy.  
For this reason, it is essential to use a short-hand notation called the index notation1.  
Consider first the notation used for vectors. 
 
 
7.1.1 Vectors 
 
Vectors are used to describe physical quantities which have both a magnitude and a 
direction associated with them.  Geometrically, a vector is represented by an arrow; the 
arrow defines the direction of the vector and the magnitude of the vector is represented by 
the length of the arrow.  Analytically, in what follows, vectors will be represented by 
lowercase bold-face Latin letters, e.g. a, b. 
  
The dot product of two vectors a and b is denoted by ba ⋅  and is a scalar defined by 
 

θcosbaba =⋅ .             (7.1.1) 
 
θ  here is the angle between the vectors when their initial points coincide and is restricted 
to the range πθ ≤≤0 . 
 
Cartesian Coordinate System 
 
So far the short discussion has been in symbolic notation2, that is, no reference to ‘axes’ 
or ‘components’ or ‘coordinates’ is made, implied or required.  Vectors exist 
independently of any coordinate system.  The symbolic notation is very useful, but there 
are many  circumstances in which use of the component forms of vectors is more helpful 
– or essential.  To this end, introduce the vectors 321 ,, eee  having the properties 
 

0133221 =⋅=⋅=⋅ eeeeee ,    (7.1.2) 
 
so that they are mutually perpendicular, and 
 

1332211 =⋅=⋅=⋅ eeeeee ,    (7.1.3) 
 
so that they are unit vectors.  Such a set of orthogonal unit vectors is called an 
orthonormal set, Fig. 7.1.1.  This set of vectors forms a basis, by which is meant that any 
other vector can be written as a linear combination of these vectors, i.e. in the form 

 
332211 eeea aaa ++=                                              (7.1.4) 

 
where 21, aa  and 3a  are scalars, called the Cartesian components or coordinates of a 
along the given three directions.  The unit vectors are called base vectors when used for 

                                                 
1 or indicial or subscript or suffix notation 
2 or absolute or invariant or direct or vector notation 
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this purpose.  The components 21, aa  and 3a  are measured along lines called the 21, xx  
and 3x  axes, drawn through the base vectors. 
 

 
 

Figure 7.1.1: an orthonormal set of base vectors and Cartesian coordinates 
 
Note further that this orthonormal system { }321 ,, eee  is right-handed, by which is meant 

321 eee =×  (or 132 eee =×  or 213 eee =× ). 
 
In the index notation, the expression for the vector a in terms of the components 321 ,, aaa  
and the corresponding basis vectors 321 ,, eee  is written as 
 

∑
=
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1
332211

i
iiaaaa eeeea        (7.1.5) 

 
This can be simplified further by using Einstein’s summation convention, whereby the 
summation sign is dropped and it is understood that for a repeated index (i in this case) a 
summation over the range of the index (3 in this case3) is implied.  Thus one writes 

iia ea = .  This can be further shortened to, simply, ia . 
 
The dot product of two vectors u and v, referred to this coordinate system, is 
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( ) ( ) ( )
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  (7.1.6) 

 
The dot product of two vectors written in the index notation reads  
 

iivu=⋅ vu  Dot Product        (7.1.7) 
 

                                                 
3 2 in the case of a two-dimensional space/analysis 

1e
2e

3e

2a

1a

3a

a
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The repeated index i is called a dummy index, because it can be replaced with any other 
letter and the sum is the same;  for example, this could equally well be written as 

jj vu=⋅ vu  or kk vu . 
 
Introduce next the Kronecker delta symbol ijδ , defined by 
 

⎩
⎨
⎧

=
≠

=
ji

ji
ij ,1

,0
δ      (7.1.8) 

 
Note that 111 =δ  but, using the index notation, 3=iiδ .  The Kronecker delta allows one 
to write the expressions defining the orthonormal basis vectors (7.1.2, 7.1.3) in the 
compact form 
 

ijji δ=⋅ee      Orthonormal Basis Rule          (7.1.9) 
 
 
Example 
 
Recall the equations of motion, Eqns. 1.1.9, which in full read  
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                               (7.1.10) 

 
The index notation for these equations is 
 

ii
j

ij ab
x

ρ
σ

=+
∂

∂
                                              (7.1.11) 

 
Note the dummy index j.  The index i is called a free index; if one term has a fee index i, 
then, to be consistent, all terms must have it.  One free index, as here, indicates three 
separate equations. 
 
 
7.1.2 Matrix Notation 
 
The symbolic notation v  and index notation iiv e  (or simply iv ) can be used to denote a 
vector.  Another notation is the matrix notation: the vector v can be represented by a 

13×  matrix (a column vector): 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

v

v

v

 
 
Matrices will be denoted by square brackets, so a shorthand notation for this matrix/vector 
would be [ ]v .  The elements of the matrix [ ]v  can be written in the index notation iv .    
 
Note the distinction between a vector and a 13×  matrix: the former is a mathematical 
object independent of any coordinate system, the latter is a representation of the vector in 
a particular coordinate system – matrix notation, as with the index notation, relies on a 
particular coordinate system. 
 
As an example, the dot product can be written in the matrix notation as 
 
 
 
 
 
 
 
 
 
 
Here, the notation [ ]Tu  denotes the 31×  matrix (the row vector).  The result is a 11×  
matrix, iivu . 
 
The matrix notation for the Kronecker delta ijδ  is the identity matrix 
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Then, for example, in both index and matrix notation: 
 

 [ ][ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

3

2

1

3

2

1

100
010
001

u

u

u

u

u

u

uu ijij uuIδ                   (7.1.12) 

 
 
Matrix – Matrix Multiplication 
 
When discussing vector transformation equations further below, it will be necessary to 
multiply various matrices with each other (of sizes 13× , 31×  and 33× ).  It will be 
helpful to write these matrix multiplications in the short-hand notation. 
 

“short” 
matrix notation “full” 

matrix notation

[ ][ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

321
T

v

v

v

uuuvu
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First, it has been seen that the dot product of two vectors can be represented by [ ][ ]vuT  or 

iivu .  Similarly, the matrix multiplication [ ][ ]Tvu  gives a 33×  matrix with element form 

jivu  or, in full, 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

332313

322212

312111

vuvuvu

vuvuvu

vuvuvu

 

 
This operation is called the tensor product of two vectors, written in symbolic notation 
as vu⊗  (or simply uv). 
 
Next, the matrix multiplication 
 

[ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≡

3

2

1

333231

232221

131211

u

u

u

QQQ

QQQ

QQQ

uQ  

 
is a 13×  matrix with elements [ ][ ]( ) jiji uQ≡uQ .  The elements of [ ][ ]uQ  are the same as 

those of [ ][ ]TT Qu , which can be expressed as [ ][ ]( ) ijji Qu≡TT Qu . 
 
The expression [ ][ ]Qu  is meaningless, but [ ][ ]QuT  {▲Problem 4} is a 31×  matrix with 
elements [ ][ ]( ) jiji Qu≡QuT . 
 
This leads to the following rule: 
 
 

1. if a vector pre-multiplies a matrix [ ]Q  →  the vector is the transpose [ ]Tu  
2. if a matrix [ ]Q  pre-multiplies the vector →  the vector is [ ]u  
3. if summed indices are “beside each other”, as the j in jijQu  or jijuQ  

 →  the matrix is [ ]Q  
4. if summed indices are not beside each other, as the j in ijjQu  

→  the matrix is the transpose, [ ]TQ  
 
 
Finally, consider the multiplication of 33×  matrices.  Again, this follows the “beside 
each other” rule for the summed index.  For example, [ ][ ]BA  gives the 33×  matrix 
{▲Problem 8} [ ][ ]( ) kjikij BA=BA , and the multiplication [ ][ ]BAT  is written as 

[ ][ ]( ) kjkiij BA=BAT .  There is also the important identity 
 

[ ][ ]( ) [ ][ ]TTT ABBA =        (7.1.13) 
 
Note also the following: 
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(i) if there is no free index, as in iivu , there is one element 
(ii) if there is one free index, as in jijQu , it is a 13×  (or 31× ) matrix 
(iii) if there are two free indices, as in kjki BA , it is a 33×  matrix 

 
 
7.1.3 Vector Transformation Rule 
 
Introduce two Cartesian coordinate systems with base vectors ie  and ie′  and common 
origin o, Fig. 7.1.2.  The vector u can then be expressed in two ways: 
 

iiii uu eeu ′′==                                                  (7.1.14) 
 

 
 

Figure 7.1.2: a vector represented using two different coordinate systems 
 
Note that the ix′  coordinate system is obtained from the ix  system by a rotation of the 
base vectors.  Fig. 7.1.2 shows a rotation θ  about the 3x  axis (the sign convention for 
rotations is positive counterclockwise). 
 
Concentrating for the moment on the two dimensions 21 xx − , from trigonometry (refer to 
Fig. 7.1.3), 
 

[ ] [ ]
[ ] [ ] 221121

21

2211

cossinsincos ee
ee

eeu

uuuu

CPBDABOB

uu

′+′+′−′=

++−=

+=

θθθθ
                 (7.1.15) 

 
and so 
 

212

211

cossin
sincos

uuu

uuu

′+′=

′−′=
θθ
θθ

                                                   (7.1.16) 

 
 

 

2x′
2x

1x

1x′

1u

2u′

1u′

2u

θ

θ

o

1e′2e′

u

vector components in 
second coordinate system 

vector components in 
first coordinate system 
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Figure 7.1.3: geometry of the 2D coordinate transformation 
 
In matrix form, these transformation equations can be written as 
 

              ⎥
⎦

⎤
⎢
⎣

⎡
′
′

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

cossin
sincos

u

u

u

u

θθ
θθ

                                  (7.1.17) 

 
The 22×  matrix is called the transformation matrix or rotation matrix [ ]Q .  By pre-
multiplying both sides of these equations by the inverse of [ ]Q , [ ]1−Q , one obtains the 
transformation equations transforming from [ ]T21 uu  to [ ]T21 uu ′′ : 
 

              ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
′
′

2

1

2

1

cossin
sincos

u

u

u

u

θθ
θθ

                                 (7.1.18) 

 
It can be seen that the components of [ ]Q  are the directions cosines, i.e. the cosines of 
the angles between the coordinate directions: 
 

( ) jijiij xxQ ee ′⋅=′= ,cos                                   (7.1.19) 
 
It is straight forward to show that, in the full three dimensions, Fig. 7.1.4, the components 
in the two coordinate systems are also related through 

 
[ ] [ ][ ]
[ ] [ ][ ]uQu

uQu
T=′=′

′=′=

K

K

jjii

jiji

uQu

uQu
     Vector Transformation Rule     (7.1.20) 

 

2x′
2x

1x

1x′

1u

2u′

1u′
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θ

θ

A B
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o
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Figure 7.1.4: two different coordinate systems in a 3D space 
 
 
Orthogonality of the Transformation Matrix [ ]Q  
 
From 7.1.20, it follows that 
 

[ ] [ ][ ]
[ ][ ][ ]uQQ

uQu
T==

′=′=

K

K

kkjij

jiji

uQQ

uQu
                              (7.1.21) 

 
and so 

 
[ ][ ] [ ]IQQ == TKikkjijQQ δ                                 (7.1.22) 

 
A matrix such as this for which [ ] [ ]1T −= QQ  is called an orthogonal matrix. 
 
Example 
 
Consider a Cartesian coordinate system with base vectors ie .  A coordinate 
transformation is carried out with the new basis given by 
 

3
)3(

32
)3(

21
)3(

13

3
)2(

32
)2(

21
)2(

12

3
)1(

32
)1(

21
)1(

11

eeee

eeee

eeee

aaa

aaa

aaa

++=′

++=′

++=′

 

 
What is the transformation matrix? 
 
Solution 
 
The transformation matrix consists of the direction cosines jijiij xxQ ee ′⋅=′= ),cos( , so 
 

1x

2x

1x′

2x′

3x
3x′

u
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)3(

3
)2(

3
)1(

3

)3(
2

)2(
2

)1(
2

)3(
1

)2(
1

)1(
1

aaa

aaa

aaa

Q  

 
■  

 
 
7.1.4 Tensors 
 
The concept of the tensor is discussed in detail in Part III, where it is indispensable for 
the description of large-strain deformations.  For small deformations, it is not so 
necessary; the main purpose for introducing the tensor here (in a rather non-rigorous way) 
is that it helps to deepen one’s understanding of the concept of stress. 
 
A second-order tensor4 A may be defined as an operator that acts on a vector u 
generating another vector v, so that vuT =)( , or 
 

vTu =  Second-order Tensor (7.1.23) 
 
The second-order tensor T is a linear operator, by which is meant 
 

( ) TbTabaT +=+  …  distributive 
( ) ( )TaaT αα =  …   associative  

 
for scalar α .  In a Cartesian coordinate system, the tensor T has nine components and can 
be represented in the matrix form 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

TTT

TTT

TTT

T  

 
The rule 7.1.23, which is expressed in symbolic notation, can be expressed in the index 
and matrix notation when T is referred to particular axes: 
 

[ ] [ ][ ]vTu =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

333231

232221

131211

3

2

1

v

v

v

TTT

TTT

TTT

u

u

u

vTu jiji          (7.1.24) 

 
Again, one should be careful to distinguish between a tensor such as T and particular 
matrix representations of that tensor.  The relation 7.1.23 is a tensor relation, relating 
vectors and a tensor and is valid in all coordinate systems; the matrix representation of 
this tensor relation, Eqn. 7.1.24, is to be sure valid in all coordinate systems, but the 
entries in the matrices of 7.1.24 depend on the coordinate system chosen. 
 

                                                 
4 to be called simply a tensor in what follows 
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Note also that the transformation formulae for vectors, Eqn. 7.1.20, is not a tensor 
relation; although 7.1.20 looks similar to the tensor relation 7.1.24, the former relates the 
components of a vector to the components of the same vector in different coordinate 
systems, whereas (by definition of a tensor) the relation 7.1.24 relates the components of a 
vector to those of a different vector in the same coordinate system. 
 
For these reasons, the notation uQu iji ′=  in Eqn. 7.1.20 is more formally called element 
form, the ijQ  being elements of a matrix rather than components of a tensor.  This 
distinction between element form and index notation should be noted, but the term “index 
notation” is used for both tensor and matrix-specific manipulations in these notes.  
 
Example 
 
Recall the strain-displacement relations, Eqns. 1.2.19, which in full read  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
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∂

=⎟⎟
⎠

⎞
⎜⎜
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∂
∂

+
∂
∂
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⎜⎜
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⎛
∂
∂

+
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

2

3

3

2
23

1

3

3

1
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1

2

2

1
12

3

3
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2

2
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1

1
11

2
1,

2
1,

2
1

,,

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

εεε

εεε

        (7.1.25) 

 
The index notation for these equations is 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

j

j

i
ij x

u

x

u

2
1ε                                               (7.1.26) 

 
This expression has two free indices and as such indicates nine separate equations.  
Further, with its two subscripts, ijε , the strain, is a tensor.  It can be expressed in the 
matrix notation 
 

[ ]
( ) ( )

( ) ( )
( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂∂∂+∂∂∂∂+∂∂
∂∂+∂∂∂∂∂∂+∂∂
∂∂+∂∂∂∂+∂∂∂∂

=

3332232
1

31132
1

23322
1

2221122
1

13312
1

12212
1

11

/////
/////
/////

xuxuxuxuxu

xuxuxuxuxu

xuxuxuxuxu

ε  

 
 
7.1.5 Tensor Transformation Rule 
 
Consider now the tensor definition 7.1.23 expressed in two different coordinate systems: 
 

[ ] [ ][ ] { }
[ ] [ ][ ] { }ijiji

ijiji

xvTu

xvTu

′′′=′′′=′

==

in

in

vTu
vTu

                         (7.1.27) 

 
From the vector transformation rule 7.1.20, 
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[ ] [ ][ ]
[ ] [ ][ ]vQv

uQu
T

T

=′=′

=′=′

jjii

jjii

vQv

uQu
                                  (7.1.28) 

 
Combining 7.1.27-28, 
 

[ ][ ] [ ][ ][ ]vQTuQ TT ′=′= kkjijjji vQTuQ                           (7.1.29) 
 
and so 

 
[ ] [ ][ ][ ][ ]vQTQu T′=′= kkjijmijjimi vQTQuQQ                      (7.1.30) 

 
(Note that mjmjjjimi uuuQQ == δ .)  Comparing with 7.1.24, it follows that 

 
[ ] [ ][ ][ ]
[ ] [ ][ ][ ]QTQT

QTQT
T

T

=′=′

′=′=

K

K

pqqjpiij

pqjqipij

TQQT

TQQT
     Tensor Transformation Rule     (7.1.31) 

 
 
7.1.6 Problems 
 
1. Write the following in index notation: v , 1ev ⋅ , kev ⋅ . 
2. Show that jiij baδ  is equivalent to ba ⋅ . 
3. Evaluate or simplify the following expressions: 

(a) kkδ     (b) ijijδδ     (c) jkijδδ  

4. Show that [ ][ ]QuT  is a 31×  matrix with elements jijQu  (write the matrices out in 
full) 

5. Show that [ ][ ]( ) [ ][ ]TTT QuuQ =  
6. Are the three elements of [ ][ ]uQ  the same as those of [ ][ ]QuT ? 
7. What is the index notation for ( )cba ⋅ ? 
8. Write out the 33×  matrices [ ]A  and [ ]B  in full, i.e. in terms of ,, 1211 AA etc. and 

verify that [ ] kjikij BA=AB  for 1,2 == ji . 
9. What is the index notation for 

(a) [ ][ ]TBA  
(b) [ ][ ][ ]vAvT  (there is no ambiguity here, since [ ][ ]( )[ ] [ ] [ ][ ]( )vAvvAv TT = ) 
(c) [ ][ ][ ]BABT  

10. The angles between the axes in two coordinate systems are given in the table below. 
 1x  2x  3x  

1x′  o135  o60  o120  
2x′  o90  o45  o45  
3x′  o45  o60  o120  

Construct the corresponding transformation matrix [ ]Q  and verify that it is 
orthogonal. 
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11. Consider a two-dimensional problem.  If the components of a vector u in one 

coordinate system are  

⎥
⎦

⎤
⎢
⎣

⎡
3
2

 

what are they in a second coordinate system, obtained from the first by a positive  
rotation of 30o?  Sketch the two coordinate systems and the vector to see if your 
answer makes sense. 

 
12. Consider again a two-dimensional problem with the same change in coordinates as 

in Problem 11.  The components of a 2D tensor in the first system are 

⎥
⎦

⎤
⎢
⎣

⎡ −
23
11

 

What are they in the second coordinate system? 
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7.2 Analysis of Three Dimensional Stress and Strain 
 
The concept of traction and stress was introduced and discussed in Part I, §3.1-3.5.  For 
the most part, the discussion was confined to two-dimensional states of stress.  Here, the 
fully three dimensional stress state is examined.  There will be some repetition of the 
earlier analyses. 
 
 
7.2.1 The Traction Vector and Stress Components 
 
Consider a traction vector t acting on a surface element, Fig. 7.2.1.  Introduce a Cartesian 
coordinate system with base vectors ie  so that one of the base vectors is a normal to the 
surface and the origin of the coordinate system is positioned at the point at which the 
traction acts.  For example, in Fig. 7.1.1, the 3e  direction is taken to be normal to the 
plane, and a superscript on t denotes this normal: 
 

332211
)( 3 eeet e ttt ++=         (7.2.1) 

 
Each of these components it  is represented by ijσ   where the first subscript denotes the 
direction of the normal and the second denotes the direction of the component to the 
plane.  Thus the three components of the traction vector shown in Fig. 7.2.1 are 

333231 ,, σσσ  : 
 

333232131
)( 3 eeet e σσσ ++=            (7.2.2) 

 
The first two stresses, the components acting tangential to the surface, are shear stresses 
whereas 33σ , acting normal to the plane, is a normal stress. 
 

 
 

Figure 7.2.1: components of the traction vector 
 
Consider the three traction vectors )()()( 321 ,, eee ttt  acting on the surface elements whose 
outward normals are aligned with the three base vectors je , Fig. 7.2.2a.  The three (or six) 
surfaces can be amalgamated into one diagram as in Fig. 7.2.2b. 
 
In terms of stresses, the traction vectors are 
 

)( 3et

2x

1x

3x
)ˆ(nt

1e 2e
3e

32σ 31σ

33σ
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( )
( )
( )

33323231

32322221

31321211

3

2

eeet
eeet
eeet

1
e

1
e

1
e1

σσσ
σσσ
σσσ

++=
++=
++=

     or     ( )
jij

i et e σ=                     (7.2.3) 

 

 
 
Figure 7.2.2: the three traction vectors acting at a point; (a) on mutually orthogonal 

planes, (b) the traction vectors illustrated on a box element 
 
The components of the three traction vectors, i.e. the stress components, can now be 
displayed on a box element as in Fig. 7.2.3.  Note that the stress components will vary 
slightly over the surfaces of an elemental box of finite size.  However, it is assumed that 
the element in Fig. 7.2.3 is small enough that the stresses can be treated as constant, so 
that they are the stresses acting at the origin. 
 

 
 

Figure 7.2.3: the nine stress components with respect to a Cartesian coordinate 
system 

 
The nine stresses can be conveniently displayed in 33×  matrix form: 
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[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

333231

232221

131211

σσσ
σσσ
σσσ

σ ij                                   (7.2.4) 

 
It is important to realise that, if one were to take an element at some different orientation 
to the element in Fig. 7.2.3, but at the same material particle, for example aligned with 
the axes 321 ,, xxx ′′′  shown in Fig. 7.2.4, one would then have different tractions acting and 
the nine stresses would be different also.  The stresses acting in this new orientation can 
be represented by a new matrix: 
 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

′′′
′′′
′′′

=′
333231

232221

131211

σσσ
σσσ
σσσ

σ ij                                      (7.2.5) 

  

 
 

Figure 7.2.4: the stress components with respect to a Cartesian coordinate system 
different to that in Fig. 7.2.3 

 
 
7.2.2 Cauchy’s Law 
 
Cauchy’s Law, which will be proved below, states that the normal to a surface, iin en = , 
is related to the traction vector iit et n =)(  acting on that surface, according to 
 

jjii nt σ=                                                        (7.2.6) 
 
Writing the traction and normal in vector form and the stress in 33×  matrix form, 
 

[ ] [ ] [ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

333231

232221

131211

)(
3

)(
2

)(
1

)( ,,
n
n
n

n
t
t
t

t iiji

σσσ
σσσ
σσσ

σ
n

n

n

n     (7.2.7) 

 
and Cauchy’s law in matrix notation reads 
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                                (7.2.8) 

 
Note that it is the transpose stress matrix which is used in Cauchy’s law.  Since the stress 
matrix is symmetric, one can express Cauchy’s law in the form 
 

jiji nt σ=      Cauchy’s Law                          (7.2.9) 
 
Cauchy’s law is illustrated in Fig. 7.2.5; in this figure, positive stresses ijσ  are shown. 
 

 
 

Figure 7.2.5: Cauchy’s Law; given the stresses and the normal to a plane, the 
traction vector acting on the plane can be determined 

 
 
Normal and Shear Stress 
 
It is useful to be able to evaluate the normal stress Nσ  and shear stress Sσ  acting on any 
plane, Fig. 7.2.6.  For this purpose, note that the stress acting normal to a plane is the 
projection of )(nt  in the direction of n , 
 

)(ntn ⋅=Nσ            (7.2.10) 
 
The magnitude of the shear stress acting on the surface can then be obtained from 
 

22)(
NS σσ −= nt                (7.2.11) 
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Figure 7.2.6: the normal and shear stress acting on an arbitrary plane through a 
point 

 
 
Example 
 
The state of stress at a point with respect to a Cartesian coordinates system 3210 xxx  is 
given by: 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=
123
221

312

ijσ        

 
Determine: 
(a) the traction vector acting on a plane through the point whose unit normal is 

321 )3/2()3/2()3/1( eeen −+=  
(b) the component of this traction acting perpendicular to the plane 
(c) the shear component of traction on the plane 
 
Solution 
(a) From Cauchy’s law, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3
9
2

3
1

2
2
1

123
221

312

3
1

3

2

1

332313

322212

312111

)(
3

)(
2

)(
1

n
n
n

t
t
t

σσσ
σσσ
σσσ

n

n

n

   

so that 321
)( ˆ3)3/2( eeet n −+−= . 

 
(b) The component normal to the plane is  

.4.29/22)3/2()3/2(3)3/1)(3/2()( ≈=++−=⋅= nt n
Nσ  

 
(c) The shearing component of traction is  

( ) ( ) ( )[ ] ( )[ ]{ } 1.213
2/12

9
22222

3
222)( ≈−−++−=−= NS σσ nt  

■  

3x

2x

1x

n

( )ntNσ

Sσ
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Proof of Cauchy’s Law 
 
Cauchy’s law can be proved using force equilibrium of material elements.  First, consider 
a tetrahedral free-body, with vertex at the origin, Fig. 7.2.7.  It is required to determine the 
traction t in terms of the nine stress components (which are all shown positive in the 
diagram). 
 

 
 

Figure 7.2.7: proof of Cauchy’s Law 
 
The components of the unit normal, in , are the direction cosines of the normal vector, i.e. 
the cosines of the angles between the normal and each of the coordinate directions: 
 

( ) iii n=⋅= enen,cos                    (7.2.12) 
 
Let the area of the base of the tetrahedran, with normal n, be SΔ .  The area 1SΔ  is then 

αcosSΔ , where α  is the angle between the planes, as shown to the right of Fig. 7.2.7; 
this angle is the same as that between the vectors n and 1e , so SnS Δ=Δ 11 , and similarly 
for the other surfaces:  
 

SnS ii Δ=Δ                                                   (7.2.13) 
 
The resultant surface force on the body, acting in the ix  direction, is then 
 

SnStSStF jjiijjiii Δ−Δ=Δ−Δ=∑ σσ             (7.2.14) 
 
For equilibrium, this expression must be zero, and one arrives at Cauchy’s law. 
 
Note: 
As proved in Part III, this result holds also in the general case of accelerating material 
elements in the presences of body forces. 
 
 

3x

2x

1x

n

( )nt

23σ
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7.2.3 The Stress Tensor 
 
Cauchy’s law 7.2.9 is of the same form as 7.1.24 and so by definition the stress is a 
tensor.  Denote the stress tensor in symbolic notation by σ .  Cauchy’s law in symbolic 
form then reads 
 

nσt =                                                         (7.2.15) 
 
Further, the transformation rule for stress follows the general tensor transformation rule 
7.1.31: 
 

[ ] [ ][ ][ ]
[ ] [ ][ ][ ]QσQσ

QσQσ
T

T

=′=′

′=′=

K

K

pqqjpiij

pqjqipij

QQ

QQ

σσ

σσ
     Stress Transformation Rule     (7.2.16) 

 
As with the normal and traction vectors, the components and hence matrix representation 
of the stress changes with coordinate system, as with the two different matrix 
representations 7.2.4 and 7.2.5.  However, there is only one stress tensor σ  at a point.  
Another way of looking at this is to note that an infinite number of planes pass through a 
point, and on each of these planes acts a traction vector, and each of these traction vectors 
has three (stress) components.  All of these traction vectors taken together define the 
complete state of stress at a point. 
 
Example 
 
The state of stress at a point with respect to an 3210 xxx  coordinate system is given by 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=
120
231

012
ijσ  

(a) What are the stress components with respect to axes 3210 xxx ′′′  which are obtained 
from the first by a o45  rotation (positive counterclockwise) about the 2x  axis, Fig. 
7.2.8? 

(b) Use Cauchy’s law to evaluate the normal and shear stress on a plane with normal 
( ) ( ) 31 2/12/1 een +=  and relate your result with that from (a) 
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Figure 7.2.8: two different coordinate systems at a point 
 
Solution 
(a) The transformation matrix is 

[ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′′
′′′
′′′

=

2
1

2
1

2
1

2
1

332313

322212

312111

0
010

0

,cos,cos,cos
,cos,cos,cos
,cos,cos,cos

xxxxxx

xxxxxx

xxxxxx

Qij  

and IQQ =T  as expected.  The rotated stress components are therefore 
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⎥
⎥

⎦
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⎡

−
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⎥
⎥
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⎥
⎥
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−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′′
′′′
′′′

2
3

2
1

2
1

2
1

2
3

2
1

2
3

2
3

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

333231

232221

131211

3

0
010

0

120
231

012

0
010

0

σσσ
σσσ
σσσ

 

and the new stress matrix is symmetric as expected. 
(b) From Cauchy’s law, the traction vector is 

⎥
⎥
⎥

⎦

⎤
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⎢
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⎡
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⎥
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⎥
⎥
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
1

2
1

2
1

2
1

)(
3

)(
2

)(
1 2

0
120
231

012

n

n

n

t

t

t

 

so that ( ) ( ) ( ) 321
)( ˆ2/12/12 eeet n +−= .  The normal and shear stress on the 

plane are 
2/3)( =⋅= nt n

Nσ  
and 

2/3)2/3(3 222)( =−=−= NS σσ nt  

The normal to the plane is equal to 3e′  and so Nσ  should be the same as 33σ ′  and it 

is.  The stress Sσ  should be equal to ( ) ( )2
32

2
31 σσ ′+′  and it is.  The results are 

1x

1e
22 ee ′=

3e

3e′

22 xx ′=

3x

1e′

1x′

3x′
o45

o45
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displayed in Fig. 7.2.9, in which the traction is represented in different ways, with 
components ( ))(

3
)(

2
)(

1 ,, nnn ttt  and ( )333231 ,, σσσ ′′′ . 
 

 
 

Figure 7.2.9: traction and stresses acting on a plane 
 
 
Isotropic State of Stress 
 
Suppose the state of stress in a body is 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

0

0

0

0

00
00
00

σ
σ

σ
δσσ σijij            (7.2.17) 

 
One finds that the application of the stress tensor transformation rule yields the very same 
components no matter what the new coordinate system{▲Problem 3}.  In other words, no 
shear stresses act, no matter what the orientation of the plane through the point.  This is 
termed an isotropic state of stress, or a spherical state of stress.  One example of 
isotropic stress is the stress arising in a fluid at rest, which cannot support shear stress, in 
which case 
 

[ ] [ ]Iσ p−=         (7.2.18) 
 
where the scalar p is the fluid hydrostatic pressure.  For this reason, an isotropic state of 
stress is also referred to as a hydrostatic state of stress. 
 
 
7.2.4 Principal Stresses 
 
For certain planes through a material particle, there are traction vectors which act normal 
to the plane, as in Fig. 7.2.10.  In this case the traction can be expressed as a scalar 
multiple of the normal vector, nt n σ=)( . 
 

3en ′=

22 xx ′=

1x′

2
3

33 =′=σσN

)(nt

2
3

32 −=′σ

2
1

31 =′σ

2)(
1 =nt

2
1)(

2 −=nt

2
1)(

3 =nt
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Figure 7.2.10: a purely normal traction vector 
 
From Cauchy’s law then,  for these planes, 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡
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⎥
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⎥
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⎡
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232221

131211

,,
n

n

n

n

n

n

nn ijij σ
σσσ
σσσ
σσσ

σσσ nnσ                     (7.2.19) 

 
This is a standard eigenvalue problem from Linear Algebra: given a matrix [ ]ijσ , find 
the eigenvalues σ  and associated eigenvectors n such that Eqn. 7.2.19 holds. 
To solve the problem, first re-write the equation in the form 
 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡
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⎥
⎥
⎥
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⎢
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⎡
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⎪
⎬

⎫

⎪
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⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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0
0
0

100
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,0,

3

2

1

333231

232221

131211

n

n

n

n jijij σ
σσσ
σσσ
σσσ

σδσσ 0nIσ  (7.2.20) 

 
or 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−

−

0
0
0

3

2

1

333231

232221

131211

n
n
n

σσσσ
σσσσ
σσσσ

                            (7.2.21) 

 
This is a set of three homogeneous equations in three unknowns (if one treats σ  as 
known).  From basic linear algebra, this system has a solution (apart from 0=in ) if and 
only if the determinant of the coefficient matrix is zero, i.e. if  
 

0det)det(
333231

232221

131211
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−

−
=−

σσσσ
σσσσ
σσσσ

σIσ                (7.2.22) 

 
Evaluating the determinant, one has the following cubic characteristic equation of the 
stress tensor σ , 
 

032
2

1
3 =−+− III σσσ  Characteristic Equation      (7.2.23) 

 
and the principal scalar invariants of the stress tensor are  

no shear stress – only a normal 
component to the traction 

n

nt n σ=)(



Section 7.2 

Solid Mechanics Part II                                                                                Kelly 211

 

312312
2
1233

2
3122

2
23113322113

2
31

2
23

2
121133332222112

3322111

2 σσσσσσσσσσσσ
σσσσσσσσσ

σσσ

+−−−=
−−−++=

++=

I
I
I

           (7.2.24) 

 
( 3I  is the determinant of the stress matrix.)  The characteristic equation 7.2.23 can now be 
solved for the eigenvalues σ  and then Eqn. 7.2.21 can be used to solve for the 
eigenvectors n. 
 
Now another theorem of linear algebra states that the eigenvalues of a real (that is, the 
components are real), symmetric matrix (such as the stress matrix) are all real and further 
that the associated eigenvectors are mutually orthogonal.  This means that the three roots 
of the characteristic equation are real and that the three associated eigenvectors form a 
mutually orthogonal system.  This is illustrated in Fig. 7.2.11; the eigenvalues are called 
principal stresses and are labelled 321 ,, σσσ  and the three corresponding eigenvectors 
are called principal directions, the directions in which the principal stresses act.  The 
planes on which the principal stresses act (to which the principal directions are normal) 
are called the principal planes. 
 

 
 
Figure 7.2.11: the three principal stresses acting at a point and the three associated 

principal directions 1, 2 and 3 
 
 
Once the principal stresses are found, as mentioned, the principal directions can be found 
by solving Eqn. 7.2.21, which can be expressed as 
 

0)(
0)(
0)(

333232131

323222121

313212111

=−++
=+−+
=++−

nnn
nnn
nnn

σσσσ
σσσσ
σσσσ

   (7.2.25) 

 
Each principal stress value in this equation gives rise to the three components of the 
associated principal direction vector, 321 ,, nnn .  The solution also requires that the 
magnitude of the normal be specified: for a unit vector, 1=⋅nn .  The directions of the 
normals are also chosen so that they form a right-handed set. 
 
 

1

1σ

3σ

2σ

3

2
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Example 
 
The stress at a point is given with respect to the axes 321 xxOx  by the values 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−=

1120
1260
005

ijσ . 

Determine (a) the principal values, (b) the principal directions (and sketch them). 
  
Solution: 
(a) 
The principal values are the solution to the characteristic equation 

0)15)(5)(10(
1120

1260
005

=+−+−=
−−
−−−

−
σσσ

σ
σ

σ
 

which yields the three principal values 15,5,10 321 −=== σσσ . 
(b) 
The eigenvectors are now obtained from Eqn. 7.2.25.  First, for 101 =σ , 

09120
012160
0005

321

321

321

=−−
=−−
=++−

nnn

nnn

nnn

 
and using also the equation 12

3
2
2

2
1 =++ nnn  leads to 321 )5/4()5/3( een +−= .  Similarly, 

for 52 =σ  and 153 −=σ , one has, respectively, 

04120
012110
0000

321

321

321

=−−
=−−
=++

nnn
nnn
nnn

    and    
016120
01290
00020

321

321

321

=+−
=−+
=++

nnn

nnn

nnn

 

which yield 12 en =  and 323 )5/3()5/4( een += .  The principal directions are sketched in 
Fig. 7.2.12.  Note that the three components of each principal direction, 321 ,, nnn , are the 
direction cosines: the cosines of the angles between that principal direction and the three 
coordinate axes.  For example, for 1σ  with 5/4,5/3,0 321 =−== nnn , the angles made 
with the coordinate axes 321 ,, xxx  are, respectively, 0, 127o and 37o. 
 

 
 

Figure 7.2.12: principal directions 
■  
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Invariants 
 
The principal stresses 321 ,, σσσ  are independent of any coordinate system; the 3210 xxx  
axes to which the stress matrix in Eqn. 7.2.19 is referred can have any orientation – the 
same principal stresses will be found from the eigenvalue analysis.  This is expressed by 
using the symbolic notation for the problem: nnσ σ= , which is independent of any 
coordinate system.  Thus the principal stresses are intrinsic properties of the stress state at 
a point.  It follows that the functions 321 ,, III  in the characteristic equation Eqn. 7.2.23 
are also independent of any coordinate system, and hence the name principal scalar 
invariants (or simply invariants) of the stress. 
 
The stress invariants can also be written neatly in terms of the principal stresses: 
 

3213

1332212

3211

σσσ
σσσσσσ

σσσ

=
++=

++=

I
I
I

       (7.2.26) 

 
Also, if one chooses a coordinate system to coincide with the principal directions, Fig. 
7.2.12, the stress matrix takes the simple form 
 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

3

2

1

00
00
00

σ
σ

σ
σ ij              (7.2.27) 

 
Note that when two of the principal stresses are equal, one of the principal directions will 
be unique, but the other two will be arbitrary – one can choose any two principal 
directions in the plane perpendicular to the uniquely determined direction, so that the 
three form an orthonormal set.  This stress state is called axi-symmetric.  When all three 
principal stresses are equal, one has an isotropic state of stress, and all directions are 
principal directions – the stress matrix has the form 7.2.27 no matter what orientation the 
planes through the point. 
 
Example 
 
The two stress matrices from the Example of §7.2.3, describing the stress state at a point 
with respect to different coordinate systems, are 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=
120
231

012

ijσ ,           [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=′

2/32/12/1
2/132/3

2/12/32/3
ijσ  

The first invariant is the sum of the normal stresses, the diagonal terms, and is the same 
for both as expected: 

63132 2
3

2
3

1 =++=++=I  
The other invariants can also be obtained from either matrix, and are 

3,6 32 −== II  
■  
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7.2.5 Maximum and Minimum Stress Values 
 
Normal Stresses 
 
The three principal stresses include the maximum and minimum normal stress 
components acting at a point.  To prove this, first let 321 ,, eee  be unit vectors in the 

principal directions.  Consider next an arbitrary unit normal vector iin en = .  From 
Cauchy’s law (see Fig. 7.2.13 – the stress matrix in Cauchy’s law is now with respect to 
the principal directions 1, 2 and 3),  the normal stress acting on the plane with normal n is 
 

( ) ijijNN nnσσσ =⋅=⋅= ,)( nnσnt n            (7.2.28) 
 

 
 

Figure 7.2.13: normal stress acting on a plane defined by the unit normal n 
 
Thus 
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=          (7.2.29) 

 
Since 12

3
2
2

2
1 =++ nnn  and, without loss of generality, taking 321 σσσ ≥≥ , one has 

 
( ) Nnnnnnn σσσσσσ =++≥++= 2

33
2
22

2
11

2
3

2
2

2
111      (7.2.30) 

 
Similarly, 
 

( ) 3
2
3

2
2

2
13

2
33

2
22

2
11 σσσσσσ ≥++≥++= nnnnnnN      (7.2.31) 

 
Thus the maximum normal stress acting at a point is the maximum principal stress and the 
minimum normal stress acting at a point is the minimum principal stress. 
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Shear Stresses 
 
Next, it will be shown that the maximum shearing stresses at a point act on planes 
oriented at 45o to the principal planes and that they have magnitude equal to half the 
difference between the principal stresses.  First, again, let 321 ,, eee  be unit vectors in the 
principal directions and consider an arbitrary unit normal vector iin en = .  The normal 
stress is given by Eqn. 7.2.29, 
 

2
33

2
22

2
11 nnnN σσσσ ++=                                (7.2.32) 

 
Cauchy’s law gives the components of the traction vector as 
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             (7.2.33) 

 
and so the shear stress on the plane is, from Eqn. 7.2.11, 
 

( ) ( )22
33

2
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2
11

2
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2
3

2
2

2
2

2
1

2
1

2 nnnnnnS σσσσσσσ ++−++=            (7.2.34) 
 
Using the condition 12

3
2
2

2
1 =++ nnn  to eliminate 3n  leads to 
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The stationary points are now obtained by equating the partial derivatives with respect to 
the two variables 1n  and 2n  to zero: 
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      (7.2.36) 

 
One sees immediately that 021 == nn  (so that 13 ±=n ) is a solution; this is the principal 
direction 3e  and the shear stress is by definition zero on the plane with this normal.  In 
this calculation, the component 3n  was eliminated and 2

Sσ  was treated as a function of the 
variables ),( 21 nn .  Similarly, 1n  can be eliminated with ),( 32 nn  treated as the variables, 
leading to the solution 1en = , and 2n  can be eliminated with ),( 31 nn  treated as the 
variables, leading to the solution 2en = .  Thus these solutions lead to the minimum shear 
stress value 02 =Sσ . 
 
A second solution to Eqn. 7.2.36 can be seen to be 2/1,0 21 ±== nn  (so that 

2/13 ±=n ) with corresponding shear stress values ( )2
324

12 σσσ −=S .  Two other 
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solutions can be obtained as described earlier, by eliminating 1n  and by eliminating 2n .  
The full solution is listed below, and these are evidently the maximum (absolute value of 
the) shear stresses acting at a point: 
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      (7.2.37) 

 
Taking 321 σσσ ≥≥ , the maximum shear stress at a point is 
 

( )31max 2
1 σστ −=     (7.2.38) 

 
and acts on a plane with normal oriented at 45o to the 1 and 3 principal directions.  This is 
illustrated in Fig. 7.2.14. 
 

 
 

Figure 7.2.14: maximum shear stress at a point 
 
 
Example 
 
Consider the stress state examined in the Example of §7.2.4: 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−=

1120
1260
005

ijσ  

The principal stresses were found to be 15,5,10 321 −=== σσσ  and so the maximum 
shear stress is 

( )
2
25

2
1

31max =−= σστ  

One of the planes upon which they act is shown in Fig. 7.2.15 (see Fig. 7.2.12) 
 

1

3

maxτ

maxτ

principal 
directions 
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Figure 7.2.15: maximum shear stress 
 

■  
 
 
7.2.6 Mohr’s Circles of Stress 
 
The Mohr’s circle for 2D stress states was discussed in Part I, §3.5.4.  For the 3D case, 
following on from section 7.2.5, one has the conditions 
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                        (7.2.39) 

 
Solving these equations gives 
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         (7.2.40) 

 
Taking 321 σσσ ≥≥ , and noting that the squares of the normal components must be 
positive, one has that 
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                 (7.2.41) 

 
and these can be re-written as 
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If one takes coordinates ( )SN σσ , , the equality signs here represent circles in ( )SN σσ ,  
stress space, Fig. 7.2.16.  Each point ( )SN σσ ,  in this stress space represents the stress on 
a particular plane through the material particle in question.  Admissible ( )SN σσ ,  pairs are 
given by the conditions Eqns. 7.2.42; they must lie inside a circle of centre ( )( )0,312

1 σσ +  
and radius ( )312

1 σσ − .  This is the large circle in Fig. 7.2.16.  The points must lie outside 
the circle with centre ( )( )0,322

1 σσ +  and radius ( )322
1 σσ −  and also outside the circle 

with centre ( )( )0,212
1 σσ +  and radius ( )212

1 σσ − ; these are the two smaller circles in the 
figure.  Thus the admissible points in stress space lie in the shaded region of Fig. 7.2.16. 
 

 
 

Figure 7.2.16: admissible points in stress space 
 
 
7.2.7 Three Dimensional Strain 
 
The strain ijε , in symbolic form ε , is a tensor and as such it follows the same rules as for 
the stress tensor.  In particular, it follows the general tensor transformation rule 7.2.16; it 
has principal values ε  which satisfy the characteristic equation 7.2.23 and these include 
the maximum and minimum normal strain at a point.  There are three principal strain 
invariants  given by 7.2.24 or 7.2.26 and the maximum shear strain occurs on planes 
oriented at 45o to the principal directions. 
 
 
7.2.8 Problems 
 
1. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by  

[ ]
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⎡
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−=

212
101

212
ijσ  

Use Cauchy’s law to determine the traction vector acting on a plane trough this 
point whose unit normal is 3/)( 321 eeen ++= .  What is the normal stress acting 
on the plane?  What is the shear stress acting on the plane? 
 

2. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by 
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What are the stress components with respect to axes 3210 xxx ′′′  which are obtained 
from the first by a o45  rotation (positive counterclockwise) about the 3x  axis 
 

3. Show, in both the index and matrix notation, that the components of an isotropic 
stress state remain unchanged under a coordinate transformation. 

 
4. Consider a two-dimensional problem.  The stress transformation formulae are then, 

in full, 
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Multiply the right hand side out and use the fact that the stress tensor is symmetric 
( 2112 σσ =  - not true for all tensors).  What do you get?  Look familiar? 

 
5. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by 
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ijσ  

Evaluate the principal stresses and the principal directions.  What is the maximum 
shear stress acting at the point? 
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7.3 Governing Equations of Three Dimensional 
Elasticity 

 
 
7.3.1 Hooke’s Law and Lamé’s Constants 
 
Linear elasticity was introduced in Part I, §4.2.  The three-dimensional Hooke’s law for 
isotropic linear elastic solids (Part I, Eqns. 4.2.9) can be expressed in index notation as 
 

ijkkijij μεελδσ 2+=                                           (7.3.1) 
 
where (see also Part I, Eqns. 6.2.21) 
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EE                               (7.3.2) 

 
are the Lamé constants ( μ  is the Shear Modulus).  Eqns. 7.3.1 can be inverted to obtain 
{▲Problem 1} 
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7.3.2 Navier’s Equations 
 
The governing equations of elasticity are Hooke’s law (Eqn. 7.3.1), the equations of 
motion, Eqn. 1.1.9 (see Eqns. 7.1.10-11), 
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 and the strain-displacement relations, Eqn. 1.2.19 (see Eqns. 7.1.25-26), 
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Substituting 7.3.5 into 7.3.1 and then into 7.3.4 leads to the 3D Navier’s equations 
{▲Problem 2} 
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jj
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ij

j ab
xx

u

xx
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22

      Navier’s Equations     (7.3.6) 

 
These reduce to the 2D plane strain Navier’s equations, Eqns. 3.1.4, by setting 03 =u  and  

0/ 3 =∂∂ x .  They do not reduce to the plane stress equations since the latter are only an 
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approximate solution to the equations of elasticity which are valid only in the limit as the 
thickness of the thin plate of plane stress tends to zero.   
 
 
7.3.3 Problems 
 
1. Invert Eqns. 7.3.1 to get 7.3.3. 
 
2. Derive the 3D Navier’s equations from 7.3.6 from 7.3.1, 7.3.4 and 7.3.5 
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1 
 

1 Vectors & Tensors 
 
 
The mathematical modeling of the physical world requires knowledge of quite a few 
different mathematics subjects, such as Calculus, Differential Equations and Linear 
Algebra.  These topics are usually encountered in fundamental mathematics courses.  
However, in a more thorough and in-depth treatment of mechanics, it is essential to 
describe the physical world using the concept of the tensor, and so we begin this book 
with a comprehensive chapter on the tensor. 
 
The chapter is divided into three parts.  The first part covers vectors (§1.1-1.7).  The 
second part is concerned with second, and higher-order, tensors (§1.8-1.15).  The second 
part covers much of the same ground as done in the first part, mainly generalizing the 
vector concepts and expressions to tensors.  The final part (§1.16-1.19) (not required in 
the vast majority of applications) is concerned with generalizing the earlier work to 
curvilinear coordinate systems.  
 
The first part comprises basic vector algebra, such as the dot product and the cross 
product; the mathematics of how the components of a vector transform between different 
coordinate systems; the symbolic, index and matrix notations for vectors; the 
differentiation of vectors, including the gradient, the divergence and the curl; the 
integration of vectors, including line, double, surface and volume integrals, and the 
integral theorems. 
 
The second part comprises the definition of the tensor (and a re-definition of the vector); 
dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, 
transpose, norm, determinant and principal values; special tensors, such as the spherical, 
identity and orthogonal tensors; the transformation of tensor components between 
different coordinate systems; the calculus of tensors, including the gradient of vectors and 
higher order tensors and the divergence of higher order tensors and special fourth order 
tensors. 
 
In the first two parts, attention is restricted to rectangular Cartesian coordinates (except 
for brief forays into cylindrical and spherical coordinates).  In the third part, curvilinear 
coordinates are introduced, including covariant and contravariant vectors and tensors, the 
metric coefficients, the physical components of vectors and tensors, the metric, coordinate 
transformation rules, tensor calculus, including the Christoffel symbols and covariant 
differentiation, and curvilinear coordinates for curved surfaces. 
 
 



2 
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1.1 Vector Algebra 
 
 
1.1.1 Scalars 
 
A physical quantity which is completely described by a single real number is called a 
scalar.  Physically, it is something which has a magnitude, and is completely described 
by this magnitude.  Examples are temperature, density and mass.  In the following, 
lowercase (usually Greek) letters, e.g.  ,, , will be used to represent scalars. 
 
 
1.1.2 Vectors 
 
The concept of the vector is used to describe physical quantities which have both a 
magnitude and a direction associated with them.  Examples are force, velocity, 
displacement and acceleration. 
 
Geometrically, a vector is represented by an arrow; the arrow defines the direction of the 
vector and the magnitude of the vector is represented by the length of the arrow, Fig. 
1.1.1a. 
 
Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 
 
The magnitude (or length) of a vector is denoted by a  or a.  It is a scalar and must be 

non-negative.  Any vector whose length is 1 is called a unit vector; unit vectors will 
usually be denoted by e. 
 

 
 

Figure 1.1.1: (a) a vector; (b) addition of vectors 
 
 
1.1.3 Vector Algebra 
 
The operations of addition, subtraction and multiplication familiar in the algebra of 
numbers (or scalars) can be extended to an algebra of vectors. 
 
 
 
 

a
b

c

(a) (b) 
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The following definitions and properties fundamentally define the vector: 
1. Sum of Vectors: 

The addition of vectors a and b is a vector c formed by placing the initial point of 
b on the terminal point of a and then joining the initial point of a to the terminal 
point of b.  The sum is written bac  .  This definition is called the 
parallelogram law for vector addition because, in a geometrical interpretation of 
vector addition, c is the diagonal of a parallelogram formed by the two vectors a 
and b, Fig. 1.1.1b.  The following properties hold for vector addition: 

  a b b a    … commutative law 
        a b c a b c  … associative law 

 
2. The Negative Vector: 

For each vector a there exists a negative vector.  This vector has direction 
opposite to that of vector a but has the same magnitude; it is denoted by a .  A 
geometrical interpretation of the negative vector is shown in Fig. 1.1.2a. 
 

3. Subtraction of Vectors and the Zero Vector: 
The subtraction of two vectors a and b is defined by )( baba  , Fig. 
1.1.2b.  If ba   then ba   is defined as the zero vector (or null vector) and is 
represented by the symbol o.  It has zero magnitude and unspecified direction.  A 
proper vector is any vector other than the null vector.  Thus the following 
properties hold: 

  oaa

aoa




 

 
4. Scalar Multiplication: 

The product of a vector a by a scalar   is a vector a  with magnitude   times 

the magnitude of a and with direction the same as or opposite to that of a, 
according as   is positive or negative.  If 0 , a  is the null vector.  The 
following properties hold for scalar multiplication: 
  aaa     … distributive law, over addition of scalars 

  baba     … distributive law, over addition of vectors 
aa )()(     … associative law for scalar multiplication 

 

 
 

Figure 1.1.2: (a) negative of a vector; (b) subtraction of vectors 
 

(a) (b) 

a
a

a

b

ba 

ba
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Note that when two vectors a and b are equal, they have the same direction and 
magnitude, regardless of the position of their initial points.  Thus a b in Fig. 1.1.3.  A 
particular position in space is not assigned here to a vector – it just has a magnitude and a 
direction.  Such vectors are called free, to distinguish them from certain special vectors to 
which a particular position in space is actually assigned. 
 

 
 

Figure 1.1.3: equal vectors 
 
The vector as something with “magnitude and direction” and defined by the above rules is 
an element of one case of the mathematical structure, the vector space.  The vector space 
is discussed in the next section, §1.2. 
 
 
1.1.4 The Dot Product 
 
The dot product of two vectors a and b (also called the scalar product) is denoted by 

ba  .  It is a scalar defined by 
 

cosbaba  .             (1.1.1) 

 
  here is the angle between the vectors when their initial points coincide and is restricted 
to the range  0 , Fig. 1.1.4. 
 

 
 

Figure 1.1.4: the dot product 
 
An important property of the dot product is that if for two (proper) vectors a and b, the 
relation 0ba , then a and b are perpendicular.  The two vectors are said to be 

orthogonal.  Also, )0cos(aaaa  , so that the length of a vector is aaa  . 

 
Another important property is that the projection of a vector u along the direction of a 
unit vector e is given by eu  .  This can be interpreted geometrically as in Fig. 1.1.5. 
 
 

a

b

a

b



a
b
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Figure 1.1.5: the projection of a vector along the direction of a unit vector 
 
It follows that any vector u can be decomposed into a component parallel to a (unit) 
vector e and another component perpendicular to e, according to 
 

    eeuueeuu                                               (1.1.2) 
 
The dot product possesses the following properties (which can be proved using the above 
definition) {▲Problem 6}: 

(1) abba    (commutative)       
(2)   cabacba   (distributive) 

(3)    baba    
(4) 0aa ; and 0aa  if and only if oa   

 
 
1.1.5 The Cross Product 
 
The cross product of two vectors a and b (also called the vector product) is denoted by 

ba .  It is a vector with magnitude 
 

sinbaba                             (1.1.3) 

 
with   defined as for the dot product.  It can be seen from the figure that the magnitude 
of ba  is equivalent to the area of the parallelogram determined by the two vectors a 
and b. 
 

 
 

Figure 1.1.6: the magnitude of the cross product 
 
The direction of this new vector is perpendicular to both a and b.  Whether ba  points 
“up” or “down” is determined from the fact that the three vectors a, b and ba  form a 
right handed system.  This means that if the thumb of the right hand is pointed in the 

a

b



ba

u

e

u



cosueu 
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direction of ba , and the open hand is directed in the direction of a, then the curling of 
the fingers of the right hand so that it closes should move the fingers through the angle  , 

 0 , bringing them to b.  Some examples are shown in Fig. 1.1.7. 
 

 
 

Figure 1.1.7: examples of the cross product 
 
The cross product possesses the following properties (which can be proved using the 
above definition): 

(1) abba    (not commutative) 
(2)   cabacba   (distributive) 

(3)    baba    

(4) oba   if and only if a and b  o  are parallel (“linearly dependent”) 
 
 
The Triple Scalar Product 
 
The triple scalar product, or box product, of three vectors wvu ,,  is defined by 
 

      vuwuwvwvu   Triple Scalar Product         (1.1.4) 
 
Its importance lies in the fact that, if the three vectors form a right-handed triad, then the 
volume V of a parallelepiped spanned by the three vectors is equal to the box product. 
 
To see this, let e be a unit vector in the direction of vu , Fig. 1.1.8.  Then the projection 
of w on vu  is ew h , and 
 

   

V

h







vu

evuwvuw

      (1.1.5) 

 

a

b

ba



a

b
ba


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Figure 1.1.8: the triple scalar product 
 
Note: if the three vectors do not form a right handed triad, then the triple scalar product 
yields the negative of the volume.  For example, using the vectors above, 
  V   w v u . 

 
 
1.1.6 Vectors and Points 
 
Vectors are objects which have magnitude and direction, but they do not have any 
specific location in space.  On the other hand, a point has a certain position in space, and 
the only characteristic that distinguishes one point from another is its position.  Points 
cannot be “added” together like vectors.  On the other hand, a vector v can be added to a 
point p to give a new point q, pvq  , Fig. 1.1.9.  Similarly, the “difference” between 
two points gives a vector, vpq  .  Note that the notion of point as defined here is 
slightly different to the familiar point in space with axes and origin – the  concept of 
origin is not necessary for these points and their simple operations with vectors. 
 

 
 

Figure 1.1.9: adding vectors to points 
 
 
1.1.7 Problems 
 
1. Which of the following are scalars and which are vectors? 

(i) weight 
(ii) specific heat 
(iii) momentum 
(iv) energy 
(v) volume 

2. Find the magnitude of the sum of three unit vectors drawn from a common vertex of 
a cube along three of its sides. 

w

u
v e h





p

q

v
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3. Consider two non-collinear (not parallel) vectors a and b.  Show that a vector r 
lying in the same plane as these vectors can be written in the form bar qp  , 
where p and q are scalars. [Note: one says that all the vectors r in the plane are 
specified by the base vectors a and b.] 

4. Show that the dot product of two vectors u and v can be interpreted as the 
magnitude of u times the component of v in the direction of u. 

5. The work done by a force, represented by a vector F, in moving an object a given 
distance is the product of the component of force in the given direction times the 
distance moved.  If the vector s represents the direction and magnitude (distance) 
the object is moved, show that the work done is equivalent to sF  . 

6. Prove that the dot product is commutative, abba  .  [Note: this is equivalent to 
saying, for example, that the work done in problem 5 is also equal to the component 
of s in the direction of the force, times the magnitude of the force.] 

7. Sketch ab  if a and b are as shown below. 

 

8. Show that 
2222

bababa  . 

9. Suppose that a rigid body rotates about an axis O with angular speed w, as shown 
below.  Consider a point p in the body with position vector r.  Show that the 
velocity v of p is given by rωv  , where ω  is the vector with magnitude   and 
whose direction is that in which a right-handed screw would advance under the 
rotation.  [Note: let s be the arc-length traced out by the particle as it rotates through 
an angle   on a circle of radius r , then rv  v  (since 

)/(/, dtdrdtdsrs   ).] 

 
10. Show, geometrically, that the dot and cross in the triple scalar product can be 

interchanged:    cbacba  . 

11. Show that the triple vector product   cba   lies in the plane spanned by the 
vectors a and b. 

 

ω

v

r



O

p

r

a b
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1.2 Vector Spaces 
 
The notion of the vector presented in the previous section is here re-cast in a more formal 
and abstract way, using some basic concepts of Linear Algebra and Topology.  This 
might seem at first to be unnecessarily complicating matters, but this approach turns out 
to be helpful in unifying and bringing clarity to much of the theory which follows. 
 
Some background theory which complements this material is given in Appendix A to this 
Chapter, §1.A. 
 
 
1.2.1 The Vector Space 
 
The vectors introduced in the previous section obey certain rules, those listed in §1.1.3.  It 
turns out that many other mathematical objects obey the same list of rules.  For that 
reason, the mathematical structure defined by these rules is given a special name, the 
linear space or vector space. 
 
First, a set is any well-defined list, collection, or class of objects, which could be finite or 
infinite.  An example of a set might be 
 

 3|  xxB                                                            (1.2.1) 
 
which reads “B is the set of objects x such that x satisfies the property 3x ”.  Members 
of a set are referred to as elements. 
 
Consider now the field1 of real numbers R.  The elements of R are referred to as scalars.  
Let V be a non-empty set of elements ,,, cba  with rules of addition and scalar 
multiplication, that is there is a sum V ba  for any Vba,  and a product Va  
for any Va , R .  Then V is called a (real)2 vector space over R if the following 
eight axioms hold: 
1. associative law for addition: for any Vcba ,, , one has )()( cbacba   
2. zero element: there exists an element Vo , called the zero element, such that 

aaooa   for every Va  
3. negative (or inverse): for each Va  there exists an element V a , called the 

negative of a, such that 0)()(  aaaa  
4. commutative law for addition: for any Vba, , one has abba   
5. distributive law, over addition of elements of V: for any Vba,  and scalar R , 

baba   )(    
6. distributive law, over addition of scalars: for any Va  and scalars R , , 

aaa   )(  

                                                 
1 A field is another mathematical structure (see Appendix A to this Chapter, §1.A).  For example, the set of 
complex numbers is a field.  In what follows, the only field which will be used is the familiar set of real 
numbers with the usual operations of addition and multiplication.  
2 “real”, since the associated field is the reals.  The word real will usually be omitted in what follows for 
brevity. 
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7. associative law for multiplication: for any Va  and scalars R , , 
aa )()(    

8. unit multiplication: for the unit scalar R1 , aa 1  for any Va . 
 
The set of vectors as objects with “magnitude and direction” discussed in the previous 
section satisfy these rules and therefore form a vector space over R.  However, despite the 
name “vector” space, other objects, which are not the familiar geometric vectors, can also 
form a vector space over R, as will be seen in a later section. 
 
 
1.2.2 Inner Product Space 
 
Just as the vector of the previous section is an element of a vector space, next is 
introduced the notion that the vector dot product is one example of the more general 
inner product. 
 
First, a function (or mapping) is an assignment which assigns to each element of a set A 
a unique element of a set B, and is denoted by 
 

BAf :                                                           (1.2.2) 
 
An ordered pair  ba,  consists of two elements a and b in which one of them is 
designated the first element and the other is designated the second element   The product 
set (or Cartesian product) BA  consists of all ordered pairs  ba,  where Aa  and 

Bb : 
 

  BbAabaBA  ,|,                                          (1.2.3) 
 
Now let V be a real vector space.  An inner product (or scalar product) on V is a 
mapping that associates to each ordered pair of elements x, y, a scalar, denoted by yx, , 
 

RVV  :,                                                 (1.2.4) 
 

that satisfies the following properties, for Vzyx ,, , R : 
 
1. additivity: zyzxzyx ,,,   

2. homogeneity: yxyx ,,    

3. symmetry: xyyx ,,   

4. positive definiteness: 0, xx  when ox   
 
From these properties, it follows that, if 0, yx  for all Vy , then 0x  
 
A vector space with an associated inner product is called an inner product space.  
 
Two elements of an inner product space are said to be orthogonal if 
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0, yx                                                         (1.2.5) 

 
and a set of elements of V,  ,,, zyx , are said to form an orthogonal set if every 
element in the set is orthogonal to every other element: 
 

,0,,0,,0,  zyzxyx etc.                          (1.2.6) 
 
The above properties are those listed in §1.1.4, and so the set of vectors with the 
associated dot product forms an inner product space.   
 
Euclidean Vector Space 
 
The set of real triplets  321 ,, xxx  under the usual rules of addition and multiplication 
forms a vector space 3R .  With the inner product defined by 
 

332211, yxyxyx yx  
 
one has the inner product space known as (three dimensional) Euclidean vector space, 
and denoted by E.  This inner product allows one to take distances (and angles) between 
elements of E through the norm (length) and metric (distance) concepts discussed next. 
 
 
1.2.3 Normed Space 
 
Let V be a real vector space.  A norm on V is a real-valued function, 
 

RV :                                                           (1.2.7) 
 

that satisfies the following properties, for Vyx, , R : 
 
1. positivity: 0x  

2. triangle inequality: yxyx   

3. homogeneity: xx    

4. positive definiteness: 0x  if and only if ox   
 
A vector space with an associated norm is called a normed vector space.  Many different 
norms can be defined on a given vector space, each one giving a different normed linear 
space.  A natural norm for the inner product space is 
 

xxx ,                                                      (1.2.8) 
 
It can be seen that this norm indeed satisfies the defining properties.  When the inner  
product is the vector dot product, the norm defined by 1.2.8 is the familiar vector 
“length”. 
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One important consequence of the definitions of inner product and norm is the Schwarz 
inequality, which states that 
 

yxyx ,                                                      (1.2.9) 
 
One can now define the angle between two elements of V to be 
 

  









 

yx
yx

yx
,

cos,,: 1 RVV                            (1.2.10) 

 
The quantity inside the curved brackets here is necessarily between 1  and 1 , by the 
Schwarz inequality, and hence the angle   is indeed a real number. 
 
 
1.2.4 Metric Spaces 
 
Metric spaces are built on the concept of “distance” between objects.  This is a 
generalization of the familiar distance between two points on the real line.  
 
Consider a set X.  A metric is a real valued function,   
 

  RXXd  :,                                                 (1.2.11) 
 

that satisfies the following properties, for Xyx, : 
 
1. positive: 0),( yxd  and 0),( xxd , for all Xyx,  
2. strictly positive: if 0),( yxd  then yx  , for all Xyx,  
3. symmetry: ),(),( xyyx dd  , for all Xyx,  
4. triangle inequality: ),(),(),( yzzxyx ddd  , for all Xzyx ,,  
 
A set X with an associated metric is called a metric space.  The set X can have more than 
one metric defined on it, with different metrics producing different metric spaces. 
 
Consider now a normed vector space.  This space naturally has a metric defined on it: 
 

  yxyx ,d                                                    (1.2.12) 
 
and thus the normed vector space is a metric space.  For the set of vectors with the dot 
product, this gives the “distance” between two vectors yx, . 
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1.2.5 The Affine Space 
 
Consider a set P, the elements of which are called points.  Consider also an associated 
vector space V.  An affine space consists of the set P, the set V, and two operations which 
connect P and V: 
 
(i)  given two points Pqp, , one can define a difference, pq   which is a unique 

element v of V, i.e. V pqv  
(ii) given a point Pp  and Vv , one can define the sum pv   which is a unique point 

q of P, i.e. P pvq   
 
and for which the following property holds, for Prqp ,,  :      pqprrq  . 
 
From the above, one has for the affine space that opp   and  qppq  , for all 

Pqp, . 
 
Note that one can take the sum of vectors, according to the structure of the vector space, 
but one cannot take the sum of points, only the difference between two points.  Further, 
there is no notion of origin in the affine space.  One can choose some fixed Po  to be 
an origin.  In that case, opv   is called the position vector of p relative to o.  
 
Suppose now that the associated vector space is a Euclidean vector space, i.e. an inner 
product space.  Define the distance between two points through the inner product 
associated with V, 
 

  pqpqpqqp  ,,d                                   (1.2.13) 
 
It can be shown that this mapping RPPd :  is a metric, i.e. it satisfies the metric 
properties, and thus P is a metric space (although it is not a vector space).  In this case, P 
is referred to as Euclidean point space, Euclidean affine space or, simply, Euclidean 
space.  Whereas in Euclidean vector space there is a zero element, the origin )0,0,0( , in 
Euclidean point space there is none – apart from that, the two spaces are the same and, 
apart from certain special cases, one does not need to distinguish between them. 
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1.3 Cartesian Vectors 
 
So far the discussion has been in symbolic notation1, that is, no reference to ‘axes’ or 
‘components’ or ‘coordinates’ is made, implied or required.  The vectors exist 
independently of any coordinate system.  It turns out that much of vector (tensor) 
mathematics is more concise and easier to manipulate in such notation than in terms of 
corresponding component notations.  However, there are many circumstances in which 
use of the component forms of vectors (and tensors) is more helpful – or essential.  In this 
section, vectors are discussed in terms of components – component form. 
 
 
1.3.1 The Cartesian Basis 
 
Consider three dimensional (Euclidean) space.  In this space, consider the three unit 
vectors 321 ,, eee  having the properties 

 
0133221  eeeeee ,    (1.3.1) 

 
so that they are mutually perpendicular (mutually orthogonal), and 
 

1332211  eeeeee ,    (1.3.2) 

 
so that they are unit vectors.  Such a set of orthogonal unit vectors is called an 
orthonormal set, Fig. 1.3.1.  Note further that this orthonormal system  321 ,, eee  is 
right-handed, by which is meant 321 eee   (or 132 eee   or 213 eee  ). 

 
This set of vectors  321 ,, eee  forms a basis, by which is meant that any other vector can 

be written as a linear combination of these vectors, i.e. in the form 
 

332211 eeea aaa                                           (1.3.3) 

          

 
 

Figure 1.3.1: an orthonormal set of base vectors and Cartesian components 
 

                                                 
1 or absolute or invariant or direct or vector notation 

1e
2e

3e

33 ea a
a

22 ea a

11 ea a



Section 1.3 

Solid Mechanics Part III                                                                                Kelly 16

By repeated application of Eqn. 1.1.2 to a vector a, and using 1.3.2, the scalars in 1.3.3 
can be expressed as (see Fig. 1.3.1) 
 

1 1 2 2 3 3, ,a a a     a e a e a e                                   (1.3.4)  

 
The scalars 21, aa  and 3a  are called the Cartesian components of a in the given basis 

 321 ,, eee .  The unit vectors are called base vectors when used for this purpose. 

 
Note that it is not necessary to have three mutually orthogonal vectors, or vectors of unit 
size, or a right-handed system, to form a basis – only that the three vectors are not co-
planar.  The right-handed orthonormal set is often the easiest basis to use in practice, but 
this is not always the case – for example, when one wants to describe a body with curved 
boundaries (e.g., see §1.6.10). 
 
The dot product of two vectors u and v, referred to the above basis, can be written as 
 

   
     

     
     

332211

333323231313

323222221212

313121211111

332211332211

vuvuvu

vuvuvu

vuvuvu

vuvuvu

vvvuuu









eeeeee
eeeeee

eeeeee
eeeeeevu

  (1.3.5) 

 
Similarly, the cross product is 

 
   

     
     
     

      312212133112332

333323231313

323222221212

313121211111

332211332211

eee
eeeeee

eeeeee
eeeeee
eeeeeevu

vuvuvuvuvuvu

vuvuvu

vuvuvu

vuvuvu

vvvuuu









  (1.3.6) 

 
This is often written in the form 
 

321

321

321

vvv

uuu

eee
vu  ,     (1.3.7) 

 
that is, the cross product is equal to the determinant of the 33  matrix 
 

















321

321

321

vvv

uuu

eee
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1.3.2 The Index Notation 
 
The expression for the cross product in terms of components, Eqn. 1.3.6, is quite lengthy 
– for more complicated quantities things get unmanageably long.  Thus a short-hand 
notation is used for these component equations, and this index notation2 is described 
here. 
 
In the index notation, the expression for the vector a in terms of the components 

321 ,, aaa  and the corresponding basis vectors 321 ,, eee  is written as 

 





3

1
332211

i
iiaaaa eeeea        (1.3.8) 

 
This can be simplified further by using Einstein’s summation convention, whereby the 
summation sign is dropped and it is understood that for a repeated index (i in this case) a 
summation over the range of the index (3 in this case3) is implied.  Thus one writes 

iia ea  .  This can be further shortened to, simply, ia . 

 
The dot product of two vectors written in the index notation reads  
 

iivu vu  Dot Product        (1.3.9) 

 
The repeated index i is called a dummy index, because it can be replaced with any other 
letter and the sum is the same; for example, this could equally well be written as 

jj vu vu  or kk vu . 

 
For the purpose of writing the vector cross product in index notation, the permutation 
symbol (or alternating symbol) ijk  can be introduced: 

 












equal are indices moreor   twoif0

)3,2,1( ofn permutatio oddan  is ),,( if1

)3,2,1( ofn permutatioeven an  is ),,( if1

kji

kji

ijk      (1.3.10) 

 
For example (see Fig. 1.3.2), 
 

    

0

1

1

122

132

123









 

 

                                                 
2 or indicial or subscript or suffix notation 
3 2 in the case of a two-dimensional space/analysis 
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Figure 1.3.2: schematic for the permutation symbol (clockwise gives +1) 
 
Note that 
 

ikjkjijikkijjkiijk                   (1.3.11) 

 
and that, in terms of the base vectors {▲Problem 7},  
 

                               kijkji eee              (1.3.12) 

 
and {▲Problem 7} 
 

  kjiijk eee  .                   (1.3.13) 

 
The cross product can now be written concisely as {▲Problem 8} 
 

kjiijk vu evu   Cross Product     (1.3.14) 

 
Introduce next the Kronecker delta symbol ij , defined by 

 









ji

ji
ij ,1

,0
      (1.3.15) 

 
Note that 111   but, using the index notation, 3ii .  The Kronecker delta  allows one 

to write the expressions defining the orthonormal basis vectors (1.3.1, 1.3.2) in the 
compact form 
 

ijji ee      Orthonormal Basis Rule          (1.3.16) 

 
The triple scalar product (1.1.4) can now be written as 
 

   

321

321

321

www

vvv

uuu

wvu

wvu

wvu

kjiijk

kmmjiijk

mmkjiijk













 eewvu

          (1.3.17) 

1

23
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Note that, since the determinant of a matrix is equal to the determinant of the transpose of 
a matrix, this is equivalent to 
 

 
333

222

111

wvu

wvu

wvu

 wvu        (1.3.18) 

 
Here follow some useful formulae involving the permutation and Kronecker delta symbol 
{▲Problem 13}: 
 

pkijpijk

jpiqjqipkpqijk





2


                   (1.3.19) 

 
Finally, here are some other important identities involving vectors; the third of these is 
called Lagrange’s identity4 {▲Problem 15}: 
 

     
     

   

         
           cdbabcdaacbddcba

dcbacdbadcba
dbda
cbca

dcba

cbabcacba
babababa











 222

    (1.3.20) 

 
 
1.3.3 Matrix Notation for Vectors 
 
The symbolic notation v  and index notation iiv e  (or simply iv ) can be used to denote a 

vector.  Another notation is the matrix notation: the vector v can be represented by a 
13  matrix (a column vector): 

 

















3

2

1

v

v

v

 
 
Matrices will be denoted by square brackets, so a shorthand notation for this 
matrix/vector would be  v .  The elements of the matrix  v  can be written in the element 
form iv .  The element form for a matrix is essentially the same as the index notation for 

the vector it represents. 
 

                                                 
4 to be precise, the special case of 1.3.20c, 1.3.20a, is Lagrange’s identity 
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Formally, a vector can be represented by the ordered triplet of real numbers,  321 ,, vvv .  

The set of all vectors can be represented by 3R , the set of all ordered triplets of real 
numbers: 
 

  RvvvvvvR  321321
3 ,,|,,                                 (1.3.21) 

 
It is important to note the distinction between a vector and a matrix: the former is a 
mathematical object independent of any basis, the latter is a representation of the vector 
with respect to a particular basis – use a different set of basis vectors and the elements of 
the matrix will change, but the matrix is still describing the same vector.  Said another 
way, there is a difference between an element (vector) v of Euclidean vector space and an 
ordered triplet 3Rvi  .  This notion will be discussed more fully in the next section. 

 
As an example, the dot product can be written in the matrix notation as 

 
 
Here, the notation  Tu  denotes the 31  matrix (the row vector).  The result is a 11  

matrix, i.e. a scalar, in element form iivu . 

 
 
1.3.4 Cartesian Coordinates 
 
Thus far, the notion of an origin has not been used.  Choose a point o in Euclidean (point) 
space, to be called the origin.  An origin together with a right-handed orthonormal basis 
 ie  constitutes a (rectangular) Cartesian coordinate system, Fig. 1.3.3. 

          

 
 

Figure 1.3.3: a Cartesian coordinate system 
 

o

v (point) 

ovv  (vector) 

1e
2e

3e

(point) 

“short” 
matrix notation 

“full” 
matrix notation

    

















3

2

1

321
T

v

v

v

uuuvu



Section 1.3 

Solid Mechanics Part III                                                                                Kelly 21

A second point v then defines a position vector ov  , Fig. 1.3.3.  The components of the 
vector ov   are called the (rectangular) Cartesian coordinates of the point v 5.  For 
brevity, the vector ov   is simply labelled v, that is, one uses the same symbol for both 
the position vector and associated point. 
 
 
1.3.5 Problems 
 
1. Evaluate vu   where 321 23 eeeu  , 321 424 eeev  . 

2. Prove that for any vector u, 332211 )()()( eeueeueeuu  .  [Hint: write u in 

component form.] 
3. Find the projection of the vector 321 2 eeeu   on the vector 

321 744 eeev  . 

4. Find the angle between 321 623 eeeu   and 321 34 eeev  . 

5. Write down an expression for a unit vector parallel to the resultant of two vectors u 
and v (in symbolic notation).  Find this vector when 321 542 eeeu  , 

321 32 eeev   (in component form).  Check that your final vector is indeed a 

unit vector. 
6. Evaluate vu , where 321 22 eeeu  , 321 22 eeev  . 

7. Verify that mijmji eee  .  Hence, by dotting each side with ke , show that 

  kjiijk eee  . 

8. Show that kjiijk vu evu  . 

9. The triple scalar product is given by   kjiijk wvu wvu .  Expand this equation 

and simplify, so as to express the triple scalar product in full (non-index) component 
form. 

10. Write the following in index notation: v , 1ev  , kev  . 

11. Show that jiij ba  is equivalent to ba  . 

12. Verify that 6ijkijk . 

13. Verify that jpiqjqipkpqijk    and hence show that pkijpijk  2 . 

14. Evaluate or simplify the following expressions: 
(a) kk     (b) ijij     (c) jkij     (d) kjjk v31   

15. Prove Lagrange’s identity 1.3.20c. 
16. If e is a unit vector and a an arbitrary vector, show that 

   eaeeeaa   
which is another representation of Eqn. 1.1.2, where a can be resolved into 
components parallel and perpendicular to e.  

                                                 
5 That is, “components” are used for vectors and “coordinates” are used for points 
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1.4 Matrices and Element Form 
 
 
1.4.1 Matrix – Matrix Multiplication 
 
In the next section, §1.5, regarding vector transformation equations, it will be necessary 
to multiply various matrices with each other (of sizes 13 , 31  and 33 ).  It will be 
helpful to write these matrix multiplications in a short-hand element form and to develop 
some short “rules” which will be beneficial right through this chapter. 
 
First, it has been seen that the dot product of two vectors can be represented by   vuT , or 

iivu .  Similarly, the matrix multiplication   Tvu  gives a 33  matrix with element form 

jivu  or, in full, 

 

















332313

322212

312111

vuvuvu

vuvuvu

vuvuvu

 

 
This type of matrix represents the tensor product of two vectors, written in symbolic 
notation as vu  (or simply uv).  Tensor products will be discussed in detail in §1.8 and 
§1.9. 
 
Next, the matrix multiplication 
 

  

































3

2

1

333231

232221

131211

u

u

u

QQQ

QQQ

QQQ

uQ                                            (1.4.1) 

 
is a 13  matrix with elements     jiji uQuQ  {▲Problem 1}.  The elements of   uQ  

are the same as those of   TT Qu , which in element form reads     ijji QuTT Qu . 

 
The expression   Qu  is meaningless, but   QuT  {▲Problem 2} is a 31  matrix with 

elements     jiji QuQuT . 

 
This leads to the following rule: 
 
 

1. if a vector pre-multiplies a matrix  Q    it is the transpose  Tu  

2. if a matrix  Q  pre-multiplies the vector   it is  u  

3. if summed indices are “beside each other”, as the j in jijQu  or jijuQ  

   the matrix is  Q  

4. if summed indices are not beside each other, as the j in ijjQu  

  the matrix is the transpose,  TQ  
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Finally, consider the multiplication of 33  matrices.  Again, this follows the “beside 
each other” rule for the summed index.  For example,   BA  gives the 33  matrix 

{▲Problem 6}     kjikij BABA , and the multiplication   BAT  is written as 

    kjkiij BABAT .  There is also the important identity 

 

      TTT ABBA         (1.4.2) 
 
Note also the following (which applies to both the index notation and element form): 

(i) if there is no free index, as in iivu , there is one element (representing a scalar) 

(ii) if there is one free index, as in jijQu , it is a 13  (or 31 ) matrix 

(representing a vector) 
(iii) if there are two free indices, as in kjki BA , it is a 33  matrix (representing, as 

will be seen later, a second-order tensor) 
 
 
1.4.2 The Trace of a Matrix 
 
Another important notation involving matrices is the trace of a matrix, defined to be the 
sum of the diagonal terms, and denoted by 
 

  iiAAAA  332211tr A      The Trace    (1.4.3) 

 
 
1.4.3 Problems 
 
1. Show that     jiji uQuQ . To do this, multiply the matrix and the vector in Eqn. 

1.4.1 and write out the resulting vector in full; Show that the three elements of the 
vector are 1 j jQ u , 2 j jQ u  and 3 j jQ u . 

2. Show that   QuT  is a 31  matrix with elements jijQu  (write the matrices out in 

full). 

3. Show that       TTT QuuQ  . 

4. Are the three elements of   uQ  the same as those of   QuT ? 

5. What is the element form for the matrix representation of  cba  ? 

6. Write out the 33  matrices A and B in full, i.e. in terms of ,, 1211 AA etc. and verify 

that   kjikij BAAB  for 1,2  ji . 

7. What is the element form for 
(i)   TBA  

(ii)    vAvT  (there is no ambiguity here, since           vAvvAv TT  ) 

(iii)    BABT  

8. Show that  Atrijij A . 

9. Show that 321321]det[ kjiijkkjiijk AAAAAA  A . 
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1.5 Coordinate Transformation of Vector Components 
 
Very often in practical problems, the components of a vector are known in one coordinate 
system but it is necessary to find them in some other coordinate system.   
 
For example, one might know that the force f acting “in the 1x  direction” has a certain 

value, Fig. 1.5.1 – this is equivalent to knowing the 1x  component of the force, in an 

21 xx   coordinate system.  One might then want to know what force is “acting” in some 

other direction – for example in the 1x  direction shown – this is equivalent to asking what 

the 1x  component of the force is in a new 21 xx   coordinate system. 
 

 
 

Figure 1.5.1: a vector represented using two different coordinate systems 
 
The relationship between the components in one coordinate system and the components 
in a second coordinate system are called the transformation equations.  These 
transformation equations are derived and discussed in what follows.  
 
 
1.5.1 Rotations and Translations 
 
Any change of Cartesian coordinate system will be due to a translation of the base 
vectors and a rotation of the base vectors.  A translation of the base vectors does not 
change the components of a vector.  Mathematically, this can be expressed by saying that 
the components of a vector a are ae i , and these three quantities do not change under a 

translation of base vectors. Rotation of the base vectors is thus what one is concerned 
with in what follows. 
 
 
1.5.2 Components of a Vector in Different Systems 
 
Vectors are mathematical objects which exist independently of any coordinate system.  
Introducing a coordinate system for the purpose of analysis, one could choose, for 
example, a certain Cartesian coordinate system with base vectors ie  and origin o, Fig. 

1x  component 
of force 

1x

2x

f
1x

2x
1x  component 

of force 
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1.5.2.  In that case the vector can be written as 332211 eeeu uuu  , and 321 ,, uuu  are 

its components. 
 
Now a second coordinate system can be introduced (with the same origin), this time with 
base vectors ie .  In that case, the vector can be written as 332211 eeeu  uuu , where 

321 ,, uuu   are its components in this second coordinate system, as shown in the figure.  

Thus the same vector can be written in more than one way: 
 

332211332211 eeeeeeu  uuuuuu  

 
The first coordinate system is often referred to as “the 321 xxox  system” and the second as 

“the 321 xxxo   system”. 

 

 
 

Figure 1.5.2: a vector represented using two different coordinate systems 
 
Note that the new coordinate system is obtained from the first one by a rotation of the 
base vectors.  The figure shows a rotation   about the 3x  axis (the sign convention for 

rotations is positive counterclockwise). 
 
Two Dimensions 
 
Concentrating for the moment on the two dimensions 21 xx  , from trigonometry (refer to 
Fig. 1.5.3), 
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and so 
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In matrix form, these transformation equations can be written as 
 



















 










2

1

2

1

cossin

sincos

u

u

u

u




  

 
 

Figure 1.5.3: geometry of the 2D coordinate transformation 
 
The 22  matrix is called the transformation or rotation matrix  Q .  By pre-

multiplying both sides of these equations by the inverse of  Q ,  1Q , one obtains the 

transformation equations transforming from  T21 uu  to  T21 uu  : 
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An important property of the transformation matrix is that it is orthogonal, by which is 
meant that 
 

   T1 QQ   Orthogonality of Transformation/Rotation Matrix     (1.5.1) 
 
Three Dimensions 
 
It is straight forward to show that, in the full three dimensions, Fig. 1.5.4, the components 
in the two coordinate systems are related through 
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where ),cos( ji xx   is the cosine of the angle between the ix  and jx  axes.  These nine 

quantities are called the direction cosines of the coordinate transformation.  Again 
denoting these by the letter Q, ),cos(),,cos( 21121111 xxQxxQ  , etc., so that 
 

),cos( jiij xxQ  ,       (1.5.2) 

 
one has the matrix equations 
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or, in element form and short-hand matrix notation, 

 
    uQu  jiji uQu           (1.5.3) 

 

 
 

Figure 1.5.4: two different coordinate systems in a 3D space 
 
Note: some authors define the matrix of direction cosines to consist of the components 

cos( , )Q x xij i j , so that the subscript i refers to the new coordinate system and the j to 

the old coordinate system, rather than the other way around as used here. 
 
 
Transformation of Cartesian Base Vectors 
 
The direction cosines introduced above also relate the base vectors in any two Cartesian 
coordinate systems.  It can be seen that 
 

ijji Qee           (1.5.4) 
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This relationship is illustrated in Fig. 1.5.5 for 1i . 
 
 

 
 

Figure 1.5.5: direction cosines 
 
Formal Derivation of the Transformation Equations 
 
In the above, the transformation equations jiji uQu   were derived geometrically.  They 

can also be derived algebraically using the index notation as follows: start with the 
relations jjkk uu eeu   and post-multiply both sides by ie  to get (the corresponding 

matrix representation is to the right (also, see Problem 3 in §1.4.3)): 
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The inverse equations are {▲Problem 3} 
 

    uQu T jjii uQu     (1.5.5) 

 
Orthogonality of the Transformation Matrix  Q  
 
As in the two dimensional case, the transformation matrix is orthogonal,    1T  QQ .  
This follows from 1.5.3, 1.5.5. 
 
Example 
 
Consider a Cartesian coordinate system with base vectors ie .  A coordinate 

transformation is carried out with the new basis given by 
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What is the transformation matrix? 
 
Solution 
 
The transformation matrix consists of the direction cosines jijiij xxQ ee  ),cos( , so 
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■  

 
 
1.5.3 Problems 
 
1. The angles between the axes in two coordinate systems are given in the table below. 

 
1x  2x  3x  

1x  o135  o60  o120  

2x  o90  o45  o45  

3x  o45  o60  o120  

Construct the corresponding transformation matrix  Q  and verify that it is 
orthogonal. 

2. The 321 xxxo   coordinate system is obtained from the 321 xxox  coordinate system by a 

positive (counterclockwise) rotation of   about the 3x  axis.  Find the (full three 

dimensional) transformation matrix  Q .  A further positive rotation   about the 

2x  axis is then made to give the 321 xxxo   coordinate system.  Find the 

corresponding transformation matrix  P .  Then construct the transformation matrix 

 R  for the complete transformation from the 321 xxox  to the 321 xxxo   coordinate 

system. 
3. Beginning with the expression ikkijj uu eeee  , formally derive the relation 

jjii uQu   (     uQu T ). 
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1.6 Vector Calculus 1 - Differentiation 
 
Calculus involving vectors is discussed in this section, rather intuitively at first and more 
formally toward the end of this section.  
 
 
1.6.1 The Ordinary Calculus 
 
Consider a scalar-valued function of a scalar, for example the time-dependent density 
of a material )(t  .  The calculus of scalar valued functions of scalars is just the 
ordinary calculus.  Some of the important concepts of the ordinary calculus are reviewed 
in Appendix B to this Chapter, §1.B.2. 
 
 
1.6.2 Vector-valued Functions of a scalar 
 
Consider a vector-valued function of a scalar, for example the time-dependent 
displacement of a particle )(tuu  .  In this case, the derivative is defined in the usual 
way, 
 

t

ttt

dt

d
t 


 

)()(
lim 0

uuu
, 

 
which turns out to be simply the derivative of the coefficients1, 
 

i
i

dt

du
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du
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du
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Partial derivatives can also be defined in the usual way.  For example, if u is a function of 
the coordinates, ),,( 321 xxxu , then 

 

1

3213211
0

1

),,(),,(
lim

1 x

xxxxxxx

x x 
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


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Differentials of vectors are also defined in the usual way, so that when 321 ,, uuu  undergo 

increments 332211 ,, uduuduudu  , the differential of u is 

 

332211 eeeu dududud   

 
and the differential and actual increment u  approach one another as 

0,, 321  uuu . 

 
 
 

                                                 
1 assuming that the base vectors do not depend on t 
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Space Curves 
 
The derivative of a vector can be interpreted geometrically as shown in Fig. 1.6.1: u  is 
the increment in u consequent upon an increment t  in t.  As t changes, the end-point of 
the vector )(tu  traces out the dotted curve   shown – it is clear that as 0t , u  
approaches the tangent to  , so that dtd /u  is tangential to  .  The unit vector tangent to 
the curve is denoted by τ : 
 

dtd

dtd

/

/

u

u
τ         (1.6.1) 

 

 
 

Figure 1.6.1: a space curve; (a) the tangent vector, (b) increment in arc length 
 
Let s be a measure of the length of the curve  , measured from some fixed point on  .  
Let s  be the increment in arc-length corresponding to increments in the coordinates, 

 T321 ,, uuu u , Fig. 1.6.1b.  Then, from the ordinary calculus (see  Appendix 

1.B),  
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so that 
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d


u
                (1.6.2) 

)(tu )( tt u
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Thus the unit vector tangent to the curve can be written as 
 

ds

d

dtds

dtd uu
τ 

/

/
     (1.6.3) 

 
If u is interpreted as the position vector of a particle and t is interpreted as time, then 

dtd /uv   is the velocity vector of the particle as it moves with speed dtds /  along  . 
 
Example (of particle motion) 
 
A particle moves along a curve whose parametric equations are 2

1 2tx  , ttx 42
2  , 

533  tx  where t is time.  Find the component of the velocity at time 1t  in the 

direction 321 23 eeea  . 

 
Solution 
 
The velocity is 
 

    
1at324

5342

321

32
2

1
2





t

tttt
dt

d

dt

d

eee

eee
r

v
 

 
The component in the given direction is av ˆ , where â  is a unit vector in the direction of 

a, giving 7/148 . 
■  

 
Curvature 
 
The scalar curvature )(s  of a space curve is defined to be the magnitude of the rate of 
change of the unit tangent vector: 
 

2

2

)(
ds

d

ds

d
s

uτ
                                                (1.6.4) 

 
Note that τ  is in a direction perpendicular to τ , Fig. 1.6.2.  In fact, this can be proved 
as follows: since τ  is a unit vector, ττ   is a constant ( 1 ), and so   0/  dsd ττ , but 
also,  
 

 
ds

d

ds

d τ
τττ  2  

 
and so τ  and dsd /τ  are perpendicular.  The unit vector defined in this way is called the 
principal normal vector: 
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ds

dτ
ν


1

                                                          (1.6.5) 

 
 

 
 

Figure 1.6.2: the curvature 
 
This can be seen geometrically in Fig. 1.6.2: from Eqn. 1.6.5, τ  is a vector of 
magnitude s  in the direction of the vector normal to τ .  The radius of curvature R is 
defined as the reciprocal of the curvature; it is the radius of the circle which just touches 
the curve at s, Fig. 1.6.2. 
 
Finally, the unit vector perpendicular to both the tangent vector and the principal normal 
vector is called the unit binormal vector: 
 

ντb                                                      (1.6.6) 
 
The planes defined by these vectors are shown in Fig. 1.6.3; they are called the rectifying 
plane, the normal plane and the osculating plane. 
 

 
 
Figure 1.6.3: the unit tangent, principal normal and binormal vectors and associated 

planes 
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Rules of Differentiation 
 
The derivative of a vector is also a vector and the usual rules of differentiation apply, 
 

 

 
dt

d

dt

d
t

dt

d
dt

d

dt

d

dt

d

 v
v

v

vu
vu





)(

    (1.6.7) 

 
Also, it is straight forward to show that {▲Problem 2} 
 

    a
va

vava
va

vav 
dt

d

dt

d

dt

d

dt

d

dt

d

dt

d
        (1.6.8) 

 
(The order of the terms in the cross-product expression is important here.) 
 
 
1.6.3 Fields 
 
In many applications of vector calculus, a scalar or vector can be associated with each 
point in space x.  In this case they are called scalar or vector fields.  For example 
 

)(x  temperature a scalar field (a scalar-valued function of position) 
)(xv  velocity a vector field (a vector valued function of position) 

 
These quantities will in general depend also on time, so that one writes ),( tx  or ),( txv .  
Partial differentiation of scalar and vector fields with respect to the variable t is 
symbolised by t / .  On the other hand, partial differentiation with respect to the 
coordinates is symbolised by ix / .  The notation can be made more compact by 

introducing the subscript comma to denote partial differentiation with respect to the 
coordinate variables, in which case ii x /,  , kjijki xxuu  /2

, , and so on. 

 
 
1.6.4 The Gradient of a Scalar Field 
 
Let )(x  be a scalar field.  The gradient of   is a vector field defined by (see Fig. 1.6.4) 
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     Gradient of a Scalar Field (1.6.9) 

 
The gradient   is of considerable importance because if one takes the dot product of 

  with xd , it gives the increment in  : 
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)()( xxx
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



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

                              (1.6.10) 

  

 
 

Figure 1.6.4: the gradient of a vector 
 
If one writes xd  as eex dxd  , where e is a unit vector in the direction of dx, then 

 

n
e

e d

d

dx

d  







direction in  

                (1.6.11) 

 
This quantity is called the directional derivative of  , in the direction of e, and will be 
discussed further in §1.6.11. 
 
The gradient of a scalar field is also called the scalar gradient, to distinguish it from the 
vector gradient (see later)2, and is also denoted by 
 

 grad      (1.6.12) 

 
Example (of the Gradient of a Scalar Field) 
 
Consider a two-dimensional temperature field 2

2
2
1 xx  .  Then 

 

2211 22 ee xx 
  

For example, at )0,1( , 1 , 12e  and at  )1,1( , 2 , 21 22 ee  , Fig. 1.6.5.  
Note the following: 

(i)   points in the direction normal to the curve const.  
(ii) the direction of maximum rate of change of   is in the direction of   

                                                 
2 in this context, a gradient is a derivative with respect to a position vector, but the term gradient is used 
more generally than this, e.g. see §1.14 

 

x

xd


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(iii) the direction of zero d  is in the direction perpendicular to   
 

 
 

Figure 1.6.5: gradient of a temperature field 
 
The curves   const., 21 xx  are called isotherms (curves of constant temperature).  In 
general, they are called iso-curves (or iso-surfaces in three dimensions).  

■  
 
Many physical laws are given in terms of the gradient of a scalar field.  For example, 
Fourier’s law of heat conduction relates the heat flux q (the rate at which heat flows 
through a surface of unit area3) to the temperature gradient through 
 

 kq      (1.6.13) 
 
where k is the thermal conductivity of the material, so that heat flows along the direction 
normal to the isotherms. 
 
The Normal to a Surface 
 
In the above example, it was seen that   points in the direction normal to the curve  

const.   Here it will be seen generally how and why the gradient can be used to obtain 
a normal vector to a surface. 
 
Consider a surface represented by the scalar function cxxxf ),,( 321 , c a constant4, and 

also a space curve C lying on the surface, defined by the position vector 

332211 )()()( eeer txtxtx  .  The components of r must satisfy the equation of the 

surface, so ctxtxtxf ))(),(),(( 321 .  Differentiation gives 
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3 the flux is the rate of flow of fluid, particles or energy through a given surface; the flux density is the flux 
per unit area but, as here, this is more commonly referred to simply as the flux 
4 a surface can be represented by the equation cxxxf ),,( 321 ; for example, the expression 

42
3

2
2

2
1  xxx  is the equation for a sphere of radius 2 (with centre at the origin).  Alternatively, the 

surface can be written in the form ),( 213 xxgx  , for example 2
2

2
13 4 xxx   

1

2

)0,1(

)1,1(
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which is equivalent to the equation   0/grad  dtdf r  and, as seen in §1.6.2, dtd /r  is a 
vector tangential to the surface. Thus fgrad  is normal to the tangent vector; fgrad  must 
be normal to all the tangents to all the curves through p, so it must be normal to the plane 
tangent to the surface. 
 
Taylor’s Series 
 
Writing   as a function of three variables (omitting time t), so that ),,( 321 xxx  , then 

  can be expanded in a three-dimensional Taylor’s series: 
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Neglecting the higher order terms, this can be written as 
 

x
x

xxx dd 




 )()(  

 
which is equivalent to 1.6.9, 1.6.10. 
 
 
1.6.5 The Nabla Operator 
 
The symbolic vector operator   is called the Nabla operator5.  One can write this in 
component form as 
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i xxxx 
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 eeee
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1       (1.6.14) 

 
One can generalise the idea of the gradient of a scalar field by defining the dot product 
and the cross product of the vector operator   with a vector field   , according to the 
rules 
 

       
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i

i
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i xx
ee ,      (1.6.15) 

 
The following terminology is used: 
 

uu

uu






curl

div

grad 
     (1.6.16) 

                                                 
5 or del or the Gradient operator 
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These latter two are discussed in the following sections. 
 
 
1.6.6 The Divergence of a Vector Field 
 
From the definition (1.6.15), the divergence of a vector field )(xa  is the scalar field 
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   Divergence of a Vector Field    (1.6.17) 

 
Differential Elements & Physical interpretations of the Divergence 
 
Consider a flowing compressible6 material with velocity field ),,( 321 xxxv .  Consider 

now a differential element of this material, with dimensions 321 ,, xxx  , with bottom 

left-hand corner at ),,( 321 xxx , fixed in space and through which the material flows7, Fig. 

1.6.6. 
 
The component of the velocity in the 1x  direction, 1v , will vary over a face of the element 
but, if the element is small, the velocities will vary linearly as shown; only the 
components at the four corners of the face are shown for clarity. 
 
Since [distance = time   velocity], the volume of material flowing through the right-hand 
face in time t  is t  times the “volume” bounded by the four corner velocities (between 
the right-hand face and the plane surface denoted by the dotted lines); it is straightforward 
to show that this volume is equal to the volume shown to the right, Fig. 1.6.6b, with 
constant velocity equal to the average velocity avev , which occurs at the centre of the face.  

Thus the volume of material flowing out is8 tvxx ave 32  and the volume flux, i.e. the 

rate of volume flow, is avevxx 32 .  Now 
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Using a Taylor’s series expansion, and neglecting higher order terms, 
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6 that is, it can be compressed or expanded 
7 this type of fixed volume in space, used in analysis, is called a control volume 
8 the velocity will change by a small amount during the time interval t .  One could use the average 

velocity in the calculation, i.e.  ),(),( 112
1 ttvtv  xx , but in the limit as 0t , this will reduce to 

),(1 tv x  
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with the partial derivatives evaluated at ),,( 321 xxx , so the volume flux out is 
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Figure 1.6.6: a differential element; (a) flow through a face, (b) volume of material 
flowing through the face 

 
The net volume flux out (rate of volume flow out through the right-hand face minus the 
rate of volume flow in through the left-hand face) is then  11321 / xvxxx   and the net 

volume flux per unit volume is 11 / xv  .  Carrying out a similar calculation for the other 
two coordinate directions leads to 
 

net unit volume flux out of an elemental volume:   vdiv
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       (1.6.18) 

 
which is the physical meaning of the divergence of the velocity field. 
 
If 0div v , there is a net flow out and the density of material is decreasing.  On the other 
hand, if 0div v , the inflow equals the outflow and the density remains constant – such a 
material is called incompressible9.  A flow which is divergence free is said to be 
isochoric.  A vector v for which 0div v  is said to be solenoidal. 
 
Notes: 
 The above result holds only in the limit when the element shrinks to zero size – so that 

the extra terms in the Taylor series tend to zero and the velocity field varies in a linear 
fashion over a face 

 consider the velocity at a fixed point in space, ( , )tv x .  The velocity at a later time, 
( , )t t v x , actually gives the velocity of a different material particle.  This is shown in 

Fig. 1.6.7 below: the material particles 3,2,1  are moving through space and whereas 
),( txv  represents the velocity of particle 2, ( , )t t v x  now represents the velocity of 

particle 1, which has moved into position x.  This point is important in the consideration 
of the kinematics of materials, to be discussed in Chapter 2 

                                                 
9 a liquid, such as water, is a material which is incompressible 

),,( 32111 xxxxv ),,( 321 xxx
1x

2x
),,( 332111 xxxxxv 

),,( 3322111 xxxxxxv 

),,( 322111 xxxxxv 

3x

avev

(a) (b) 
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Figure 1.6.7: moving material particles 
 
Another example would be the divergence of the heat flux vector q.  This time suppose 
also that there is some generator of heat inside the element (a source), generating at a rate 
of r per unit volume, r being a scalar field.  Again, assuming the element to be small, one 
takes r to be acting at the mid-point of the element, and one considers ),( 12

1
1 xxr  .  

Assume a steady-state heat flow, so that the (heat) energy within the elemental volume 
remains constant with time – the law of balance of (heat) energy then requires that the net 
flow of heat out must equal the heat generated within, so 
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Dividing through by 321 xxx   and taking the limit as 0,, 321  xxx , one obtains 

 
rqdiv      (1.6.19) 
 

Here, the divergence of the heat flux vector field can be interpreted as the heat generated 
(or absorbed) per unit volume per unit time in a temperature field.  If the divergence is 
zero, there is no heat being generated (or absorbed) and the heat leaving the element is 
equal to the heat entering it. 
 
 
1.6.7 The Laplacian 
 
Combining Fourier’s law of heat conduction (1.6.13),  kq , with the energy 
balance equation (1.6.19), rqdiv , and assuming the conductivity is constant, leads to 

rk   .  Now 
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  (1.6.20) 
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This expression is called the Laplacian of  .  By introducing the Laplacian 
operator  2 , one has 
 

k

r
 2       (1.6.21) 

 
This equation governs the steady state heat flow for constant conductivity.  In general, the 
equation a 2  is called Poisson’s equation.  When there are no heat sources (or 

sinks), one has Laplace’s equation, 02   .  Laplace’s and Poisson’s equation arise in 
many other mathematical models in mechanics, electromagnetism, etc. 
 
 
1.6.8 The Curl of a Vector Field 
 
From the definition 1.6.15 and 1.6.14, the curl of a vector field )(xa  is the vector field 
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    Curl of a Vector Field     (1.6.22) 

 
It can also be expressed in the form 
 

j
k

i
ijki

j

k
ijkk

i

j
ijk x

a

x

a

x

a

aaa
xxx

eee

eee

aa



























321

321

321

curl

    (1.6.23) 

 
Note: the divergence and curl of a vector field are independent of any coordinate system 
(for example, the divergence of a vector and the length and direction of acurl  are 
independent of the coordinate system in use) – these will be re-defined without reference 
to any particular coordinate system when discussing tensors (see §1.14). 
 
Physical interpretation of the Curl 
 
Consider a particle with position vector r and moving with velocity rωv  , that is, 
with an angular velocity   about an axis in the direction of ω .  Then {▲Problem 7} 
 

  ωrωv 2curl                        (1.6.24) 
 
Thus the curl of a vector field is associated with rotational properties.  In fact, if v is the 
velocity of a moving fluid, then a small paddle wheel placed in the fluid would tend to 
rotate in regions where 0curl v , in which case the velocity field v is called a vortex 
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field.  The paddle wheel would remain stationary in regions where 0curl v , in which 
case the velocity field v is called irrotational. 
 
 
1.6.9 Identities 
 
Here are some important identities of vector calculus {▲Problem 8}: 
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                        (1.6.25) 
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                                       (1.6.26) 

 
 
1.6.10 Cylindrical and Spherical Coordinates 
 
Cartesian coordinates have been used exclusively up to this point.  In many practical 
problems, it is easier to carry out an analysis in terms of cylindrical or spherical 
coordinates.  Differentiation in these coordinate systems is discussed in what follows10. 
 
Cylindrical Coordinates 
 
Cartesian and cylindrical coordinates are related through (see Fig. 1.6.8) 
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Then the Cartesian partial derivatives become 
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10 this section also serves as an introduction to the more general topic of Curvilinear Coordinates covered 
in §1.16-§1.19 
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Figure 1.6.8: cylindrical coordinates 
 
The base vectors are related through 
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        (1.6.29) 

 
so that from Eqn. 1.6.14, after some algebra, the Nabla operator in cylindrical coordinates 
reads as {▲Problem 9} 
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                       (1.6.30) 

 
which allows one to take the gradient of a scalar field in cylindrical coordinates: 
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Cartesian base vectors are independent of position.  However, the cylindrical base 
vectors, although they are always of unit magnitude, change direction with position.  In 
particular, the directions of the base vectors ee ,r  depend on  , and so these base 

vectors have derivatives with respect to  : from Eqn. 1.6.29, 
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with all other derivatives of the base vectors with respect to zr ,,  equal to zero. 
 
The divergence can now be evaluated: 
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            (1.6.33) 

 
Similarly the curl of a vector and the Laplacian of a scalar are {▲Problem 10} 
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        (1.6.34) 

 
 
Spherical Coordinates 
 
Cartesian and spherical coordinates are related through (see Fig. 1.6.9) 
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and the base vectors are related through 
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   (1.6.36) 

 

 
 

Figure 1.6.9: spherical coordinates 
 
In this case the non-zero derivatives of the base vectors are 
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and it can then be shown that {▲Problem 11} 
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1.6.11 The Directional Derivative 
 
Consider a function  x .  The directional derivative of   in the direction of some vector 
w is the change in   in that direction.  Now the difference between its values at position 
x and wx   is, Fig. 1.6.10,  
 

   xwx  d      (1.6.39) 
 

 
 

Figure 1.6.10: the directional derivative 
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An approximation to d  can be obtained by introducing a parameter   and by 

considering the function  wx   ; one has    xwx    0  and 

   wxwx     1 . 

 
If one treats   as a function of  , a Taylor’s series about 0  gives 
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or, writing it as a function of wx  , 
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By setting 1 , the derivative here can be seen to be a linear approximation to the 
increment d , Eqn. 1.6.39.  This is defined as the directional derivative of the function 

)(x  at the point x in the direction of w, and is denoted by 
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    The Directional Derivative        (1.6.40) 

 
The directional derivative is also written as  xwD . 

 
The power of the directional derivative as defined by Eqn. 1.6.40 is its generality, as seen 
in the following example. 
 
Example (the Directional Derivative of the Determinant) 
 
Consider the directional derivative of the determinant of the 22  matrix A, in the 
direction of a second matrix T (the word “direction” is obviously used loosely in this 
context).  One has 
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The Directional Derivative and The Gradient 
 
Consider a scalar-valued function   of a vector z.  Let z be a function of a parameter  , 

       321 ,, zzz .  Then 
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Thus, with wxz  , 
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which can be compared with Eqn. 1.6.11.  Note that for Eqns. 1.6.11 and 1.6.41 to be 
consistent definitions of the directional derivative, w here should be a unit vector. 
 
 
1.6.12 Formal Treatment of Vector Calculus 
 
The calculus of vectors is now treated more formally in what follows, following on from 
the introductory section in §1.2.  Consider a vector h, an element of the Euclidean vector 
space E, Eh .  In order to be able to speak of limits as elements become “small” or 
“close” to each other in this space, one requires a norm.  Here, take the standard 
Euclidean norm on E, Eqn. 1.2.8, 
 

hhhhh  ,                                              (1.6.42) 

 
Consider next a scalar function REf : .  If there is a constant 0M  such that 

  hh Mf   as oh  , then one writes 

 
   hh Of     as   oh                                            (1.6.43) 

 
This is called the Big Oh (or Landau) notation.  Eqn. 1.6.43 states that  hf  goes to 

zero at least as fast as h .  An expression such as  

 
     hhh Ogf                                                (1.6.44) 

 
then means that    hh gf   is smaller than h  for h  sufficiently close to o. 

 
Similarly, if  
 

 
0

h

hf
   as   oh                                           (1.6.45) 

 
 then one writes    hh of   as oh  .  This implies that  hf  goes to zero faster than 

h . 
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A field is a function which is defined in a Euclidean (point) space 3E .  A scalar field is 
then a function REf 3: .  A scalar field is differentiable at a point 3Ex  if there 

exists a vector   EDf x  such that 
 

       hhxxhx oDfff     for all   Eh                     (1.6.46) 

 
In that case, the vector  xDf  is called the derivative (or gradient) of f at x (and is given 

the symbol  xf ). 
 
Now setting wh   in 1.6.46, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
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   for all   Ew                     (1.6.47) 

 
which is 1.6.41.  In other words, for the derivative to exist, the scalar field must have a 
directional derivative in all directions at x. 
 
Using the chain rule as in §1.6.11, Eqn. 1.6.47 can be expressed in terms of the Cartesian 
basis  ie , 
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This must be true for all w and so, in a Cartesian basis,  
 

  i
ix

f
f ex




                                                    (1.6.49) 

 
which is Eqn. 1.6.9. 
 
 
1.6.13 Problems 
 
1. A particle moves along a curve in space defined by 

      3
32

2
2

1
3 3844 eeer tttttt   

Here, t is time.  Find 
(i) a unit tangent vector at 2t  
(ii) the magnitudes of the tangential and normal components of acceleration at 2t  

2. Use the index notation (1.3.12) to show that   a
va

vav 
dt

d

dt

d

dt

d
.  Verify this 

result for 21
2

3
2

1 ,3 eeaeev tttt  .  [Note: the permutation symbol and the unit 

vectors are independent of t; the components of the vectors are scalar functions of t 
which can be differentiated in the usual way, for example by using the product rule of 
differentiation.] 
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3. The density distribution throughout a material is given by xx  1 . 
(i) what sort of function is this? 
(ii) the density is given in symbolic notation - write it in index notation  
(iii) evaluate the gradient of   
(iv) give a unit vector in the direction in which the density is increasing the most 
(v) give a unit vector in any direction in which the density is not increasing 
(vi) take any unit vector other than the base vectors and the other vectors you used 

above and calculate dxd /  in the direction of this unit vector 
(vii) evaluate and sketch all these quantities for the point (2,1). 
In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation. 

4. Consider the scalar field defined by zyxx 232  . 
(i) find the unit normal to the surface of constant   at the origin (0,0,0) 
(ii) what is the maximum value of the directional derivative of   at the origin? 

(iii) evaluate dxd /  at the origin if )( 31 eex  dsd . 

5. If 312211321 eeeu xxxxxx  , determine udiv  and ucurl .  

6. Determine the constant a so that the vector 
      331232121 23 eeev axxxxxx   

is solenoidal. 
7. Show that ωv 2curl   (see also Problem 9 in §1.1). 
8. Verify the identities (1.6.25-26). 
9. Use (1.6.14) to derive the Nabla operator in cylindrical coordinates (1.6.30). 
10. Derive Eqn. (1.6.34), the curl of a vector and the Laplacian of a scalar in the 

cylindrical coordinates. 
11. Derive (1.6.38), the gradient, divergence and Laplacian in spherical coordinates. 
12. Show that the directional derivative )(D uv  of the scalar-valued function of a vector 

uuu )( , in the direction v, is vu 2 . 
13. Show that the directional derivative of the functional 
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1.7 Vector Calculus 2 - Integration 
 
 
1.7.1 Ordinary Integrals of a Vector 
 
A vector can be integrated in the ordinary way to produce another vector, for example 
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1.7.2 Line Integrals 
 
Discussed here is the notion of a definite integral involving a vector function that 
generates a scalar. 
 
Let 332211 eeex xxx   be a position vector tracing out the curve C between the points 

1p  and 2p .  Let f be a vector field.  Then  
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CC
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dxfdxfdxfdd 332211

2

1
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is an example of a line integral. 
 
Example (of a Line Integral) 
 
A particle moves along a path C from the point )0,0,0(  to )1,1,1( , where C is the straight 
line joining the points, Fig. 1.7.1.  The particle moves in a force field given by 
 

  3
2
3123212

2
1 201463 eeef xxxxxx   

 
What is the work done on the particle? 
 

 
 

Figure 1.7.1: a particle moving in a force field 
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Solution 
The work done is 

 

   
CC

dxxxdxxxdxxxdW 3
2
3123212

2
1 201463xf  

 
The straight line can be written in the parametric form txtxtx  321 ,, , so that 

 

 
3

13
61120

1

0

23   dttttW      or      
3

13
321  

CC

dtdt
dt

d
W eeef

x
f  

■  
 

If C is a closed curve, i.e. a loop, the line integral is often denoted  
C

dxv . 

 
Note: in fluid mechanics and aerodynamics, when v is the velocity field, this integral 

C d v x  is called the circulation of v about C. 

 
 
1.7.3 Conservative Fields 
 
If for a vector f one can find a scalar   such that 
 

f      (1.7.1) 
 
then 
 

(1)  
2

1

p

p

dxf   is independent of the path C joining 1p  and 2p  

(2) 0
C

dxf  around any closed curve C 

 
In such a case, f is called a conservative vector field and   is its scalar potential1.  For 
example, the work done by a conservative force field f is 
 

)()( 12

2

1

2

1

2

1

2

1

ppddx
x

dd
p

p

p

p

i
i

p

p

p

p

 



  xxf  

 
which clearly depends only on the values at the end-points 1p  and 2p , and not on the 
path taken between them. 
 
It can be shown that a vector f is conservative if and only if of curl   {▲Problem 3}. 
 

                                                 
1 in general, of course, there does not exist a scalar field   such that f ; this is not surprising since a 

vector field has three scalar components whereas   is determined from just one 
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Example (of a Conservative Force Field) 
 
The gravitational force field 3ef mg  is an example of a conservative vector field.  

Clearly, of curl , and the gravitational scalar potential is 3mgx : 

 

     12132333 )()(
2

1

2

1

pppxpxmgdxmgdmgW
p

p

p

p

   xe  

■  
 
 
Example (of a Conservative Force Field) 
 
Consider the force field 
 

3
2
312

2
11

3
321 3)2( eeef xxxxxx   

 
Show that it is a conservative force field, find its scalar potential and find the work done 
in moving a particle in this field from )1,2,1(   to )4,1,3( . 
 
Solution 
 
One has 

 

o

eee

f 



2
31

2
1

3
321

321

321

32

///curl

xxxxxx

xxx  

 
so the field is conservative. 
 
To determine the scalar potential, let 
 

3
3

2
2

1
1

332211 eeeeee
xxx

fff














. 

 
Equating coefficients and integrating leads to 
 

),(

),(

),(

11
3
31

312
2
1

32
3
312

2
1

xxrxx

xxqxx

xxpxxxx













 

 
which agree if one chooses 2

2
1

3
31 ,,0 xxrxxqp  , so that 3

312
2
1 xxxx  , to which 

may be added a constant. 
 
The work done is 
 



Section 1.7 

Solid Mechanics Part III                                                                                Kelly 53

202)1,2,1()4,1,3(  W  
■  

 
Helmholtz Theory 
 
As mentioned, a conservative vector field which is irrotational, i.e. f , implies 

of  , and vice versa.  Similarly, it can be shown that if one can find a vector a such 
that af  , where a is called the vector potential, then f is solenoidal, i.e. 0 f  
{▲Problem 4}.  
 
Helmholtz showed that a vector can always be represented in terms of a scalar potential 
  and a vector potential a:2 
 

Type of Vector Condition Representation 
General  af    

Irrotational (conservative) of   f  
Solenoidal 0 f  af   

 
 
1.7.4 Double Integrals 
 
The most elementary type of two-dimensional integral is that over a plane region.  For 
example, consider the integral over a region R in the 21 xx   plane, Fig. 1.7.2.  The 
integral  
 


R

dxdx 21  

 
then gives the area of R and, just as the one dimensional integral of a function gives the 
area under the curve, the integral 
 


R

dxdxxxf 2121 ),(  

 
gives the volume under the (in general, curved) surface ),( 213 xxfx  .  These integrals 

are called double integrals.  
 
 

                                                 
2 this decomposition can be made unique by requiring that 0f   as x ; in general, if one is given f, 
then   and a can be obtained by solving a number of differential equations 
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Figure 1.7.2: integration over a region 
 
 
Change of variables in Double Integrals  
 

To evaluate integrals of the type R dxdxxxf 2121 ),( , it is often convenient to make a 

change of variable.  To do this, one must find an elemental surface area in terms of the 
new variables, 21 , tt  say, equivalent to that in the 21 , xx  coordinate system, 21dxdxdS  . 
 
The region R over which the integration takes place is the plane surface 0),( 21 xxg .  
Just as a curve can be represented by a position vector of one single parameter t (cf. 
§1.6.2), this surface can be represented by a position vector with two parameters3, 1t  and 

2t : 
 

22121211 ),(),( eex ttxttx   
 
Parameterising the plane surface in this way, one can calculate the element of surface dS  
in terms of 21 , tt  by considering curves of constant 21 , tt , as shown in Fig. 1.7.3.  The 
vectors bounding the element are 
 

2
2

const 

)2(
1

1
const 

)1(

12
, dt

t
dddt

t
dd

tt 







x

xx
x

xx        (1.7.2) 

 
so the area of the element is given by  
 

dtdtJdtdt
tt

dddS 121
21

)2()1( 








xx

xx   (1.7.3) 

 
where J is the Jacobian of the transformation, 
 

                                                 
3 for example, the unit circle 2 2

1 2 1 0x x    can be represented by 221121 sincos eex tttt  , 10 1t , 

20 2  t  ( 21 , tt  being in this case the polar coordinates r,  , respectively) 

 

1x

2x

3x

R

),( 213 xxfx 
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2

2

1

2

2

1

1

1

2

2

2

1

1

2

1

1

or

t

x

t

x
t

x

t

x

J

t

x

t

x
t

x

t

x

J



























          (1.7.4) 

 
The Jacobian is also often written using the notation 
 

 
 21

21
2121 ,

,
,

tt

xx
JdtJdtdxdx




  

 
The integral can now be written as 
 


R

dtJdtttf 2121 ),(  

 

 
 

Figure 1.7.3: a surface element 
 
Example 
 

Consider a region R, the quarter unit-circle in the first quadrant, 2
12 10 xx  ,  

10 1  x .  The moment of inertia about the 1x  – axis is defined by 
 


R

x dxdxxI 21
2
21

 

  
Transform the integral into the new coordinate system 21, tt  by making the substitutions4 

212211 sin,cos ttxttx  .  Then 
 

1
212

212

2

2

1

2

2

1

1

1

cossin

sincos
t

ttt

ttt

t

x

t

x
t

x

t

x

J 
















  

                                                 
4 these are the polar coordinates, 21 , tt  equal to r,  , respectively 

)1(xd)2(xd

1t
11 tt 

2t

22 tt 

1x

2x

dS
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so 
 

16
sin 21

2/

0

2
2

1

0

3
11



   dtdtttI x  

■  
 
 
1.7.5 Surface Integrals 
 
Up to now, double integrals over a plane region have been considered.  In what follows, 
consideration is given to integrals over more complex, curved, surfaces in space, such as 
the surface of a sphere.   
 
Surfaces 
 
Again, a curved surface can be parameterized by 21, tt , now by the position vector 
 

321322121211 ),(),(),( eeex ttxttxttx   

 
One can generate a curve C on the surface S by taking )(11 stt  , )(22 stt   so that C has 
position vector, Fig. 1.7.4,  
 

   )(),( 21 ststs xx   
  
A vector tangent to C at a point p on S is, from Eqn. 1.6.3, 

 

ds

dt

tds

dt

tds

d 2

2

1

1 







xxx

 

 

 
 

Figure 1.7.4: a curved surface 
 
Many different curves C pass through p, and hence there are many different tangents, 
with different corresponding values of dsdtdsdt /,/ 21 .  Thus the partial derivatives 

21 /,/ tt  xx  must also both be tangential to C and so a normal to the surface at p is 
given by their cross-product, and a unit normal is 

1x

2x

3x

),( 21 ttx
)(sx

C

S
s
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2121

/
tttt 






















xxxx

n     (1.7.5) 

 
In some cases, it is possible to use a non-parametric form for the surface, for example 

cxxxg ),,( 321 , in which case the normal can be obtained simply from 

gg grad/gradn . 

 
Example (Parametric Representation and the Normal to a Sphere) 
 
The surface of a sphere of radius a can be parameterised as5 
  

 31221121 cossinsincossin eeex ttttta  ,         20,0 21  tt  

 
Here, lines of const1 t  are parallel to the 21 xx   plane (“parallels”), whereas lines of 

const2 t  are “meridian” lines, Fig. 1.7.5.  If one takes the simple expressions 

stst  2/, 21  , over 2/0  s , one obtains a curve 1C  joining )1,0,0(  and )0,0,1( , 

and passing through )2/1,2/1,2/1( , as shown. 
 

 
 

Figure 1.7.5: a sphere 
 
The partial derivatives with respect to the parameters are 
 

 

 221121
2

31221121
1

cossinsinsin

sinsincoscoscos

ee
x

eee
x

tttta
t

ttttta
t









 

 
so that  

 311221
2

121
22

21

cossinsinsincossin eee
xx

tttttta
tt









 

                                                 
5 these are the spherical coordinates (see §1.6.10);   21 , tt  

1x
2x

3x

1C

2/1 t

n
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and a unit normal to the spherical surface is 
 

31221121 cossinsincossin eeen ttttt   

 
For example, at 4/21  tt  (this is on the curve 1C ), one has 
 

  32
1

22
1

12
14/,4/ eeen   

 
and, as expected, it is in the same direction as r. 

■  
 
Surface Integrals 
 

Consider now the integral dS
S f  where f is a vector function and S is some curved 

surface.  As for the integral over the plane region, 
 

21
21

const const 12
dtdt

tt
dddS

tt 







xx

xx , 

 
only now dS  is not “flat” and x is three dimensional.  The integral can be evaluated if 
one parameterises the surface with 21 , tt  and then writes 
 

21
21

dtdt
ttS 







xx

f  

 
One way to evaluate this cross product is to use the relation (Lagrange’s identity, 
Problem 15, §1.3) 
 

         cbdadbcadcba     (1.7.6) 
 
so that 
 

2

2122112121

2

21



















































































tttttttttttt

xxxxxxxxxxxx
   (1.7.7) 

 
Example (Surface Area of a Sphere) 
 
Using the parametric form for a sphere given above, one obtains  
 

1
24

2

21

sin ta
tt







 xx

 

 
so that 
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2
21

2

0 0

1
2 4sinarea adtdttadS

S


 

    

■  
 
Flux Integrals 
 
Surface integrals often involve the normal to the surface, as in the following example. 
 
Example 
 

If 3322
2
21314 eeef xxxxx  , evaluate dS

S
 nf , where S is the surface of the cube 

bounded by 1,0;1,0;1,0 321  xxx , and n is the unit outward normal, Fig. 1.7.6. 

 

 
 

Figure 1.7.6: the unit cube 
 
Solution 
 
The integral needs to be evaluated over the six faces.  For the face with 1en  , 11 x  
and 
 

  244 32

1

0

1

0

332

1

0

1

0

13322
2
213     dxdxxdxdxxxxxdS

S

eeeenf  

 

Similarly for the other five sides, whence 2
3 dS

S

nf . 

■  
 

Integrals of the form dS
S nf  are known as flux integrals and arise quite often in 

applications.  For example, consider a material flowing with velocity v, in particular the 
flow through a small surface element dS  with outward unit normal n, Fig. 1.7.7.  The 
volume of material flowing through the surface in time dt  is equal to the volume of the 
slanted cylinder shown, which is the base dS  times the height.  The slanted height is (= 

1x

2x

3x

2en 

3en 

1en 
2en 
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velocity × time) is dtv , and the vertical height is then dtnv  .  Thus the rate of flow is 

the volume flux (volume per unit time) through the surface element: dSnv  . 
 

 
 

Figure 1.7.7: flow through a surface element 
 
The total (volume) flux out of a surface S is then6 
 

volume flux:    dS
S
 nv     (1.7.8) 

 
Similarly, the mass flux is given by 
 

mass flux:    dS
S
 nv     (1.7.9) 

 
For more complex surfaces, one can write using Eqn. 1.7.3, 1.7.5, 
 

21
21

dtdt
tt

dS
S

S 














 
xx

fnf  

 
Example (of a Flux Integral) 
 

Compute the flux integral dS
S nf , where S is the parabolic cylinder represented by 

 
30,20, 31

2
12  xxxx  

 
and 331212 2 eeef xxx  , Fig. 1.7.8. 

 
Solution 
 
Making the substitutions 2311 , txtx  , so that 2

12 tx  , the surface can be represented 

by the position vector 
 

                                                 
6 if v acts in the same direction as n, i.e. pointing outward, the dot product is positive and this integral is 
positive; if, on the other hand, material is flowing in through the surface, v and n are in opposite directions 
and the dot product is negative, so the integral is negative 

n

v

dtnv  dtv
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322
2
111 eeex ttt  ,        30,20 21  tt  

 
Then 322111 /,2/ exeex  ttt  and  

 

211
21

2 ee
xx









t
tt

 

 
so the integral becomes 
 

    1222
3

0

2

0

2121132121
2
1   dtdttttt eeeee  

 

 
 

Figure 1.7.8: flux through a parabolic cylinder 
 
Note: in this example, the value of the integral depends on the choice of n.  If one chooses 

n  instead of n, one would obtain 12 .  The normal in the opposite direction (on the 
“other side” of the surface) can be obtained by simply switching 1t  and 2t , since 

1221 //// tttt  xxxx . 
■  

 
Surface flux integrals can also be evaluated by first converting them into double integrals 
over a plane region.  For example, if a surface S has a projection R on the 21 xx   plane, 

then an element of surface dS  is related to the projected element 21dxdx  through (see 
Fig. 1.7.9) 
 

  213cos dxdxdSdS  en  

 
and so 
 

 


RS
dxdxdS 21

3

1

en
nfnf  

1x
2x

3x

n f




Section 1.7 

Solid Mechanics Part III                                                                                Kelly 62

 
 

Figure 1.7.9: projection of a surface element onto a plane region 
 
 
The Normal and Surface Area Elements 
 
It is sometimes convenient to associate a special vector Sd  with a differential element of 
surface area dS , where 
 

dSd nS   
 
so that Sd  is the vector with magnitude dS  and direction of the unit normal to the 
surface.  Flux integrals can then be written as 
 

 
SS

ddS Sfnf  

 
 
1.7.6 Volume Integrals 
 
The volume integral, or triple integral, is a generalisation of the double integral. 
 
Change of Variable in Volume Integrals 
 
For a volume integral, it is often convenient to make the change of variables 

),,(),,( 321321 tttxxx  .  The volume of an element dV  is given by the triple scalar 

product (Eqns. 1.1.5, 1.3.17) 
 

321321
321

dtdtJdtdtdtdt
ttt

dV 



















xxx

   (1.7.10) 

 
where the Jacobian is now 
 

n3e

2x

1x
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
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
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
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                   (1.7.11) 

 
so that 
 

         
VV

dtdtdtJtttxtttxtttxdxdydzxxx 321321332123211321 ,,,,,,,,,, ff  

 
 
1.7.7 Integral Theorems 
 
A number of integral theorems and relations are presented here (without proof), the most 
important of which is the divergence theorem.  These theorems can be used to simplify 
the evaluation of line, double, surface and triple integrals.  They can also be used in 
various proofs of other important results. 
 
The Divergence Theorem 
 
Consider an arbitrary differentiable vector field ),( txv  defined in some finite region of 
physical space.  Let V be a volume in this space with a closed surface S bounding the 
volume, and let the outward normal to this bounding surface be n.  The divergence 
theorem of Gauss states that (in symbolic and index notation) 
 

 



V i

i

S

ii

VS

dV
x

v
dSnvdVdS vnv div      Divergence Theorem    (1.7.12) 

 
and one has the following useful identities {▲Problem 10} 
 













VS

VS

VS

dVdS

dVdS

dVdS

uun

n

unu

curl

grad

)(div





         (1.7.13) 

 
By applying the divergence theorem to a very small volume, one finds that 
 

V

dS
S

V

 




nv
v

0
limdiv  

 
that is, the divergence is equal to the outward flux per unit volume, the result 1.6.18. 
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Stoke’s Theorem 
 
Stoke’s theorem transforms line integrals into surface integrals and vice versa.  It states 
that 
 

   
CS

dsdS τfnfcurl     (1.7.14) 

 
Here C is the boundary of the surface S, n is the unit outward normal and dsd /rτ   is 
the unit tangent vector. 
 
As has been seen, Eqn. 1.6.24, the curl of the velocity field is a measure of how much a 
fluid is rotating.  The direction of this vector is along the direction of the local axis of 
rotation and its magnitude measures the local angular velocity of the fluid.  Stoke’s 
theorem then states that the amount of rotation of a fluid can be measured by integrating 
the tangential velocity around a curve (the line integral), or by integrating the amount of 
vorticity “moving through” a surface bounded by the same curve. 
 
Green’s Theorem and Related Identities 
 
Green’s theorem relates a line integral to a double integral, and states that 
 

   















RC

dxdx
xx

dxdx 21
2

1

1

2
2211


 ,   (1.7.15) 

 
where R is a region in the 21 xx   plane bounded by the curve C.  In vector form, Green’s 
theorem reads as 
 

 
RC

dxdxd 213curl efxf     where    2211 eef         (1.7.16) 

 
from which it can be seen that Green’s theorem is a special case of Stoke’s theorem, for 
the case of a plane surface (region) in the 21 xx   plane. 
 
It can also be shown that (this is Green’s first identity) 
 

   dVdS
VS
   gradgradgrad 2n         (1.7.17) 

 
Note that the term gradn  is the directional derivative of   in the direction of the 
outward unit normal.  This is often denoted as n / .  Green’s first identity can be 
regarded as a multi-dimensional “integration by parts” – compare the rule 

  vduuvudv  with the identity re-written as 

 

       dVdSdV
VSV
   n        (1.7.18) 
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or 
 

      dVdSdV
VSV
  unuu               (1.7.18) 

 
One also has the relation (this is Green’s second identity) 
 

      dVdS
VS
   22gradgrad nn   (1.7.19) 

 
 
1.7.8 Problems 
  
1. Find the work done in moving a particle in a force field given by 

1123121 1053 eeef xxxx   along the curve 12
1  tx , 2

2 2tx  , 3
3 tx  , from 1t  

to 2t .  (Plot the curve.) 
2. Show that the following vectors are conservative and find their scalar potentials: 

(i) 332211 eeex xxx   

(ii)  2112
21 eev xxe xx   

(iii) 332
2
2112 )/()/1( eeeu xxxx   

3. Show that if  f  then of curl . 
4. Show that if af   then 0 f . 
5. Find the volume beneath the surface 03

2
2

2
1  xxx  and above the square with 

vertices )0,0( , )0,1( , )1,1(  and )1,0(  in the 21 xx  plane. 

6. Find the Jacobian (and sketch lines of constant 21, tt ) for the rotation  




cossin

sincos

212

211

ttx

ttx




 

7. Find a unit normal to the circular cylinder with parametric representation 
10,20,sincos),( 1132211121  ttttatatt eeex  

8. Evaluate dS
S   where 321 xxx   and S is the plane surface 213 xxx  , 

120 xx  , 10 1  x . 

9. Evaluate the flux integral dS
S nf  where 321 22 eeef   and S is the cone 

  axxxax  3
2
2

2
13 ,  [Hint: first parameterise the surface with 21, tt .] 

10. Prove the relations in (1.7.13).  [Hint: first write the expressions in index notation.] 
11. Use the divergence theorem to show that 

VdS
S

3 nx
, 

where V is the volume enclosed by S (and x is the position vector). 
12. Verify the divergence theorem for 3

3
32

3
21

3
1 eeev xxx   where S is the surface of the 

sphere 22
3

2
2

2
1 axxx  . 

13. Interpret the divergence theorem (1.7.12) for the case when v is the velocity field.  
See (1.6.18, 1.7.8).  Interpret also the case of 0div v . 
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14. Verify Stoke’s theorem for 312312 eeef xxx   where S is 01 2
2

2
13  xxx  (so 

that C is the circle of radius 1 in the 21 xx   plane). 

15. Verify Green’s theorem for the case of 2122
2
11 ,2 xxxx   , with C the unit 

circle 12
2

2
1  xx .  The following relations might be useful: 

0cossincossin,cossin
2

0

22

0

2

0

22

0

2  


 dddd  

16. Evaluate  
C

dxf  using Green’s theorem, where 2
3
11

3
2 eef xx   and C is the circle 

42
2

2
1  xx . 

17. Use Green’s theorem to show that the double integral of the Laplacian of p over a 
region R is equivalent to the integral of n pnp grad/  around the curve C 
bounding the region: 

ds
n

p
dxdxp

CR
 


 21
2  

[Hint: Let 1221 /,/ xpxp   . Also, show that 

2
1

1
2 een

ds

dx

ds

dx
  

is a unit normal to C, Fig. 1.7.10] 
 

 
 

Figure 1.7.10: projection of a surface element onto a plane region 
 

 

ds

1dx
2dx

C
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1.8 Tensors 
 
Here the concept of the tensor is introduced.  Tensors can be of different orders – zeroth-
order tensors, first-order tensors, second-order tensors, and so on.  Apart from the zeroth 
and first order tensors (see below), the second-order tensors are the most important 
tensors from a practical point of view, being important quantities in, amongst other topics, 
continuum mechanics, relativity, electromagnetism and quantum theory. 
 
 
1.8.1 Zeroth and First Order Tensors 
 
A tensor of order zero is simply another name for a scalar  . 
 
A first-order tensor is simply another name for a vector u. 
 
 
1.8.2 Second Order Tensors 
 
Notation 
 
 Vectors:  lowercase bold-face Latin letters, e.g. a, r, q 
 2nd order Tensors: uppercase bold-face Latin letters, e.g. F, T, S 
 
Tensors as Linear Operators 
 
A second-order tensor T may be defined as an operator that acts on a vector u generating 
another vector v, so that vuT )( , or1 
 

vTuvuT  or  Second-order Tensor (1.8.1) 
 
The second-order tensor T is a linear operator (or linear transformation)2, which 
means that 
 

  TbTabaT   …  distributive 

   TaaT    …   associative  
 
This linearity can be viewed geometrically as in Fig. 1.8.1. 

 
Note: the vector may also be defined in this way, as a mapping u that acts on a vector v, 
this time generating a scalar α,  u v .  This transformation (the dot product) is linear 
(see properties (2,3) in §1.1.4).  Thus a first-order tensor (vector) maps a first-order tensor 
into a zeroth-order tensor (scalar), whereas a second-order tensor maps a first-order tensor 
into a first-order tensor.  It will be seen that a third-order tensor maps a first-order tensor 
into a second-order tensor, and so on. 

                                                 
1 both these notations for the tensor operation are used; here, the convention of omitting the “dot” will be 
used 
2 An operator or transformation is a special function which maps elements of one type into elements of a 
similar type; here, vectors into vectors 
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Figure 1.8.1: Linearity of the second order tensor 
 
 
Further, two tensors T and S are said to be equal if and only if 
 

TvSv   
 
for all vectors v. 
 
Example (of a Tensor) 
 
Suppose that F is an operator which transforms every vector into its mirror-image with 
respect to a given plane, Fig. 1.8.2.  F transforms a vector into another vector and the 
transformation is linear, as can be seen geometrically from the figure.  Thus F is a 
second-order tensor. 
 

 
 

Figure 1.8.2: Mirror-imaging of vectors as a second order tensor mapping 
 

■  
 
 
Example (of a Tensor) 
 
The combination u  linearly transforms a vector into another vector and is thus a 
second-order tensor3.  For example, consider a force f applied to a spanner at a distance r 
from the centre of the nut, Fig. 1.8.3.  Then it can be said that the tensor  r  maps the 
force f into the (moment/torque) vector fr  . 
 

                                                 
3 Some authors use the notation u~  to denote u  

a

b

ba 
Ta

Tb
 baT 

u

v

u

vu 

vF 

Fu

 uF 

 vuF 
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Figure 1.8.3: the force on a spanner 
■  

 
 
1.8.3 The Dyad (the tensor product) 
 
The vector dot product and vector cross product have been considered in previous 
sections.  A third vector product, the tensor product (or dyadic product), is important in 
the analysis of tensors of order 2 or more.  The tensor product of two vectors u and v is 
written as4 
 

vu   Tensor Product  (1.8.2) 
 
This tensor product is itself a tensor of order two, and is called dyad: 
 
  vu   is a scalar (a zeroth order tensor) 
  vu  is a vector (a first order tensor) 
  vu  is a dyad (a second order tensor) 
 
It is best to define this dyad by what it does: it transforms a vector w into another vector 
with the direction of u according to the rule5 
 

)()( wvuwvu       The Dyad Transformation (1.8.3) 
 
This relation defines the symbol “ ”. 
 
The length of the new vector is u  times wv  , and the new vector has the same direction 

as u , Fig. 1.8.4.  It can be seen that the dyad is a second order tensor, because it operates 
linearly on a vector to give another vector {▲Problem 2}. 
 
Note that the dyad is not commutative, uvvu  .  Indeed it can be seen clearly from 
the figure that    wuvwvu  . 
 

                                                 
4 many authors omit the   and write simply uv 
5 note that it is the two vectors that are beside each other (separated by a bracket) that get “dotted” together 

f

r
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Figure 1.8.4: the dyad transformation 
 
The following important relations follow from the above definition {▲Problem 4}, 

 
     

   wvuwvu

xuwvxwvu




         (1.8.4) 

 
It can be seen from these that the operation of the dyad on a vector is not commutative: 
 

   uwvwvu                 (1.8.5) 
 
 
Example (The Projection Tensor) 
 
Consider the dyad ee .  From the definition 1.8.3,    eueuee  .  But ue   is the 

projection of u onto a line through the unit vector e.  Thus  eue   is the vector projection 
of u on e.  For this reason ee  is called the projection tensor.  It is usually denoted by 
P. 
 

 
 

Figure 1.8.5: the projection tensor 
 

■  
 
 
 

u

v

ePu Pv

wvu )( 

u

w

v
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1.8.4 Dyadics 
 
A dyadic is a linear combination of these dyads (with scalar coefficients).  An example 
might be 

 
     fedcba  235  

 
This is clearly a second-order tensor.  It will be seen in §1.9 that every second-order 
tensor can be represented by a dyadic, that is 

 
       fedcbaT      (1.8.6) 

 
Note: second-order tensors cannot, in general, be written as a dyad,  T a b  – when 
they can, they are called simple tensors. 
 
 
Example (Angular Momentum and the Moment of Inertia Tensor) 
 
Suppose a rigid body is rotating so that every particle in the body is instantaneously 
moving in a circle about some axis fixed in space, Fig. 1.8.6. 
 

 
 

Figure 1.8.6: a particle in motion about an axis 
 
The body’s angular velocity ω  is defined as the vector whose magnitude is the angular 
speed   and whose direction is along the axis of rotation.  Then a particle’s linear 
velocity is  

 
rωv   

 
where wdv   is the linear speed, d is the distance between the axis and the particle, and r 
is the position vector of the particle from a fixed point O on the axis.  The particle’s 
angular momentum (or moment of momentum) h about the point O is defined to be  

 
vrh  m  

 
where m is the mass of the particle.  The angular momentum can be written as  

 

d

r

ω

v


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ωIh ˆ           (1.8.8) 
 

where Î , a second-order tensor, is the moment of inertia of the particle about the point 
O, given by 

 

 rrIrI  2ˆ m      (1.8.9) 

 
where I is the identity tensor, i.e. aIa   for all vectors a. 
 

To show this, it must be shown that  ωrrIrvr  2
.  First examine vr .  It is 

evidently a vector perpendicular to both r and v and in the plane of r and ω ; its 
magnitude is 

 

sin
2
ωrvrvr   

 
Now (see Fig. 1.8.7) 

 

   
 reeωr

ωrrωrωrrIr

 cos
2

22




 

 
where e  and re  are unit vectors in the directions of ω  and r respectively.  From the 

diagram, this is equal to heωr sin
2

.  Thus both expressions are equivalent, and one 

can indeed write ωIh ˆ  with Î  defined by Eqn. 1.8.9: the second-order tensor Î  maps 
the angular velocity vector ω  into the angular momentum vector h of the particle. 

 

 
 

Figure 1.8.7: geometry of unit vectors for angular momentum calculation 
 

■  
 
 
1.8.5 The Vector Space of Second Order Tensors 
 
The vector space of vectors and associated spaces were discussed in §1.2.  Here, spaces of 
second order tensors are discussed. 
 
As mentioned above, the second order tensor is a mapping on the vector space V, 

e

re

recos

cos

he

sin
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VV :T                                                         (1.8.10) 

 
and follows the rules 
 

 
   TaaT

TbTabaT

 


                                             (1.8.11) 

 
for all Vba,  and R .  
 
Denote the set of all second order tensors by 2V .  Define then the sum of two tensors 

2, VTS  through the relation 
 

  TvSvvTS                                                  (1.8.12) 
 
and the product of a scalar R  and a tensor 2VT  through 
 

  TvvT                                                       (1.8.13) 
 
Define an identity tensor 2VI  through 
 

vIv  ,    for all Vv                                              (1.8.14) 
 
and a zero tensor 2VO  through 
 

oOv  ,    for all Vv                                            (1.8.15)  
 
It follows from the definition 1.8.11 that 2V  has the structure of a real vector space, that 
is, the sum 2V TS , the product 2VT , and the following 8 axioms hold:  
 
1. for any 2,, VCBA , one has )()( CBACBA   

2. there exists an element 2VO  such that TTOOT   for every 2VT  
3. for each 2VT  there exists an element 2VT , called the negative of T, such that 

0)()(  TTTT  

4. for any 2, VTS , one has STTS   

5. for any 2, VTS  and scalar R , TSTS   )(    

6. for any 2VT  and scalars R , , TTT   )(  

7. for any 2VT  and scalars R , , TT )()(    

8. for the unit scalar R1 , TT 1  for any 2VT . 
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1.8.6 Problems 
 
1. Consider the function f which transforms a vector v into  va .  Is f a tensor (of 

order one)? [Hint: test to see whether the transformation is linear, by examining 
 vuf  .] 

2. Show that the dyad is a linear operator, in other words, show that 
  xvuwvuxwvu )()()(    

3. When is abba  ? 
4. Prove that 

(i)      xuwvxwvu   [Hint: post-“multiply” both sides of the definition 

(1.8.3) by x ; then show that      xwvuxwvu  .] 

(ii)    wvuwvu   [hint: pre “multiply” both sides by x  and use the result of 
(i)] 

5. Consider the dyadic (tensor) bbaa  .  Show that this tensor orthogonally 
projects every vector v onto the plane formed by a and b (sketch a diagram). 

6. Draw a sketch to show the meaning of  Pvu  , where P is the projection tensor.  
What is the order of the resulting tensor? 

7. Prove that   ababba . 
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1.9 Cartesian Tensors 
 
As with the vector, a (higher order) tensor is a mathematical object which represents 
many physical phenomena and which exists independently of any coordinate system.  In 
what follows, a Cartesian coordinate system is used to describe tensors. 
 
 
1.9.1 Cartesian Tensors 
 
A second order tensor and the vector it operates on can be described in terms of Cartesian 
components.  For example, cba )(  , with 3212 eeea  , 321 2 eeeb   and 

321 eeec  , is 

 

321 224)()( eeecbacba   

 
Example (The Unit Dyadic or Identity Tensor) 
 
The identity tensor, or unit tensor, I, which maps every vector onto itself, has been 
introduced in the previous section.  The Cartesian representation of I is 

 

ii eeeeeeee  332211        (1.9.1) 

 
This follows from 

 
       

     

u

eee

ueeueeuee

ueeueeueeueeeeee







332211

332211

332211332211

uuu
 

 
Note also that the identity tensor can be written as  jiij eeI   , in other words the 

Kronecker delta gives the components of the identity tensor in a Cartesian coordinate 
system. 

■  
 
 
Second Order Tensor as a Dyadic 
 
In what follows, it will be shown that a second order tensor can always be written as a 
dyadic involving the Cartesian base vectors ei 

1. 
 
Consider an arbitrary second-order tensor T which operates on a to produce b, baT )( , 

or beT )( iia .  From the linearity of T, 

 

                                                 
1 this can be generalised to the case of non-Cartesian base vectors, which might not be orthogonal nor of 
unit magnitude (see §1.16) 
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beTeTeT  )()()( 332211 aaa  
 
Just as T transforms a into b, it transforms the base vectors ei into some other vectors; 
suppose that weTveTueT  )(,)(,)( 321 , then 

 

     
     
 aeweveu

aewaevaeu

weaveauea

wvub

321

321

321

321





 aaa

 

 
and so 
 

321 eweveuT      (1.9.2) 

 
which is indeed a dyadic. 
 
Cartesian components of a Second Order Tensor 
 
The second order tensor T can be written in terms of components and base vectors as 
follows: write the vectors u, v and w in (1.9.2) in component form, so that 
 

     






133122111

321332211

eeeeee

eeeeeeT

uuu

uuu

 
 
Introduce nine scalars ijT  by letting 321 ,, iiiiii TwTvTu  , so that 

 

333323321331

322322221221

311321121111

eeeeee

eeeeee

eeeeeeT






TTT

TTT

TTT

 Second-order Cartesian Tensor (1.9.3) 

 
These nine scalars ijT  are the components of the second order tensor T in the Cartesian 

coordinate system.  In index notation, 
 

 jiijT eeT   

 
Thus whereas a vector has three components, a second order tensor has nine components.  
Similarly, whereas the three vectors  ie  form a basis for the space of vectors, the nine 

dyads  ji ee   from a basis for the space of tensors, i.e. all second order tensors can be 

expressed as a linear combination of these basis tensors. 
 
It can be shown that the components of a second-order tensor can be obtained directly 
from {▲Problem 1} 
 

jiijT Tee        Components of a Tensor         (1.9.4) 
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which is the tensor expression analogous to the vector expression ue  iiu .  Note that, 

in Eqn. 1.9.4, the components can be written simply as jiTee  (without a “dot”), since 

jiji eTeTee  . 

 
Example (The Stress Tensor) 
 
Define the traction vector t acting on a surface element within a material to be the force 
acting on that element2 divided by the area of the element, Fig. 1.9.1.  Let n  be a vector 
normal to the surface.  The stress σ  is defined to be that second order tensor which maps 
n onto t, according to 
 

σnt    The Stress Tensor  (1.9.5) 
 

 
 

Figure 1.9.1: stress acting on a plane 
 
If one now considers a coordinate system with base vectors ie , then jiij eeσ   and, 

for example, 
 

3312211111 eeeσe    

 
Thus the components 11 , 21  and 31  of the stress tensor are the three components of 

the traction vector which acts on the plane with normal 1e . 
 
Augustin-Louis Cauchy was the first to regard stress as a linear map of the normal vector 
onto the traction vector; hence the name “tensor”, from the French for stress, tension. 
 

■  
 
 
 

                                                 
2 this force would be due, for example, to intermolecular forces within the material: the particles on one side 
of the surface element exert a force on the particles on the other side 

1x

3x

2x

1e

t
11

21

31n

t
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Higher Order Tensors 
 
The above can be generalised to tensors of order three and higher.  The following notation 
will be used: 
 

, ,   …  0th-order tensors (“scalars”) 
a, b, c  … 1st-order tensors (“vectors”) 
A, B, C … 2nd-order tensors (“dyadics”) 
A, B, C … 3rd-order tensors (“triadics”) 
A, B, C  … 4th-order tensors (“tetradics”) 

 
An important third-order tensor is the permutation tensor, defined by 
 

kjiijk eee  E          (1.9.6) 

 
whose components are those of the permutation symbol, Eqns. 1.3.10-1.3.13. 
 
A fourth-order tensor can be written as 
 

lkjiijklA eeee A      (1.9.7) 

 
It can be seen that a zeroth-order tensor (scalar) has 130   component, a first-order tensor 
has 331   components, a second-order tensor has 932   components, so A  has 2733   
components and A has 81 components. 
 
 
1.9.2 Simple Contraction 
 
Tensor/vector operations can be written in component form, for example, 
 

 
  

ijij

ijkkij

kjikij

kkjiij

aT

aT

aT

aT

e

e

eee

eeeTa










    (1.9.8) 

 
This operation is called simple contraction, because the order of the tensors is contracted 
– to begin there was a tensor of order 2 and a tensor of order 1, and to end there is a 
tensor of order 1 (it is called “simple” to distinguish it from “double” contraction – see 
below).  This is always the case – when a tensor operates on another in this way, the order 
of the result will be two less than the sum of the original orders. 
 
An example of simple contraction of two second order tensors has already been seen in 
Eqn. 1.8.4a; the tensors there were simple tensors (dyads).  Here is another example: 
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   
   
 

 lijlij

lijkklij

lkjiklij

lkkljiij

ST

ST

ST

ST

ee

ee

eeee

eeeeTS










               (1.9.9) 

 
From the above, the simple contraction of two second order tensors results in another 
second order tensor.  If one writes TSA  , then the components of the new tensor are 
related to those of the original tensors through kjikij STA  . 

 
Note that, in general, 
 

         BAAB    

       BCACAB    … associative                         (1.9.10) 

  ACABCBA    … distributive 
 
The associative and distributive properties follow from the fact that a tensor is by 
definition a linear operator, §1.8.2; they apply to tensors of any order, for example,  
 

   BvAvAB                                                 (1.9.11) 
 
To deal with tensors of any order, all one has to remember is how simple tensors operate 
on each other – the two vectors which are beside each other are the ones which are 
“dotted” together: 
 

   
     

     
     febadcfedcba

edacbedcba

dacbdcba

acbcba







               (1.9.12) 

 
An example involving a higher order tensor is  
 

  
 nkjinlijkl

nmlkjimnijkl

EA

EA

eeee

eeeeeeE



A
 

 
and  
 

CA 






B

Cb

vAu

CAB

vu

A



 

 
Note the relation {▲Problem 10} 
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     CDABDCBA                                         (1.9.13) 
         
Powers of Tensors 
 
Integral powers of tensors are defined inductively by IT 0 , TTT 1 nn , so, for 
example, 
 

TTT 2  The Square of a Tensor  (1.9.14) 
 

TTTT 3 , etc. 
 
 
1.9.3 Double Contraction 
 
Double contraction, as the name implies, contracts the tensors twice as much a simple 
contraction.  Thus, where the sum of the orders of two tensors is reduced by two in the 
simple contraction, the sum of the orders is reduced by four in double contraction.  The 
double contraction is denoted by a colon (:), e.g. ST : . 
 
First, define the double contraction of simple tensors (dyads) through 
 

      dbcadcba  :     (1.9.15) 
 
So in double contraction, one takes the scalar product of four vectors which are adjacent 
to each other, according to the following rule: 

For example, 
 

   
   

ijij

ljkiklij

lkkljiij

ST

ST

ST







eeee

eeeeST ::

   (1.9.16) 

 
which is, as expected, a scalar. 
 
Here is another example, the contraction of the two second order tensors I (see Eqn. 
1.9.1) and vu ,  
 

   
  

vu

veue

vueevuI







ii

ii

ii

vu

::

    (1.9.17) 

 

       faecdbfedcba  :
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so that the scalar product of two vectors can be written in the form of a double contraction 
involving the Identity Tensor. 
 
An example of double contraction involving the permutation tensor 1.9.6 is {▲Problem 
11} 
 

  uvvu :E      (1.9.18) 
 
It can be shown that the components of a fourth order tensor are given by (compare with 
Eqn. 1.9.4) 
 

   lkjiijklA eeee  :: A     (1.9.19) 

 
In summary then, 
 

    BA :        
     b:A  

    cB :A  

     CB :A  
 
Note the following identities: 
 

     
     

         CBDADACBDCBA

CBABACCBA

ACBCBACBA

:::

:::

:::





                 (1.9.20) 

 
Note: There are many operations that can be defined and performed with tensors.  The 
two most important operations, the ones which arise most in practice, are the simple and 
double contractions defined above.  Other possibilities are: 
(a) double contraction with two “horizontal” dots,  T S ,  bA , etc., which is based on 

the definition of the following operation as applied to simple tensors: 
                 a b c d e f b e c d a f  

(b) operations involving one cross   :              a b c d a d b c  

(c) “double” operations involving the cross    and dot: 

       

       

       

     
    
    

a b c d a c b d

a b c d a c b d

a b c d a c b d

 

 
 
1.9.4 Index Notation 
 
The index notation for single and double contraction of tensors of any order can easily be 
remembered.  From the above, a single contraction of two tensors implies that the indices 
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“beside each other” are the same3, and a double contraction implies that a pair of indices 
is repeated.  Thus, for example, in both symbolic and index notation: 
 

ijkijk

ijkmkijm

cBA

CBA





cB

B

:A

CA
                  (1.9.21) 

 
 
1.9.5 Matrix Notation 
 
Here the matrix notation of §1.4 is extended to include second-order tensors4.  The 
Cartesian components of a second-order tensor can conveniently be written as a 33  
matrix,  
 

 

















333231

132221

131211

TTT

TTT

TTT

T

 
 
The operations involving vectors and second-order tensors can now be written in terms of 
matrices, for example, 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
The tensor product can be written as (see §1.4.1) 
 

  

















332313

322212

312111
T

vuvuvu

vuvuvu

vuvuvu

vuvu                               (1.9.22) 

 
which is consistent with the definition of the dyadic transformation, Eqn. 1.8.3. 
 
 
 

                                                 
3 compare with the “beside each other rule” for matrix multiplication given in §1.4.1 
4 the matrix notation cannot be used for higher-order tensors 

  






















































333232131

323222121

313212111

3

2

1

333231

132221

131211

TTT

TTT

TTT

uTuTuT

uTuTuT

uTuTuT

u

u

u

uTTu

symbolic 
notation 

“short” 
matrix 

notation 

“full” 
matrix 

notation 
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1.9.6 Problems 
 
1. Use Eqn. 1.9.3 to show that the component 11T  of a tensor T can be evaluated from 

11Tee , and that 2112 TeeT  (and so on, so that jiijT Tee ). 

2. Evaluate aT  using the index notation (for a Cartesian basis).  What is this operation 
called?  Is your result equal to Ta , in other words is this operation commutative?  
Now carry out this operation for two vectors, i.e. ba  .  Is it commutative in this case? 

3. Evaluate the simple contractions bA  and BA , with respect to a Cartesian coordinate 
system (use index notation). 

4. Evaluate the double contraction B:A  (use index notation). 
5. Show that, using a Cartesian coordinate system and the index notation, that the double 

contraction b:A  is a scalar.  Write this scalar out in full in terms of the components 
of A  and b. 

6. Consider the second-order tensors 

33232231

33322211

364

523

eeeeeeeeF

eeeeeeeeD




 

Compute DF  and DF : . 
7. Consider the second-order tensor  

3322122111 243 eeeeeeeeeeD  . 

Determine the image of the vector 321 524 eeer   when D operates on it. 

8. Write the following out in full – are these the components of scalars, vectors or 
second order tensors? 

(a) iiB  

(b) kkjC  

(c) mnB  

(d) ijji Aba  

9. Write    dcba  :  in terms of the components of the four vectors.  What is the 
order of the resulting tensor? 

10. Verify Eqn. 1.9.13. 
11. Show that   uvvu :E  – see (1.9.6, 1.9.18).  [Hint: use the definition of the 

cross product in terms of the permutation symbol, (1.3.14), and the fact that 

kjiijk   .] 
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1.10 Special Second Order Tensors & Properties of 
Second Order Tensors 

 
In this section will be examined a number of special second order tensors, and special 
properties of second order tensors, which play important roles in tensor analysis.  Many 
of the concepts will be familiar from Linear Algebra and Matrices.  The following will be 
discussed: 
 
 The Identity tensor 
 Transpose of a tensor 
 Trace of a tensor 
 Norm of a tensor 
 Determinant of a tensor 
 Inverse of a tensor 
 Orthogonal tensors 
 Rotation Tensors 
 Change of Basis Tensors 
 Symmetric and Skew-symmetric tensors 
 Axial vectors 
 Spherical and Deviatoric tensors 
 Positive Definite tensors 
 
 
1.10.1 The Identity Tensor 
 
The linear transformation which transforms every tensor into itself is called the identity 
tensor.  This special tensor is denoted by I so that, for example, 
 

aIa    for any vector a 
 
In particular, 332211 ,, eIeeIeeIe  , from which it follows that, for a Cartesian 

coordinate system, ijijI  .  In matrix form, 

 

 

















100

010

001

I         (1.10.1) 

 
 
1.10.2 The Transpose of a Tensor 
 
The transpose of a second order tensor A with components ijA  is the tensor TA  with 

components jiA ; so the transpose swaps the indices, 

 

jijijiij AA eeAeeA  T,   Transpose of a Second-Order Tensor   (1.10.2) 
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In matrix notation, 
 

   


































332313

322212

312111
T

333231

232221

131211

,

AAA

AAA

AAA

AAA

AAA

AAA

AA  

 
Some useful properties and relations involving the transpose are {▲Problem 2}: 
 

 
 

 

 

      BACCABBCA

vAuAvu

BABA

ABAB

uTuTuTTu

uvvu

BABA

AA

:::

)()(

::

,

TT

T

TT

TTT

TT

T

TTT

TT



















         (1.10.3) 

 
A formal definition of the transpose which does not rely on any particular coordinate 
system is as follows: the transpose of a second-order tensor is that tensor which satisfies 
the identity1 
 

uAvAvu T         (1.10.4) 
 
for all vectors u and v.  To see that Eqn. 1.10.4 implies 1.10.2, first note that, for the 
present purposes, a convenient way of writing the components ijA  of the second-order 

tensor A is  ijA .  From Eqn. 1.9.4,   jiij AeeA   and the components of the transpose 

can be written as   jiij eAeA TT  .  Then, from 1.10.4, 

    jijiijjiij A AAeeeAeA TT . 

 
 
1.10.3 The Trace of a Tensor 
 
The trace of a second order tensor A, denoted by Atr , is a scalar equal to the sum of the 
diagonal elements of its matrix representation.  Thus (see Eqn. 1.4.3) 
 

iiAAtr  Trace         (1.10.5) 

 
A more formal definition, again not relying on any particular coordinate system, is 
 

AIA :tr   Trace       (1.10.6) 

                                                 
1 as mentioned in §1.9, from the linearity of tensors, AvuvuA   and, for this reason, this expression is 
usually written simply as uAv  
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and Eqn. 1.10.5 follows from 1.10.6 {▲Problem 4}.  For the dyad vu  {▲Problem 5},  
 

  vuvu tr       (1.10.7) 
 
Another example is 
 

   
qiiq

rpqrpqjiij

EE

EE






eeee

EIE

:

:)tr( 22

   (1.10.8) 

 
This and other important traces, and functions of the trace are listed here {▲Problem 6}: 
 

 
  kkjjii

jjii

kijkij

jiij

ii

AAA

AA

AAA

AA

A











3

2

3

2

tr

tr

tr

tr

tr

A

A

A

A

A

                (1.10.9) 

 
Some useful properties and relations involving the trace are {▲Problem 7}: 
 

   
 

 
       TTTT

T

trtrtrtr:

trtr

trtrtr

trtr

trtr

BAABABBABA

AA

BABA

BAAB

AA










      (1.10.10) 

 
The double contraction of two tensors was earlier defined with respect to Cartesian 
coordinates, Eqn. 1.9.16.  This last expression allows one to re-define the double 
contraction in terms of the trace, independent of any coordinate system. 
 
Consider again the real vector space of second order tensors 2V  introduced in §1.8.5.  
The double contraction of two tensors as defined by 1.10.10e clearly satisfies the 
requirements of an inner product listed in §1.2.2.  Thus this scalar quantity serves as an 
inner product for the space 2V : 
 

 BABABA Ttr:,                                        (1.10.11) 

  
and generates an inner product space. 
 
Just as the base vectors  ie  form an orthonormal set in the inner product (vector dot 

product) of the space of vectors V, so the base dyads  ji ee   form an orthonormal set in 

the inner product 1.10.11 of the space of second order tensors 2V .  For example, 
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    1:, 11111111  eeeeeeee                         (1.10.12) 

 
Similarly, just as the dot product is zero for orthogonal vectors, when the double 
contraction of two tensors A and B is zero, one says that the tensors are orthogonal, 
  

  0tr: T  BABA ,     BA,  orthogonal                     (1.10.13) 
 
 
1.10.4 The Norm of a Tensor 
 
Using 1.2.8 and 1.10.11, the norm of a second order tensor A, denoted by A  (or A ), is 

defined by 
 

AAA :               (1.10.14) 

 

This is analogous to the norm a  of a vector a, aa  . 

 
 
1.10.5 The Determinant of a Tensor 
 
The determinant of a second order tensor A is defined to be the determinant of the 
matrix  A  of components of the tensor: 
 

kjiijk

kjiijk

AAA

AAA

AAA

AAA

AAA

321

321

333231

232221

131211

detdet
























A

      (1.10.15) 

 
Some useful properties of the determinant are {▲Problem 8} 
 

 
 

      cbaTTcTbTa

A

vu

AA

AA

BAAB











det

det

0det

det)det(

detdet

detdet)det(

3

T

krjqipijkpqr AAA


       (1.10.16) 

 
Note that Adet , like Atr , is independent of the choice of coordinate system / basis. 
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1.10.6 The Inverse of a Tensor 
 
The inverse of a second order tensor A, denoted by 1A , is defined by 
 

AAIAA 11        (1.10.17) 
 
The inverse of a tensor exists only if it is non-singular (a singular tensor is one for 
which 0det A ), in which case it is said to be invertible. 
 
Some useful properties and relations involving the inverse are: 
 

11

111

11

11

)(det)det(

)(

)/1()(

)(

















AA

ABAB

AA

AA


                  (1.10.18) 

 
Since the inverse of the transpose is equivalent to the transpose of the inverse, the 
following notation is used: 
 

1TT1T )()(   AAA           (1.10.19) 
 
 

1.10.7 Orthogonal Tensors 
 
An orthogonal tensor Q is a linear vector transformation satisfying the condition 
 

vuQvQu           (1.10.20) 
 
for all vectors u and v.  Thus u is transformed to Qu , v is transformed to Qv  and the dot 
product vu   is invariant under the transformation.  Thus the magnitude of the vectors 
and the angle between the vectors is preserved, Fig. 1.10.1.  
 

 
 

Figure 1.10.1: An orthogonal tensor 
 
Since  
 

 T T     Qu Qv uQ Qv u Q Q v                            (1.10.21) 

 


v

u



Q

Qv

Qu
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it follows that for vu   to be preserved under the transformation, IQQ T , which is also 
used as the definition of an orthogonal tensor.  Some useful properties of orthogonal 
tensors are {▲Problem 10}: 
 

1det

,
T1

TT







Q

QQ

QQIQQ kjkiijjkik QQQQ 

               (1.10.22) 

 
 
1.10.8 Rotation Tensors 
 
If for an orthogonal tensor, 1det Q , Q is said to be a proper orthogonal tensor, 
corresponding to a rotation.  If 1det Q , Q is said to be an improper orthogonal 
tensor, corresponding to a reflection.  Proper orthogonal tensors are also called rotation 
tensors. 
 
 
1.10.9 Change of Basis Tensors 
 
Consider a rotation tensor Q which rotates the base vectors 321 ,, eee  into a second set, 

321 ,, eee  , Fig. 1.10.2.   

 
3,2,1 iii Qee        (1.10.23) 

 
Such a tensor can be termed a change of basis tensor from  ie  to  ie .  The transpose  

QT rotates the base vectors ie  back to ie  and is thus change of basis tensor from  ie  to 

 ie .  The components of Q in the ie  coordinate system are, from 1.9.4, jiijQ Qee  and 

so, from 1.10.23, 
 

jiijjiij QQ eeeeQ  , ,      (1.10.24) 

 
which are the direction cosines between the axes (see Fig. 1.5.5). 
 

 
 

Figure 1.10.2: Rotation of a set of base vectors 
 

2e Q

3e

1e

1e

2e

3e
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The change of basis tensor can also be expressed in terms of the base vectors from both 
bases: 
 

ii eeQ  ,     (1.10.25) 

 
from which the above relations can easily be derived, for example ii Qee  , IQQ T , 

etc. 
 
Consider now the operation of the change of basis tensor on a vector: 
 

  iiii vv eQeQv                                         (1.10.26) 

 
Thus Q transforms v into a second vector v , but this new vector has the same 
components with respect to the basis ie , as v has with respect to the basis ie , ii vv  .  

Note the difference between this and the coordinate transformations of §1.5: here there 
are two different vectors, v and v . 
 
Example 
 
Consider the two-dimensional rotation tensor  
 

  iiji eeeeQ 












01

10
 

 

which corresponds to a rotation of the base vectors through 2/ .  The vector  T11v  
then transforms into (see Fig. 1.10.3) 
 

ii eeQv 






















1

1

1

1
 

 

 
 

Figure 1.10.3: a rotated vector 
 

■  
 
Similarly, for a second order tensor A, the operation 
 

      jiijjiijjiijjiij AAAA eeQeQeQeQeQeeQQAQ  TTT  

(1.10.27) 
 

vQv

1e

2e1e

2e
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results in a new tensor which has the same components with respect to the ie , as A has 

with respect to the ie , ijij AA  . 

 
 
1.10.10 Symmetric and Skew Tensors 
 
A tensor T is said to be symmetric if it is identical to the transposed tensor, TTT  , and 
skew (antisymmetric) if TTT  . 
 
Any tensor A can be (uniquely) decomposed into a symmetric tensor S and a skew tensor 
W, where 
 

 

 T

T

2

1
skew

2

1
sym

AAWA

AASA




       (1.10.28) 

 
and 
 

TT , WWSS      (1.10.29) 
 
In matrix notation one has 
 

   



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





























0

0

0

,

2313

2312

1312

332313

232212

131211

WW

WW

WW

W

SSS

SSS

SSS

S   (1.10.30) 

 
Some useful properties of symmetric and skew tensors are {▲Problem 13}: 
 

 
 

 

 inverse no has0det

0

0tr

0:

:::

:::
T

2
1T

T
2
1T











W

Wvv

SW

WS

BWBWBW

BBSBSBS

   (1.10.31) 

 
where v and B denote any arbitrary vector and second-order tensor respectively. 
 
Note that symmetry and skew-symmetry are tensor properties, independent of coordinate 
system. 
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1.10.11 Axial Vectors 
 
A skew tensor W has only three independent coefficients, so it behaves “like a vector” 
with three components.  Indeed, a skew tensor can always be written in the form 
 

uωWu        (1.10.32) 
 
where u is any vector and ω  characterises the axial (or dual) vector of the skew tensor 
W.  The components of W can be obtained from the components of ω  through 
 

   
 

kijk

kkjipkjpki

jkkijijiijW













ee

eeeeωeWee

  (1.10.33) 

 
If one knows the components of W, one can find the components of ω  by inverting this 
equation, whence {▲Problem 14} 
 

312213123 eeeω WWW      (1.10.34) 

 
Example (of an Axial Vector) 
 
Decompose the tensor 
 

 

















111

124

321

ijTT

 
 
into its symmetric and skew parts.  Also find the axial vector for the skew part.  Verify 
that aωWa   for 21 eea  . 
 
Solution 
 
One has  
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The axial vector is 
 

32312213123 eeeeeω  WWW  
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and it can be seen that 
 

321

333312232111311

313131

)()()(

)()())((

eee
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eeeeeeWa
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and 
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110 eee
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aω 

 
■  

 
 
The Spin Tensor 
 
The velocity of a particle rotating in a rigid body motion is given by xωv  , where ω  
is the angular velocity vector and x is the position vector relative to the origin on the axis 
of rotation (see Problem 9, §1.1).  If the velocity can be written in terms of a skew-
symmetric second order tensor w , such that vwx  , then it follows from xωwx   
that the angular velocity vector ω  is the axial vector of w .  In this context, w  is called 
the spin tensor. 
 
 
1.10.12 Spherical and Deviatoric Tensors 
 
Every tensor A can be decomposed into its so-called spherical part and its deviatoric 
part, i.e. 
 

AAA devsph         (1.10.35) 
 
where 
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      (1.10.36) 
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Any tensor of the form I  is known as a spherical tensor, while Adev  is known as a 
deviator of A, or a deviatoric tensor. 
 
Some important properties of the spherical and deviatoric tensors are 
 

0sph:dev

0)dev(sph

0)dev(tr





BA

A

A

         (1.10.37) 

 
 
1.10.13 Positive Definite Tensors 
 
A positive definite tensor A is one which satisfies the relation 
 

0vAv ,      ov                    (1.10.38)  
 
The tensor is called positive semi-definite if 0vAv . 
 
In component form, 
 

 2
222122131132112

2
111 vAvvAvvAvvAvAvAv jiji                (1.10.39) 

 
and so the diagonal elements of the matrix representation of a positive definite tensor 
must always be positive. 
 
It can be shown that the following conditions are necessary for a tensor A to be positive 
definite (although they are not sufficient): 
 
(i)  the diagonal elements of  A  are positive 

(ii)  the largest element of  A  lies along the diagonal 
(iii) 0det A  
(iv)  ijjjii AAA 2  for ji   (no sum over ji, ) 

 
These conditions are seen to hold for the following matrix representation of an example 
positive definite tensor: 
 

 

















100

041

022

A  

 
A necessary and sufficient condition for a tensor to be positive definite is given in the 
next section, during the discussion of the eigenvalue problem. 
 
One of the key properties of a positive definite tensor is that, since 0det A , positive 
definite tensors are always invertible. 
 
An alternative definition of positive definiteness is the equivalent expression 
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 0:  vvA                                               )40.10.1(  

 
 
1.10.14 Problems 
 
1. Show that the components of the (second-order) identity tensor are given by ijijI  . 

2. Show that 
(a) )()( T vAuAvu   

(b)       BACCABBCA ::: TT   

3. Use (1.10.4) to show that II T . 
4. Show that (1.10.6) implies (1.10.5) for the trace of a tensor. 
5. Show that   vuvu tr . 
6. Formally derive the index notation for the functions  

3232 )tr(,)tr(,tr,tr AAAA  

7. Show that )(tr: TBABA  .  

8. Prove (1.10.16f),       cbaTTcTbTa  det . 

9. Show that 3:)( T1  AA .  [Hint: one way of doing this is using the result from 
Problem 7.] 

10. Use 1.10.16b and 1.10.18d to prove 1.10.22c, 1det Q . 
11. Use the explicit dyadic representation of the rotation tensor, ii eeQ  , to show that 

the components of Q in the “second”, 321 xxxo  , coordinate system are the same as 

those in the first system [hint: use the rule jiijQ eQe  ] 

12. Consider the tensor D with components (in a certain coordinate system) 





















2/12/12/1

2/12/10

2/12/12/1

 

Show that D is a rotation tensor (just show that D is proper orthogonal).  
13. Show that   0tr SW . 

14. Multiply across (1.10.32), kijkijW  , by ijp  to show that kijijkW eω 2
1 .  [Hint: 

use the relation 1.3.19b, pkijkijp  2 .] 

15. Show that  abba 2
1  is a skew tensor W.  Show that its axial vector is 

 abω  2
1 .  [Hint: first prove that         uabbaubuaaub  .] 

16. Find the spherical and deviatoric parts of the tensor A for which 1ijA . 



 

 199

2 Kinematics 
 
Kinematics is concerned with expressing in mathematical form the deformation and motion of 
materials.  In what follows, a number of important quantities, mainly vectors and second-
order tensors, are introduced.  Each of these quantities, for example the velocity, deformation 
gradient or rate of deformation tensor, allows one to describe a particular aspect of a 
deforming material. 
 
No consideration is given to what is causing the deformation and movement – the cause is the 
action of forces on the material, and these will be discussed in the next chapter. 
 
The first section introduces the material and spatial coordinates and descriptions.  The second 
and third sections discuss the strain tensors.  The fourth, fifth and sixth sections deal with 
rates of deformation and rates of change of kinematic quantities.  The theory is specialised to 
small strain deformations in section 7.  The notion of objectivity and the related topic of rigid 
rotations are discussed in sections 8 and 9. The final sections, 10-13, deal with kinematics 
using the convected coordinate system, and include the important notions of push-forward, 
pull-back and the Lie time derivative. 
 



 

 200
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2.1 Motion 
 
 
2.1.1 The Material Body and Motion 
 
Physical materials in the real world are modeled using an abstract mathematical entity 
called a body.  This body consists of an infinite number of material particles1.  Shown in 
Fig. 2.1.1a is a body B with material particle P.  One distinguishes between this body and 
the space in which it resides and through which it travels.  Shown in Fig. 2.1.1b is a 
certain point x  in Euclidean point space E.  
 

 
 
Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration 

of the body 
 
By fixing the material particles of the body to points in space, one has a configuration of 
the body χ , Fig. 2.1.1c.  A configuration can be expressed as a mapping of the particles 
P  to the point x , 
 

 Px χ                                                        (2.1.1) 

 
A motion of the body is a family of configurations parameterised by time t,  
 

 ,P tx χ                                                      (2.1.2) 

 
At any time t, Eqn. 2.1.2 gives the location in space x  of the material particle P , Fig. 
2.1.2. 
 
 

                                                 
1 these particles are not the discrete mass particles of Newtonian mechanics, rather they are very small 
portions of continuous matter; the meaning of particle is made precise in the definitions which follow 

B

P
 

x

(a) (b)

E

(c)

χ




Section 2.1 

Solid Mechanics Part III                                                                                Kelly 202

 
 

Figure 2.1.2: a motion of material 
 
 
The Reference and Current Configurations 
 
Choose now some reference configuration, Fig. 2.1.3.  The motion can then be 
measured relative to this configuration.  The reference configuration might be the 
configuration occupied by the material at time 0t , in which case it is often called the 
initial configuration.  For a solid, it might be natural to choose a configuration for which 
the material is stress-free, in which case it is often called the undeformed configuration.  
However, the choice of reference configuration is completely arbitrary. 
 
Introduce a Cartesian coordinate system with base vectors iE  for the reference 

configuration.  A material particle P  in the reference configuration can then be assigned a 
unique position vector iiX EX   relative to the origin of the axes.  The coordinates 

 321 ,, XXX  of the particle are called material coordinates (or Lagrangian coordinates 

or referential coordinates). 
 
Some time later, say at time t, the material occupies a different configuration, which will 
be called the current configuration (or deformed configuration).  Introduce a second 
Cartesian coordinate system with base vectors ie  for the current configuration, Fig. 2.1.3.  

In the current configuration, the same particle P  now occupies the location x , which can 
now also be assigned a position vector iix ex  .  The coordinates  321 ,, xxx  are called 

spatial coordinates (or Eulerian coordinates). 
 
Each particle thus has two sets of coordinates associated with it.  The particle’s material 
coordinates stay with it throughout its motion.  The particle’s spatial coordinates change 
as it moves. 
 

1t
2t

P


P




Section 2.1 

Solid Mechanics Part III                                                                                Kelly 203

 
 

Figure 2.1.3: reference and current configurations 
 
In practice, the material and spatial axes are usually taken to be coincident so that the base 
vectors iE  and ie  are the same, as in Fig. 2.1.4.  Nevertheless, the use of different base 

vectors E and e for the reference and current configurations is useful even when the 
material and spatial axes are coincident, since it helps distinguish between quantities 
associated with the reference configuration and those associated with the spatial 
configuration (see later). 
 

 
 

Figure 2.1.4: reference and current configurations with coincident axes 
 
In terms of the position vectors, the motion 2.1.2 can be expressed as a relationship 
between the material and spatial coordinates,  
 

 tXXXxt ii ,,,),,( 321 Xχx      Material description             (2.1.3) 

 
or the inverse relation 
 

 txxxXt ii ,,,),,( 321
11   xχX      Spatial description               (2.1.4) 

 
If one knows the material coordinates of a particle then its position in the current 
configuration can be determined from 2.1.3.  Alternatively, if one focuses on some 
location in space, in the current configuration, then the material particle occupying that  
position can be determined from 2.1.4.  This is illustrated in the following example. 
 
 

11, xX

22 , xX

33 , xX

X

22 ,eE
x

11,eE

current 
configuration 

1X

2X

3X

X

1E

2E
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1e2e
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Example (Extension of a Bar) 
 
Consider the motion 
 

3322111 ,,3 XxXxtXtXx                               (2.1.5) 

 
These equations are of the form 2.1.3 and say that “the particle that was originally at 
position X is now, at time t, at position x”.  They represent a simple translation and 
uniaxial extension of material as shown in Fig. 2.1.5.  Note that xX   at 0t . 
 

 
 

Figure 2.1.5: translation and extension of material 
 
Relations of the form 2.1.4 can be obtained by inverting 2.1.5: 
 

3322
1

1 ,,
31

xXxX
t

tx
X 




  

 
These equations say that “the particle that is now, at time t, at position x was originally at 
position X”. 

■  
 
 
Convected Coordinates 
 
The material and spatial coordinate systems used here are fixed Cartesian systems.  An 
alternative method of describing a motion is to attach the material coordinate system to 
the material and let it deform with the material.  The motion is then described by defining 
how this coordinate system changes.  This is the convected coordinate system.  In 
general, the axes of a convected system will not remain mutually orthogonal and a 
curvilinear system is required.  Convected coordinates will be examined in §2.10. 
 
 
2.1.2 The Material and Spatial Descriptions 
 
Any physical property (such as density, temperature, etc.) or kinematic property (such as 
displacement or velocity) of a body can be described in terms of either the material 
coordinates X or the spatial coordinates x, since they can be transformed into each other 
using 2.1.3-4.  A material (or Lagrangian) description of events is one where the 

1x

2x

1X

2X

configuration at 
0t

configurations at 
0t  

X x

χ
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material coordinates are the independent variables.  A spatial (or Eulerian) description of 
events is one where the spatial coordinates are used. 
 
Example (Temperature of a Body) 
 
Suppose the temperature   of a body is, in material coordinates, 
 

313),( XXt X             (2.1.6) 

 
but, in the spatial description, 
 

3
1 1),( x
t

x
t x .           (2.1.7) 

 
According to the material description 2.1.6, the temperature is different for different 
particles, but the temperature of each particle remains constant over time.  The spatial 
description 2.1.7 describes the time-dependent temperature at a specific location in space, 
x, Fig. 2.1.6.  Different material particles are flowing through this location over time. 
 

 
 

Figure 2.1.6: particles flowing through space 
 

■  
 
In the material description, then, attention is focused on specific material.  The piece of 
matter under consideration may change shape, density, velocity, and so on, but it is 
always the same piece of material.  On the other hand, in the spatial description, attention 
is focused on a fixed location in space.  Material may pass through this location during 
the motion, so different material is under consideration at different times. 
 
The spatial description is the one most often used in Fluid Mechanics since there is no 
natural reference configuration of the material as it is continuously moving.  However, 
both the material and spatial descriptions are used in Solid Mechanics, where the 
reference configuration is usually the stress-free configuration. 
 
 
2.1.3 Small Perturbations 
 
A large number of important problems involve materials which deform only by a 
relatively small amount.  An example would be the steel structural columns in a building 
under modest loading.  In this type of problem there is virtually no distinction to be made 

x motion of individual  
material particles 
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between the two viewpoints taken above and the analysis is simplified greatly (see later, 
on Small Strain Theory, §2.7). 
 
 
2.1.4 Problems 
 
1. The density of a material is given by 213 XX   and the motion is given by the 

equations txXtxXxX  332211 ,, . 

(a) what kind of description is this for the density, and what kind of description is 
this for the motion? 

(b) re-write the density in terms of x – what is the name given to this description of 
the density? 

(c) is the density of any given material particle changing with time? 
(d) invert the motion equations so that X is the independent variable – what is the 

name given to this description of the motion? 
(e) draw the line element joining the origin to )0,1,1(  and sketch the position of this 

element of material at times 1t  and 2t . 
 
 
 



Section 2.2 

Solid Mechanics Part III                                                                                Kelly 207

2.2 Deformation and Strain 
 
A number of useful ways of describing and quantifying the deformation of a material are 
discussed in this section.   
 
Attention is restricted to the reference and current configurations.  No consideration is 
given to the particular sequence by which the current configuration is reached from the 
reference configuration and so the deformation can be considered to be independent of 
time.  In what follows, particles in the reference configuration will often be termed 
“undeformed” and those in the current configuration “deformed”.  
 
In a change from Chapter 1, lower case letters will now be reserved for both vector- and 
tensor- functions of the spatial coordinates x, whereas upper-case letters will be reserved 
for functions of material coordinates X.  There will be exceptions to this, but it should be 
clear from the context what is implied. 
 
 
2.2.1 The Deformation Gradient 
 
The deformation gradient F is the fundamental measure of deformation in continuum 
mechanics.  It is the second order tensor which maps line elements in the reference 
configuration into line elements (consisting of the same material particles) in the current 
configuration. 
 
Consider a line element Xd  emanating from position X in the reference configuration 
which becomes xd  in the current configuration, Fig. 2.2.1.  Then, using 2.1.3, 
 

   
  Xχ

XχXXχx

d

dd

Grad


                 (2.2.1) 

 
A capital G is used on “Grad” to emphasise that this is a gradient with respect to the 
material coordinates1, the material gradient, Xχ  / . 
 

 
 

Figure 2.2.1: the Deformation Gradient acting on a line element 
 
 

                                                 
1 one can have material gradients and spatial gradients of material or spatial fields – see later 

X x

F

Xd
xd
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The motion vector-function χ  in 2.1.3, 2.2.1, is a function of the variable X, but it is 

customary to denote this simply by x, the value of χ  at X, i.e.  t,Xxx  , so that 
 

J

i
iJ X

x
F








 ,Grad x
X

x
F      Deformation Gradient          (2.2.2) 

 
with 
 

JiJi dXFdxdd  ,XFx      action of F                             (2.2.3) 

 
Lower case indices are used in the index notation to denote quantities associated with the 
spatial basis  ie  whereas upper case indices are used for quantities associated with the 

material basis  IE . 
 
Note that  
 

X
X

x
x dd




  

 
is a differential quantity and this expression has some error associated with it; the error 
(due to terms of order 2)( Xd  and higher, neglected from a Taylor series) tends to zero as 
the differential 0Xd .  The deformation gradient (whose components are finite) thus 
characterises the deformation in the neighbourhood of a point X, mapping infinitesimal 
line elements Xd  emanating from X in the reference configuration to the infinitesimal 
line elements xd  emanating from x in the current configuration, Fig. 2.2.2. 
 

 
 

Figure 2.2.2: deformation of a material particle 
 
Example 
 
Consider the cube of material with sides of unit length illustrated by dotted lines in Fig. 
2.2.3.  It is deformed into the rectangular prism illustrated (this could be achieved, for 
example, by a continuous rotation and stretching motion).  The material and spatial 
coordinate axes are coincident.  The material description of the deformation is 

 

2 1 1 2 3 3

1 1
( ) 6

2 3
X X X    x χ X e e e  

 
and the spatial description is 

before after 
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1

2 1 1 2 3 3

1
( ) 2 3

6
x x x   X χ x E E E  

 
 

 
 

Figure 2.2.3: a deforming cube 
 
Then 
 















 






3/100

002/1

060

J

i

X

x
F  

 
Once F is known, the position of any element can be determined.  For example, taking a 
line element T]0,0,[dad X , T]0,2/,0[ dadd  XFx . 

■  
 
Homogeneous Deformations 
 
A homogeneous deformation is one where the deformation gradient is uniform, i.e. 
independent of the coordinates, and the associated motion is termed affine.  Every part of 
the material deforms as the whole does, and straight parallel lines in the reference 
configuration map to straight parallel lines in the current configuration, as in the above 
example.  Most examples to be considered in what follows will be of homogeneous 
deformations; this keeps the algebra to a minimum, but homogeneous deformation 
analysis is very useful in itself since most of the basic experimental testing of materials, 
e.g. the uniaxial tensile test, involve homogeneous deformations. 
 
Rigid Body Rotations and Translations 
 
One can add a constant vector c to the motion, cxx  , without changing the 
deformation,    xcx GradGrad  .  Thus the deformation gradient does not take into 
account rigid-body translations of bodies in space.  If a body only translates as a rigid 
body in space, then IF  , and cXx   (again, note that F does not tell us where in 
space a particle is, only how it has deformed locally).  If there is no motion, then not only 
is IF  , but Xx  . 

11, xX

22 , xX

33 , xX

D

A
B

C

E

E 

D
B

C 
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If the body rotates as a rigid body (with no translation), then RF  , a rotation tensor 
(§1.10.8).  For example, for a rotation of   about the 2X  axis,  

 
sin 0 cos

0 1 0

cos 0 sin

 

 

 
   

  

F  

 
Note that different particles of the same material body can be translating only, rotating 
only, deforming only, or any combination of these. 
 
The Inverse of the Deformation Gradient 
 
The inverse deformation gradient 1F  carries the spatial line element dx to the material 
line element dX.  It is defined as 
 

j

I
jI x

X
F








  11 ,grad X
x

X
F      Inverse Deformation Gradient       (2.2.4) 

 
so that 

 

jIjI dxFdXdd 11 ,   xFX      action of 1F                        (2.2.5) 

 
with (see Eqn. 1.15.2) 
 

IFFFF   11           ijjMiM FF 1                                      (2.2.6) 

 
Cartesian Base Vectors 
 
Explicitly, in terms of the material and spatial base vectors (see 1.14.3), 
 

jI
j

I
j

j

Ji
J

i
J

J

x

X

x

X

x

X

eEe
X

F

EeE
x

F





















1

     (2.2.7) 

 
so that, for example,       xeEEeXF ddXXxdXXxd iJJiMMJiJi  // . 

 
Because F and 1F  act on vectors in one configuration to produce vectors in the other 
configuration, they are termed two-point tensors.  They are defined in both 
configurations.  This is highlighted by their having both reference and current base 
vectors E and e in their Cartesian representation 2.2.7. 
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Here follow some important relations which relate scalar-, vector- and second-order 
tensor-valued functions in the material and spatial descriptions, the first two relating the 
material and spatial gradients {▲Problem 1}. 
 

T

1

1

:Graddiv

Gradgrad

Gradgrad













FAa

FVv

F

               (2.2.8) 

 
Here,   is a scalar; V and v are the same vector, the former being a function of the 
material coordinates, the material description, the latter a function of the spatial 
coordinates, the spatial description.  Similarly, A is a second order tensor in the material 
form and a is the equivalent spatial form. 
 
The first two of 2.2.8 relate the material gradient to the spatial gradient: the gradient of a 
function is a measure of how the function changes as one moves through space; since the 
material coordinates and the spatial coordinates differ, the change in a function with 
respect to a unit change in the material coordinates will differ from the change in the same 
function with respect to a unit change in the spatial coordinates (see also §2.2.7 below).  
 
 
Example 
 
Consider the deformation 
 

     
      321221321

332122132

25

32

EEEX

eeex

xxxxxx

XXXXXX




 

 
so that 
 






































 

021

010

151

,

131

010

120
1FF  

 
Consider the vector       33123

2
2121 32)( eeexv xxxxxx   which, in the 

material description, is 
 

      3212
2
2321132 53325)( EEEXV XXXXXXXX   

 
The material and spatial gradients are 
 








































101

160

012

grad,

051

1631

250

Grad 22 xX vV  

 
and it can be seen that 
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vFV grad

101

160

012

101

160

012

Grad 22
1 


































 
 xX  

 
■  

 
 
2.2.2 The Cauchy-Green Strain Tensors 
 
The deformation gradient describes how a line element in the reference configuration 
maps into a line element in the current configuration.  It has been seen that the 
deformation gradient gives information about deformation (change of shape) and rigid 
body rotation, but does not encompass information about possible rigid body translations.  
The deformation and rigid rotation will be separated shortly (see §2.2.5).  To this end, 
consider the following strain tensors; these tensors give direct information about the 
deformation of the body.  Specifically, the Left Cauchy-Green Strain and Right 
Cauchy-Green Strain tensors give a measure of how the lengths of line elements and 
angles between line elements (through the vector dot product) change between 
configurations. 
 
The Right Cauchy-Green Strain 
 
Consider two line elements in the reference configuration )2()1( , XX dd  which are mapped 

into the line elements )2()1( , xx dd  in the current configuration.  Then, using 1.10.3d, 
 

   
 

)2()1(

)2(T)1(

)2()1()2()1(

XCX
XFFX
XFXFxx

dd
dd
dddd





     action of C                     (2.2.9) 

 
where, by definition, C is the right Cauchy-Green Strain2 
 

J

k

I

k
JkIkIJ X

x

X

x
FFC







 ,TFFC      Right Cauchy-Green Strain     (2.2.10) 

 
It is a symmetric, positive definite (which will be clear from Eqn. 2.2.17 below), tensor, 
which implies that it has real positive eigenvalues (cf. §1.11.2), and this has important 
consequences (see later).  Explicitly in terms of the base vectors, 
 

JI
J

k

I

k
Jm

J

m
kI

i

k

X

x

X

x

X

x

X

x
EEEeeEC 

































 .    (2.2.11) 

 
Just as the line element Xd  is a vector defined in and associated with the reference 
configuration, C is defined in and associated with the reference configuration, acting on 
vectors in the reference configuration, and so is called a material tensor. 
                                                 
2 “right” because F is on the right of the formula 
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The inverse of C, C-1, is called the Piola deformation tensor. 
 
The Left Cauchy-Green Strain 
 
Consider now the following, using Eqn. 1.10.18c: 

 

   
 

)2(1)1(

)2(1T)1(

)2(1)1(1)2()1(

xbx

xFFx

xFxFXX

dd

dd

dddd













     action of 1b              (2.2.12) 

 
where, by definition, b is the left Cauchy-Green Strain, also known as the Finger tensor: 
 

K

j

K

i
KjKiij X

x

X

x
FFb








 ,TFFb      Left Cauchy-Green Strain       (2.2.13) 

 
Again, this is a symmetric, positive definite tensor, only here, b is defined in the current 
configuration and so is called a spatial tensor. 
 
The inverse of b, b-1, is called the Cauchy deformation tensor. 
 
It can be seen that the right and left Cauchy-Green tensors are related through 
 

-1-1 , FCFbbFFC      (2.2.14) 
 
Note that tensors can be material (e.g. C), two-point (e.g. F) or spatial (e.g. b).  Whatever 
type they are, they can always be described using material or spatial coordinates through 
the motion mapping 2.1.3, that is, using the material or spatial descriptions.  Thus one 
distinguishes between, for example, a spatial tensor, which is an intrinsic property of a 
tensor, and the spatial description of a tensor. 
 
The Principal Scalar Invariants of the Cauchy-Green Tensors 
 
Using 1.10.10b, 
 

    bFFFFC trtrtrtr TT      (2.2.15) 
 
This holds also for arbitrary powers of these tensors, nn bC trtr  , and therefore, from 
Eqn. 1.11.17, the invariants of C and b are equal. 
 
 
2.2.3 The Stretch 
 
The stretch (or the stretch ratio)   is defined as the ratio of the length of a deformed 
line element to the length of the corresponding undeformed line element: 
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X

x

d

d
  The Stretch    (2.2.16) 

 
From the relations involving the Cauchy-Green Strains, letting XXX ddd  )2()1( , 

xxx ddd  )2()1( , and dividing across by the square of the length of Xd  or xd , 
 

xbx
x

X
XCX

X

x
ˆˆ,ˆˆ 1

2

2

2

2 dd
d

d
dd

d

d  




















                      (2.2.17) 

 

Here, the quantities XXX ddd /ˆ   and xxx ddd /ˆ   are unit vectors in the directions of 

Xd  and xd .  Thus, through these relations, C and b determine how much a line element 
stretches (and, from 2.2.17, C and b can be seen to be indeed positive definite). 
 
One says that a line element is extended, unstretched or compressed according to 1 , 

1  or 1 . 
 
Stretching along the Coordinate Axes 
 
Consider three line elements lying along the three coordinate axes3.  Suppose that the 
material deforms in a special way, such that these line elements undergo a pure stretch, 
that is, they change length with no change in the right angles between them.  If the 
stretches in these directions are 1 , 2  and 3 , then  

 

333222111 ,, XxXxXx           (2.2.18) 

 
and the deformation gradient has only diagonal elements in its matrix form: 
 

JiiJiF 





















 ,

00

00

00

3

2

1

F    (no sum)   (2.2.19) 

 
Whereas material undergoes pure stretch along the coordinate directions, line elements 
off-axes will in general stretch/contract and rotate relative to each other.  For example, a 

line element T]0,,[ Xd  stretches by  2 2
1 2

ˆ ˆ / 2d d    XC X  with 

T
21 ]0,,[ xd , and rotates if 21   . 

 
It will be shown below that, for any deformation, there are always three mutually 
orthogonal directions along which material undergoes a pure stretch.  These directions, 
the coordinate axes in this example, are called the principal axes of the material and the 
associated stretches are called the principal stretches.   
 
 
 
                                                 
3 with the material and spatial basis vectors coincident 
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The Case of F Real and Symmetric 
 
Consider now another special deformation, where F is a real symmetric tensor, in which 
case the eigenvalues are real and the eigenvectors form an orthonormal basis (cf. 
§1.11.2)4.  In any given coordinate system, F will in general result in the stretching of line 
elements and the changing of the angles between line elements.  However, if one chooses 
a coordinate set to be the eigenvectors of F, then from Eqn. 1.11.11-12 one can write5 
 

 















 


3

2

13

1 00

00

00

,ˆˆ





 FNnF

i
iii     (2.2.20) 

 
where 321 ,,   are the eigenvalues of F.  The eigenvalues are the principal stretches and 

the eigenvectors are the principal axes.  This indicates that as long as F is real and 
symmetric, one can always find a coordinate system along whose axes the material 
undergoes a pure stretch, with no rotation.  This topic will be discussed more fully in 
§2.2.5 below. 
 
 
2.2.4 The Green-Lagrange and Euler-Almansi Strain Tensors 
 
Whereas the left and right Cauchy-Green tensors give information about the change in 
angle between line elements and the stretch of line elements, the Green-Lagrange strain 
and the Euler-Almansi strain tensors directly give information about the change in the 
squared length of elements. 
 
Specifically, when the Green-Lagrange strain E operates on a line element dX, it gives 
(half) the change in the squares of the undeformed and deformed lengths: 
 

 

  

XXE

XICX

XXXXC
Xx

dd

dd

dddd
dd








2

1
2

1

2

22

      action of E         (2.2.21) 

 
where 
 

     JIJIJI CE 
2

1
,

2

1

2

1 T IFFICE      Green-Lagrange Strain      (2.2.22) 

 
It is a symmetric positive definite material tensor.  Similarly, the (symmetric spatial) 
Euler-Almansi strain tensor is defined through 

                                                 
4 in fact, F in this case will have to be positive definite, with det 0F  (see later in §2.2.8) 
5 

i
n̂  are the eigenvectors for the basis 

i
e , 

I
N̂  for the basis 

i
Ê , with 

i
n̂ , 

I
N̂  coincident; when the bases are 

not coincident, the notion of rotating line elements becomes ambiguous – this topic will be examined later 
in the context of objectivity 
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xex
Xx

dd
dd




2

22

     action of e                          (2.2.23) 

 
and 
 

   1T1

2

1

2

1   FFIbIe      Euler-Almansi Strain           (2.2.24) 

 
Physical Meaning of the Components of E 
 

Take a line element in the 1-direction,  T1)1( 0,0,dXd X , so that  T)1( 0,0,1ˆ Xd .  The 

square of the stretch of this element is 
 

   1
2

1
1

2

1ˆˆ 2
)1(111111)1()1(

2
)1(   CECdd XCX  

 
The unit extension is   1/  XXx ddd .  Denoting the unit extension of )1(Xd  by 

)1(E , one has 

 
2

)1()1(11 2

1
EE E      (2.2.25) 

 
and similarly for the other diagonal elements 3322 , EE . 

 
When the deformation is small, 2

)1(E  is small in comparison to )1(E , so that 11 (1)E  E .  For 

small deformations then, the diagonal terms are equivalent to the unit extensions. 
 
Let 12  denote the angle between the deformed elements which were initially parallel to 

the 1X  and 2X  axes.  Then 
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 (2.2.26) 

 
and similarly for the other off-diagonal elements.  Note that if 2/12   , so that there is 

no angle change, then 012 E .  Again, if the deformation is small, then 2211, EE  are 
small, and  
 

12121212 2cos
2

sin
2

E





  

              (2.2.27) 
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In words: for small deformations, the component 12E  gives half the change in the original 
right angle. 
 
 
2.2.5 Stretch and Rotation Tensors 
 
The deformation gradient can always be decomposed into the product of two tensors, a 
stretch tensor and a rotation tensor (in one of two different ways, material or spatial 
versions).  This is known as the polar decomposition, and is discussed in §1.11.7.  One 
has 
 

RUF   Polar Decomposition  (Material)             (2.2.28) 
 
Here, R is a proper orthogonal tensor, i.e. IRR T  with 1det R , called the rotation 
tensor.  It is a measure of the local rotation at X. 
 
The decomposition is not unique; it is made unique by choosing U to be a symmetric 
tensor, called the right stretch tensor.  It is a measure of the local stretching (or 
contraction) of material at X.  Consider a line element dX.  Then  
 

XRUXFx ˆˆˆ ddd       (2.2.29) 
 
and so {▲Problem 2} 
 

XUUX ˆˆ2 dd       (2.2.30) 
 
Thus (this is a definition of U) 
 

 UUCCU   The Right Stretch Tensor     (2.2.31) 
 
From 2.2.30, the right Cauchy-Green strain C (and by consequence the Euler-Lagrange 
strain E) only give information about the stretch of line elements; it does not give 
information about the rotation that is experienced by a particle during motion.  The 
deformation gradient F, however, contains information about both the stretch and rotation.  
It can also be seen from 2.2.30-1 that U is a material tensor. 
 
Note that, since 
 

 XURx dd  , 
 
the undeformed line element is first stretched by U and is then rotated by R into the 
deformed element xd  (the element may also undergo a rigid body translation c), Fig. 
2.2.4.  R is a two-point tensor. 
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Figure 2.2.4: the polar decomposition 
 
Evaluation of U 
 

In order to evaluate U, it is necessary to evaluate C .  To evaluate the square-root, C 
must first be obtained in relation to its principal axes, so that it is diagonal, and then the 
square root can be taken of the diagonal elements, since its eigenvalues will be positive  
(see §1.11.6).  Then the tensor needs to be transformed back to the original coordinate 
system. 
 
Example 
 
Consider the motion 
 

33212211 ,,22 XxXXxXXx   

 
The (homogeneous) deformation of a unit square in the 21 xx   plane is as shown in Fig. 
2.2.5. 
 

 
 

Figure 2.2.5: deformation of a square 
 
One has 
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Note that F is not symmetric, so that it might have only one real eigenvalue (in fact here it 
does have complex eigenvalues), and the eigenvectors may not be orthonormal.  C, on the 
other hand, by its very definition, is symmetric; it is in fact positive definite and so has 
positive real eigenvalues forming an orthonormal set. 
 
To determine the principal axes of C, it is necessary to evaluate the 
eigenvalues/eigenvectors of the tensor.  The eigenvalues are the roots of the characteristic 
equation 1.11.5, 
 

0IIIIII 23  CCC   

 
and the first, second and third invariants of the tensor are given by 1.11.6 so that 

0162611 23   , with roots 1,2,8 .  The three corresponding eigenvectors 
are found from 1.11.8, 
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Thus (normalizing the eigenvectors so that they are unit vectors, and form a right-handed 
set, Fig. 2.2.6): 
 

(i)  for 8 , 0ˆ7,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

1
ˆ EEN   

(ii)  for 2 , 0ˆ,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

2
ˆ EEN   

(iii) for 1 , 0ˆ0,0ˆ4ˆ3,0ˆ3ˆ4 32121  NNNNN ,  33
ˆ EN    

 

 
 

Figure 2.2.6: deformation of a square 
 
Thus the right Cauchy-Green strain tensor C, with respect to coordinates with base 

vectors 11 N̂E  , 22 N̂E   and 33 N̂E  , that is, in terms of principal coordinates, is 
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This result can be checked using the tensor transformation formulae 1.13.6, 
      QCQC T , where Q is the transformation matrix of direction cosines (see also the 
example at the end of §1.5.2), 
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The stretch tensor U, with respect to the principal directions is 
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These eigenvalues of U (which are the square root of those of C) are the principal 
stretches and, as before, they are labeled 321 ,,  . 

 
In the original coordinate system, using the inverse tensor transformation rule 1.13.6, 
     TQUQU  , 
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so that 
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and it can be verified that R is a rotation tensor, i.e. is proper orthogonal. 
 
Returning to the deformation of the unit square, the stretch and rotation are as illustrated 
in Fig. 2.2.7 – the action of U is indicated by the arrows, deforming the unit square to the 
dotted parallelogram, whereas R rotates the parallelogram through o45  as a rigid body to 
its final position. 
 
Note that the line elements along the diagonals (indicated by the heavy lines) lie along the 
principal directions of U and therefore undergo a pure stretch; the diagonal in the 1N̂  
direction has stretched but has also moved with a rigid translation. 
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Figure 2.2.7: stretch and rotation of a square 
■  

 
Spatial Description 
 
A polar decomposition can be made in the spatial description.  In that case, 
 

vRF    Polar Decomposition  (Spatial)            (2.2.32) 
 
Here v is a symmetric, positive definite second order tensor called the left stretch tensor, 
and bvv  , where b is the left Cauchy-Green tensor.  R is the same rotation tensor as 
appears in the material description.  Thus an elemental sphere can be regarded as first 
stretching into an ellipsoid, whose axes are the principal material axes (the principal axes 
of U), and then rotating; or first rotating, and then stretching into an ellipsoid whose axes 
are the principal spatial axes (the principal axes of v).  The end result is the same. 
 
The development in the spatial description is similar to that given above for the material 
description, and one finds by analogy with 2.2.30, 
 

xvvx ˆˆ 112 dd                                                       (2.2.33) 
 
In the above example, it turns out that v takes the simple diagonal form 
 

  ji eev 
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0022

. 

 
so the unit square rotates first and then undergoes a pure stretch along the coordinate axes, 
which are the principal spatial axes, and the sequence is now as shown in Fig. 2.2.9. 
 

11, xX

22 , xX
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Figure 2.2.8: stretch and rotation of a square in spatial description 
 
 
Relationship between the Material and Spatial Decompositions 
 
Comparing the two decompositions, one sees that the material and spatial tensors 
involved are related through 
 

TRURv  ,    TRCRb        (2.2.34) 
 

Further, suppose that U has an eigenvalue   and an eigenvector N̂ .  Then NNU ˆˆ  , so 

that RNRUN  .  But vRRU  , so    NRNRv ˆˆ  .  Thus v also has an eigenvalue 

 , but an eigenvector NRn ˆˆ  .  From this, it is seen that the rotation tensor R maps the 
principal material axes into the principal spatial axes.  It also follows that R and F can be 
written explicitly in terms of the material and spatial principal axes (compare the first of 
these with 1.10.25)6: 
 

ii NnR ˆˆ  ,          



3

1

3

1

ˆˆˆˆ
i

iii
i

iii NnNNRRUF                 (2.2.35) 

 
and the deformation gradient acts on the principal axes base vectors according to 
{▲Problem 4} 
 

iiii
i

ii
i

iiii NnFNnFnNFnNF ˆˆ,ˆ1
ˆ,ˆ

1ˆ,ˆˆ T1T 


               (2.2.36) 

 
The representation of F and R in terms of both material and spatial principal base vectors 
in 2.3.35 highlights their two-point character. 
 
Other Strain Measures 
 
Some other useful measures of strain are 

 
The Hencky strain measure: UH ln  (material)   or    vh ln (spatial) 
 

                                                 
6 this is not a spectral decomposition of F (unless F happens to be symmetric, which it must be in order to 
have a spectral decomposition) 

11, xX

22 , xX
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The Biot strain measure: IUB   (material) or  Ivb    (spatial) 
 
The Hencky strain is evaluated by first evaluating U along the principal axes, so that the 
logarithm can be taken of the diagonal elements. 
 
The material tensors H, B , C, U and E are coaxial tensors, with the same eigenvectors 

iN̂ .  Similarly, the spatial tensors h, b , b, v and e are coaxial with the same eigenvectors 

in̂ .  From the definitions, the spectral decompositions of these tensors are 
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                   (2.2.37) 

 
Deformation of a Circular Material Element 
 
A circular material element will deform into an ellipse, as indicated in Figs. 2.2.2 and 
2.2.4.  This can be shown as follows.  With respect to the principal axes, an undeformed 

line element 1 1 2 2d dX dX X N N  has magnitude squared    2 2 2
1 2dX dX c  , where c 

is the radius of the circle, Fig. 2.2.9.  The deformed element is d dx U X , or 

1 1 1 2 2 2 1 1 2 2d dX dX dx dx    x N N n n .  Thus 1 1 1 2 2 2/ , /dx dX dx dX   , which 

leads to the standard equation of an ellipse with major and minor axes 1 2,c c  : 

   2 2

1 1 2 2/ / 1dx c dx c   . 

 

 
 

Figure 2.2.9: a circular element deforming into an ellipse 
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2 2,X x dX
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2.2.6 Some Simple Deformations 
 
In this section, some elementary deformations are considered. 
 
Pure Stretch 
 
This deformation has already been seen, but now it can be viewed as a special case of the 
polar decomposition.  The motion is 
 

333222111 ,, XxXxXx         Pure Stretch            (2.2.38) 

 
and the deformation gradient is 
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Here, IR   and there is no rotation.  FU   and the principal material axes are 
coincident with the material coordinate axes.  321 ,,  , the eigenvalues of U, are the 

principal stretches. 
 
Stretch with rotation 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx   

 
so that 
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where tank .  This decomposition shows that the deformation consists of material 

stretching by )1(sec 2k , the principal stretches, along each of the axes, followed 

by a rigid body rotation through an angle   about the 03 X  axis, Fig. 2.2.10.  The 

deformation is relatively simple because the principal material axes are aligned with the 
material coordinate axes (so that U is diagonal).  The deformation of the unit square is as 
shown in Fig. 2.2.10. 
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Figure 2.2.10: stretch with rotation 
 
Pure Shear 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx       Pure Shear           (2.2.39) 

 
so that 
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where, since F is symmetric, there is no rotation, and UF  .  Since the rotation is zero, 
one can work directly with U and not have to consider C.  The eigenvalues of U, the 
principal stretches, are 1,1,1 kk  , with corresponding principal directions 

22
1

12
1

1
ˆ EEN  , 22

1
12

1
2

ˆ EEN   and 33
ˆ EN  .  

 
The deformation of the unit square is as shown in Fig. 2.2.11.  The diagonal indicated by 
the heavy line stretches by an amount k1  whereas the other diagonal contracts by an 
amount k1 .  An element of material along the diagonal will undergo a pure stretch as 
indicated by the stretching of the dotted box. 
 

 
 

Figure 2.2.11: pure shear 
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Simple Shear 
 
Consider the motion 
 

3322211 ,, XxXxkXXx       Simple Shear            (2.2.40) 

 
so that 
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The invariants of C are 1III,3II,3I 22  CCC kk  and the characteristic equation 

is 01)1()3( 23   k , so the principal values of C are 

1,41 2
2
12

2
1 kkk  .  The principal values of U are the (positive) square-roots of 

these: 1,4 2
12

2
1 kk  .  These can be written as 1,tansec    by letting 

k2
1tan  .  The corresponding eigenvectors of C are 
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or, normalizing so that they are of unit size, and writing in terms of  , 
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The transformation matrix of direction cosines is then 
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so that, using the inverse transformation formula,      TQUQU  , one obtains U in 
terms of the original coordinates, and hence 
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The deformation of the unit square is shown in Fig. 2.2.12 (for o7.5,2.0  k ).  The 
square first undergoes a pure stretch/contraction along the principal axes, and is then 
brought to its final position by a negative (clockwise) rotation of  . 
 
For this deformation, 1det F  and, as will be shown below, this means that the simple 
shear deformation is volume-preserving. 
 

 
 

Figure 2.2.12: simple shear 
 
 
2.2.7 Displacement & Displacement Gradients 
 
The displacement of a material particle7 is the movement it undergoes in the transition 
from the reference configuration to the current configuration.  Thus, Fig. 2.2.13,8 
 

XXxXU  ),(),( tt      Displacement (Material Description)              (2.2.41) 
 

),(),( tt xXxxu       Displacement (Spatial Description)                  (2.2.42) 
 
Note that U and u have the same values, they just have different arguments. 
 

 
 

Figure 2.2.13: the displacement 

                                                 
7 In solid mechanics, the motion and deformation are often described in terms of the displacement u.  In 
fluid mechanics, however, the primary field quantity describing the kinematic properties is the velocity v 
(and the acceleration va  ) – see later.   
8 The material displacement U here is not to be confused with the right stretch tensor discussed earlier. 

X x

uU 

11, xX

22 , xX

2N̂

1N̂
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Displacement Gradients 
 
The displacement gradient in the material and spatial descriptions, XXU  /),( t  and 

xxu  /),( t , are related to the deformation gradient and the inverse deformation gradient 
through 
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                 (2.2.43) 

 
and it is clear that the displacement gradients are related through (see Eqn. 2.2.8) 
 

1Gradgrad  FUu                                (2.2.44) 
 
The deformation can now be written in terms of either the material or spatial displacement 
gradients: 
 

xuXxuXx

XUXXUXx

ddddd

ddddd

grad)(

Grad)(




            (2.2.45) 

 
Example 
 
Consider again the extension of the bar shown in Fig. 2.1.5.  The displacement is 
 

  1
1 1 1

3
( ) 3 , ( )

1 3

t x t
t X t

t

      
U X E u x e  

 
and the displacement gradients are 
 

1 1

3
Grad 3 , grad

1 3

t
t

t
     

U E u e  

 
The displacement is plotted in Fig. 2.2.14 for 1t  .  The two gradients  1 1/U X   and 

1 1/u x   have different values (see the horizontal axes on Fig. 2.2.14). In this example, 

1 1 1 1/ /U X u x      – the change in displacement is not as large when “seen” from the 

spatial coordinates. 
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Figure 2.1.14: displacement and displacement gradient 
 

■  
 
Strains in terms of Displacement Gradients 
 
The strains can be written in terms of the displacement gradients.  Using 1.10.3b, 
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(2.2.46b) 
 
Small Strain 
 
If the displacement gradients are small, then the quadratic terms, their products, are small 
relative to the gradients themselves, and may be neglected.  With this assumption, the 
Green-Lagrange strain E (and the Euler-Almansi strain) reduces to the small-strain 
tensor, 
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Since in this case the displacement gradients are small, it does not matter whether one 
refers the strains to the reference or current configurations – the error is of the same order 
as the quadratic terms already neglected9, so the small strain tensor can equally well be 
written as 
 

   
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
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j

j

i
ij x
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2

1
,gradgrad

2

1 T uuε  Small Strain Tensor     (2.2.48) 

 
 
2.2.8 The Deformation of Area and Volume Elements 
 
Line elements transform between the reference and current configurations through the 
deformation gradient.  Here, the transformation of area and volume elements is examined. 
 
The Jacobian Determinant 
 
The Jacobian determinant of the deformation is defined as the determinant of the 
deformation gradient, 
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F      The Jacobian Determinant    (2.2.49) 

 
Equivalently, it can be considered to be the Jacobian of the transformation from material 
to spatial coordinates (see Appendix 1.B.2). 
 
From Eqn. 1.3.17, the Jacobian can also be written in the form of the triple scalar product 
 





















321 XXX

J
xxx

          (2.2.50) 

 
Consider now a volume element in the reference configuration, a parallelepiped bounded 
by the three line-elements )1(Xd , )2(Xd  and )3(Xd .  The volume of the parallelepiped10 is 
given by the triple scalar product (Eqns. 1.1.4): 
 

 )3()2()1( XXX ddddV           (2.2.51) 
 
After deformation, the volume element is bounded by the three vectors )(idx , so that the 
volume of the deformed element is, using 1.10.16f, 
 

                                                 
9 although large rigid body rotations must not be allowed – see §2.7 . 
10 the vectors should form a right-handed set so that the volume is positive. 
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        (2.2.52) 

 
Thus the scalar J is a measure of how the volume of a material element has changed with 
the deformation and for this reason is often called the volume ratio. 
 

dVJdv   Volume Ratio       (2.2.53) 
 
Since volumes cannot be negative, one must insist on physical grounds that 0J .  Also, 
since F has an inverse, 0J .  Thus one has the restriction 
 

0J        (2.2.54) 
 
Note that a rigid body rotation does not alter the volume, so the volume change is 
completely characterised by the stretching tensor U.  Three line elements lying along the 
principal directions of U form an element with volume dV , and then undergo pure stretch 
into new line elements defining an element of volume dVdv 321  , where i  are the 

principal stretches, Fig. 2.2.15.  The unit change in volume is therefore also 
 

1321 
 
dV

dVdv
     (2.2.55) 

 

 
 

Figure 2.2.15: change in volume 
 
For example, the volume change for pure shear is 2k  (volume decreasing) and, for 
simple shear, is zero (cf. Eqn. 2.2.40 et seq., 01)1)(tan)(sectan(sec   ). 
 
An incompressible material is one for which the volume change is zero, i.e. the 
deformation is isochoric.  For such a material, 1J , and the three principal stretches are 
not independent, but are constrained by 
 

1321   Incompressibility Constraint                   (2.2.56) 

 

current 
configuration 

reference 
configuration 

principal material 
axes 

dV dVdv 321 
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Nanson’s Formula 
 

Consider an area element in the reference configuration, with area dS , unit normal N̂ , 
and bounded by the vectors )2()1( , XX dd , Fig. 2.2.16.  Then 
 

)2()1(ˆ XXN dddS         (2.2.57) 
 
The volume of the element bounded by the vectors )2()1( , XX dd  and some arbitrary line 

element Xd  is XN ddSdV  ˆ .  The area element is now deformed into an element of 
area ds  with normal n̂  and bounded by the line elements )2()1( , xx dd .  The volume of the 
new element bounded by the area element and XFx dd   is then 
 

XNXFnxn ddSJddsddsdv  ˆˆˆ       (2.2.58) 
 

 
 

Figure 2.2.16: change of surface area 
 
Thus, since dX is arbitrary, and using 1.10.3d, 
 

dSJds NFn ˆˆ T  Nanson’s Formula   (2.2.59) 
 
Nanson’s formula shows how the vector element of area dsn̂  in the current 

configuration is related to the vector element of area dSN̂  in the reference configuration. 
 
 
2.2.9 Inextensibility and Orientation Constraints 
 
A constraint on the principal stretches was introduced for an incompressible material, 
2.2.56.  Other constraints arise in practice.  For example, consider a material which is 

inextensible in a certain direction, defined by a unit vector Â  in the reference 

configuration.  It follows that 1ˆ AF  and the constraint can be expressed as 2.2.17,  

 

1ˆˆ ACA      Inextensibility Constraint               (2.2.60) 
 

)1(Xd

)2(Xd

Xd

N̂

)1(xd

)2(xd

xd

n̂



Section 2.2 

Solid Mechanics Part III                                                                                Kelly 233

If there are two such directions in a plane, defined by Â  and B̂ , making angles   and   

respectively with the principal material axes 21
ˆ,ˆ NN , then 
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and      22

2
2
1

2
2

22
2

2
1 cos1cos  .  It follows that   ,   , 

   or  2  (or 121   , i.e. no deformation). 
 
Similarly, one can have orientation constraints.  For example, suppose that the direction 

associated with the vector Â  maintains that direction.  Then 
 

AAF ˆˆ       Orientation Constraint                 (2.2.61) 
 
for some scalar 0 . 
 
 
2.2.10 Problems 
 
1. In equations 2.2.8, one has from the chain rule 
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Derive the other two relations. 
2. Take the dot product    ˆ ˆd d x x  in Eqn. 2.2.29.  Then use IRR T , UU T , and 

1.10.3e to show that 

X

X
UU

X

X

d

d

d

d
2  

3. For the deformation 

3213322311 22,2,2 XXXxXXxXXx   

(a) Determine the Deformation Gradient and the Right Cauchy-Green tensors 
(b) Consider the two line elements 2

)2(
1

)1( , eXeX  dd  (emanating from (0,0,0)).  
Use the Right Cauchy Green tensor to determine whether these elements in the 
current configuration ( )2()1( , xx dd ) are perpendicular. 

(c) Use the right Cauchy Green tensor to evaluate the stretch of the line element 

21 eeX d , and hence determine whether the element contracts, stretches, or 
stays the same length after deformation. 

(d) Determine the Green-Lagrange and Eulerian strain tensors 
(e) Decompose the deformation into a stretching and rotation (check that U is 

symmetric and R is orthogonal).  What are the principal stretches? 
4. Derive Equations 2.2.36. 
5. For the deformation 

32332211 ,, XaXxXXxXx   
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(a) Determine the displacement vector in both the material and spatial forms 
(b) Determine the displaced location of the particles in the undeformed state which 

originally comprise 
(i) the plane circular surface )1/(1,0 22

3
2
21 aXXX   

(ii) the infinitesimal cube with edges along the coordinate axes of length 
idX  

Sketch the displaced configurations if 2/1a  
6. For the deformation 

313322211 ,, XaXxaXXxaXXx   

(a) Determine the displacement vector in both the material and spatial forms 
(b) Calculate the full material (Green-Lagrange) strain tensor and the full spatial 

strain tensor 
(c) Calculate the infinitesimal strain tensor as derived from the material and spatial 

tensors, and compare them for the case of very small a. 
7. In the example given above on the polar decomposition, §2.2.5, check that the 

relations 3,2,1,  iii nCn   are satisfied (with respect to the original axes).  Check 

also that the relations 3,2,1,  iii nnC   are satisfied (here, the eigenvectors are the 

unit vectors in the second coordinate system, the principal directions of C, and C is 
with respect to these axes, i.e. it is diagonal). 
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2.3 Deformation and Strain: Further Topics 
 
 
2.3.1 Volumetric and Isochoric Deformations 
 
When analysing materials which are only slightly incompressible, it is useful to 
decompose the deformation gradient multiplicatively, according to 
 

( ) FFIF 3/13/1 JJ ==             (2.3.1) 
 
From this definition {▲Problem 1}, 
 

1det =F             (2.3.2) 
 
and so F  characterises a volume preserving (distortional or isochoric) deformation.  The 
tensor I3/1J  characterises the volume-changing (dilational or volumetric) component of 
the deformation, with ( ) JJ == FI detdet 3/1 . 
 
This concept can be carried on to other kinematic tensors.  For example, with FFC T= ,  
 

CFFC 3/2T3/2 JJ ≡= .    (2.3.3) 
 
F  and C  are called the modified deformation gradient and the modified right 
Cauchy-Green tensor, respectively.  The square of the stretch is given by 
 

{ }XCXXCX ˆˆˆˆ 3/22 ddJdd ==λ     (2.3.4) 
 
so that λλ 3/1J= , where λ  is the modified stretch, due to the action of C .  Similarly, 
the modified principal stretches are 
 

ii J λλ 3/1−= ,     3,2,1=i               (2.3.5) 
 
with 
 

1det 321 == λλλF                                                (2.3.6) 
 
The case of simple shear discussed earlier is an example of an isochoric deformation, in 
which  the deformation gradient and the modified deformation gradient coincide,  

II =3/1J . 
 
 
2.3.2 Relative Deformation 
 
It is usual to use the configuration at )0,( =tX  as the reference configuration, and define 
quantities such as the deformation gradient relative to this reference configuration.  As 
mentioned, any configuration can be taken to be the reference configuration, and a new 



Section 2.3 

Solid Mechanics Part III                                                                                Kelly 234

deformation gradient can be constructed with respect to this new reference configuration.  
Further, the reference configuration does not have to be fixed, but could be moving also. 
 
In many cases, it is useful to choose the current configuration ),( tx  to be the reference 
configuration, for example when evaluating rates of change of kinematic quantities (see 
later).  To this end, introduce a third configuration: this is the configuration at some time 

τ=t  and the position of a material particle X here is denoted by ),(ˆ τXχx = , where χ  is 
the motion function.  The deformation at this time τ  relative to the current configuration 
is called the relative deformation, and is denoted by ),(ˆ )( τxχx t= , as illustrated in Fig. 
2.3.1. 
 

 
 

Figure 2.3.1: the relative deformation 
 
 
The relative deformation gradient tF  is defined through 
 

xxFx dd t ),(ˆ τ= ,       
x
xF
∂
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=
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t           (2.3.7) 

 
Also, since XXFx dtd ),(=  and XXFx dd ),(ˆ τ= , one has the relation 
 

),(),(),( tt XFxFXF ττ =     (2.3.8) 
 
Similarly, relative strain measures can be defined, for example the relative right Cauchy-
Green strain tensor is 
 

( ) ( ) ( )τττ ttt FFC T=      (2.3.9) 
 
Example 
 
Consider the two-dimensional motion 
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)1(, 2211 +== tXxeXx t  
 
Inverting these gives the spatial description )1/(, 2211 +== − txXexX t , and the relative 
deformation is 
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The deformation gradients are 
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2.3.3 Derivatives of the Stretch 
 
In this section, some useful formulae involving the derivatives of the stretches with 
respect to the Cauchy-Green strain tensors are derived. 
  
Derivatives with respect to b 
 
First, take the stretches to be functions of the left Cauchy-Green strain b.  Write b using 
the spatial principal directions in̂  as a basis, 2.2.37, so that the total differential can be 
expressed as 
 

[ ]∑
=

⊗+⊗+⊗=
3

1

2 ˆˆˆˆˆˆ2
i

iiiiiiiii dddd nnnnnnb λλλ              (2.3.10) 

 
Since ijji δ=⋅nn ˆˆ , then 
 

[ ] iiiiiiiiiii ddddd λλλλλ 2ˆˆˆˆ2ˆˆ 2 =⋅+⋅+= nnnnnbn  (no sum over i)          (2.3.11) 
 
This last follows since the change in a vector of constant length is always orthogonal to 
the vector itself (as in the curvature analysis of §1.6.2).  Using the property 

)(: vuTuTv ⊗= , one has (summing over the k but not over the i; here ikik dd δλλ =/ ) 
 

1)ˆˆ(:
2
12)ˆˆ(:)ˆˆ(: =⊗

∂
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∂
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≡⊗ ii
ii

iiiik
k
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    (2.3.12) 

 
Then, since bb ∂∂∂∂ /:/ ii λλ  is also equal to 1, one has 
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The chain rule then gives the second derivative. 
 
The above analysis is for distinct principal stretches.  When λλλλ ≡== 321 , then 

Ib 2λ= , Ib λλdd 2= .  Also, ( ) λλ dd ∂∂= /3 bb , so ( ) Ib λλ 2/3 =∂∂ , or  
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:2:3              (2.3.14) 

 
But 1/:/ =∂∂∂∂ bb λλ  and II :3 = , and so in this case, λλ 2// Ib =∂∂ . 
 
A similar calculation can be carried out for two equal eigenvalues 321 λλλλ ≠== .  In 
summary, 
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          (2.3.15) 

 
Derivatives with respect to C 
 
The stretch can also be considered to be a function of the right Cauchy-Green strain C.  
The derivatives of the stretches with respect to C can be found in exactly the same way as 
for the left Cauchy-Green strain.  The results are the same as given in 2.3.15 except that, 
referring to 2.2.37, b is replaced by C and n̂  is replaced by N̂ . 
 
 
2.3.4 The Directional Derivative of Kinematic Quantities 
 
The directional derivative of vectors and tensors was introduced in §1.6.11 and §1.15.4.  
Taking directional derivatives of kinematic quantities is often very useful, for example in 
linearising equations in order to apply numerical solution algorithms 
 
The Deformation Gradient 
 
First, consider the deformation gradient as a function of the current position x (or motion 
χ ) and examine its value at ax + : 
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[ ] ( )aaFxFaxF x o+∂+=+ )()(                                             (2.3.16) 

 
The directional derivative [ ] ( )axFaFx ∂∂=∂ /  can be expressed as 
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                                              (2.3.17) 

 
the last line resulting from 2.2.8b.  It follows that the directional derivative of the 
deformation gradient in the direction of a displacement vector u from the current 
configuration is 
 

 [ ] ( )FuuFx grad=∂                                                     (2.3.18) 
 
On the other hand, consider the deformation gradient as a function of X and examine its 
value at AX + : 
 

[ ]AFXFAXF X∂+=+ )()(                                             (2.3.19) 
 
and now 
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                                         (2.3.20) 

 
where FAa = . 
 
Other Kinematic Quantities 
 
The directional derivative of the Green-Lagrange strain, the right and left Cauchy-Green 
tensors and the Jacobian in the direction of a displacement u from the current 
configuration are  {▲Problem 2} 
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                                (2.3.21) 

 
where ε  is the small-strain tensor, 2.2.48. 
 
The directional derivative is also useful for deriving various relations between the 
kinematic variables.  For example, for an arbitrary vector a, using the chain rule 1.15.28, 
2.3.20, 1.15.24, the trace relations 1.10.10e and 1.10.10b, and 2.2.8b, 1.14.9,   
 

( ) [ ]
[ ][ ]
( )[ ]
( )
( )( )

( )( )
( )( )

( )Fa
Fa

FFa
FaF
FaF

Fa
aF

aa

F

XF

X

div
gradtr
Gradtr

Gradtr
Grad:

Grad

Grad

1

1

T

J

J

J

J

J

J

J

JJ

=
=
=

=

=

∂=
∂∂=

∂=⋅

−

−

−

                                            (2.3.22) 

 
so that, from 1.14.16b with a constant, 
 

TdivGrad FJJ =                                             (2.3.23) 
 
 
2.3.5 Problems 
 
1. Use 1.10.16c to show that 1det =F . 
2. (a) use the relation ( )IFFE −= T

2
1 , Eqn. 2.3.18, ( )FuuFx grad][ =∂ , and the product 

rule of differentiation to derive 2.3.21a, εFFuEx
T][ =∂ , where ε  is the small 

strain tensor. 
(b) evaluate [ ]uCx∂  (in terms of F and ε , the small strain tensor) 
(c) evaluate [ ]ubx∂  (in terms of ugrad  and b) 
(d) evaluate [ ]ux J∂  (in terms of J and udiv ; use the chain rule [ ] [ ][ ]uFu xFx ∂∂=∂ JJ ˆ , 

with FF det)(ˆ =J , [ ] uuFx Grad=∂ ) 
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2.4 Material Time Derivatives 
 
The motion is now allowed to be a function of time,  t,Xχx  , and attention is given to 
time derivatives, both the material time derivative and the local time derivative. 
 
 
2.4.1 Velocity & Acceleration 
 
The velocity of a moving particle is the time rate of change of the position of the particle.  
From 2.1.3, by definition,  
 

dt

td
t

),(
),(

Xχ
XV                                                     (2.4.1) 

 
In the motion expression  t,Xχx  , X and t are independent variables and X is 
independent of time, denoting the particle for which the velocity is being calculated.  The 
velocity can thus be written as tt  /),(Xχ  or, denoting the motion by ),( tXx , as 

dttd /),(Xx  or tt  /),(Xx . 
 
The spatial description of the velocity field may be obtained from the material description 
by simply replacing X with x, i.e. 
 

 ttt ),,(),( 1 xχVxv                                                   (2.4.2) 
 
As with displacements in both descriptions, there is only one velocity, ),(),( tt xvXV   –  
they are just given in terms of different coordinates. 
 
The velocity is most often expressed in the spatial description, as 
 

dt

d
t

x
xxv  ),(        velocity                                    (2.4.3) 

 
To be precise, the right hand side here involves x which is a function of the material 
coordinates, but it is understood that the substitution back to spatial coordinates, as in 
2.4.2, is made (see example below). 
 
Similarly, the acceleration is defined to be 
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dt

td
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
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XχVxXχ

XA                              (2.4.4) 

 
Example 
 
Consider the motion 
 

331
2

222
2

11 ,, XxXtXxXtXx   
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The velocity and acceleration can be evaluated through 
 

21122

2

2112 22),(,22),( ee
x

XAee
x

XV XX
dt

d
ttXtX

dt

d
t   

 
One can write the motion in the spatial description by inverting the material description: 
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2
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X

t
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  

 
Substituting in these equations then gives the spatial description of the velocity and 
acceleration: 
 

 
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2 2
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1 24 4

2 2
1 2 1 1 2

1 24 4
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 
  

 
 

  
 

v x V χ x e e

a x A χ x e e

 

 
■  

 
 
2.4.2 The Material Derivative 
 
One can analyse deformation by examining the current configuration only, discounting 
the reference configuration.  This is the viewpoint taken in Fluid Mechanics – one focuses 
on material as it flows at the current time, and does not consider “where the fluid was”.  
In order to do this, quantities must be cast in terms of the velocity.  Suppose that the 
velocity in terms of spatial coordinates, ),( txvv   is known; for example, one could 
have a measuring instrument which records the velocity at a specific location, but the 
motion χ  itself is unknown.  In that case, to evaluate the acceleration, the chain rule of 
differentiation must be applied: 
 

 
dt

d

t
tt

dt

d x

x

vv
xvv








 ),(    

 
or 
 

 vv
v

a grad




t

       acceleration (spatial description)      (2.4.5) 

 
The acceleration can now be determined, because the derivatives can be determined 
(measured) without knowing the motion. 
 
In the above, the material derivative, or total derivative, of the particle’s velocity was 
taken to obtain the acceleration.  In general, one can take the time derivative of any 
physical or kinematic property    expressed in the spatial description: 
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     v



 grad
tdt

d
       Material Time Derivative     (2.4.6) 

 
For example, the rate of change of the density ),( tx   of a particle instantaneously at 
x is 

 

v



  grad
tdt

d     (2.4.7) 

 
The Local Rate of Change 
 
The first term, t / , gives the local rate of change of density at x whereas the second 
term gradv  gives the change due to the particle’s motion, and is called the convective 
rate of change. 
 
Note the difference between the material derivative and the local derivative.  For example, 
the material derivative of the velocity, 2.4.5 (or, equivalently, ( , ) /d t dtV X  in 2.4.4, with 
X fixed) is not the same as the derivative ( , ) /t t v x  (with x fixed).  The former is the 
acceleration of a material particle X.  The latter is the time rate of change of the velocity 
of particles at a fixed location in space; in general, different material particles will occupy 
position x at different times. 
 
The material derivative dtd /  can be applied to any scalar, vector or tensor: 
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      (2.4.8) 

 
Another notation often used for the material derivative is DtD / : 
 

Df df
f

Dt dt
                 (2.4.9) 

 
Steady and Uniform Flows 
 
In a steady flow, quantities are independent of time, so the local rate of change is zero 
and, for example, v  grad .  In a uniform flow, quantities are independent of 
position so that, for example, t /  
 
Example 
 
Consider again the previous example.  This time, with only the velocity ( , )tv x  known, 
the acceleration can be obtained through the material derivative: 
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as before. 

■  
 
 
The Relationship between the Displacement and Velocity 
 
The velocity can be derived directly from the displacement 2.2.42: 

 

dt

d

dt

d

dt

d uXux
v 




)(
,         (2.4.10) 

 
or 
 

 vu
uu

v grad




tdt

d
        (2.4.11) 

 
When the displacement field is given in material form one has 
 

dt

dU
V            (2.4.12) 

 
 
2.4.3 Problems 
 
1. The density of a material is given by  

xx 


 te 2

  

The velocity field is given by 

213132321 2,2,2 xxvxxvxxv   

Determine the time derivative of the density  (a) at a certain position x  in space, 
and (b) of a material particle instantaneously occupying position x. 
 



Section 2.5 

Solid Mechanics Part III                                                                                Kelly 243

2.5 Deformation Rates 
 
In this section, rates of change of the deformation tensors introduced earlier, F, C, E, etc., 
are evaluated, and special tensors used to measure deformation rates are discussed, for 
example the velocity gradient l, the rate of deformation d and the spin tensor w.  
 
 
2.5.1 The Velocity Gradient 
 
The velocity gradient is used as a measure of the rate at which a material is deforming.   
 
Consider two fixed neighbouring points, x and xx d , Fig. 2.5.1.  The velocities of the 
material particles at these points at any given time instant are )(xv  and )( xxv d , and 
 

x
x

v
xvxxv dd




 )()( , 

 
The relative velocity between the points is 
 

xlx
x

v
v ddd 




      (2.5.1) 

 
with l defined to be the (spatial) velocity gradient, 
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i
ij x

v
l



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


 ,grad v
x

v
l  Spatial Velocity Gradient  (2.5.2) 

 

 
 

Figure 2.5.1: velocity gradient 
 
Expression 2.5.1 emphasises the tensorial character of the spatial velocity gradient, 
mapping as it does one vector into another.  Its physical meaning will become clear when 
it is decomposed into its symmetric and skew-symmetric parts below. 
 
The spatial velocity gradient is commonly used in both solid and fluid mechanics.  Less 
commonly used is the material velocity gradient, which is related to the rate of change of 
the deformation gradient: 
 

F
X

XxXx

XX

XV
V 


































),(),(),(
Grad

t

tt

tt
        (2.5.3) 





x

xx d xv

 xxv d

vd

xd



Section 2.5 

Solid Mechanics Part III                                                                                Kelly 244

 
and use has been made of the fact that, since X and t are independent variables, material 
time derivatives and material gradients commute. 
 
 
2.5.2 Material Derivatives of the Deformation Gradient 
 
The spatial velocity gradient may be written as 
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or 1 FFl   so that the material derivative of F can be expressed as 
 

FlF      Material Time Derivative of the Deformation Gradient     (2.5.4) 
 
Also, it can be shown that {▲Problem 1} 
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                                                       (2.5.5) 

 
 
2.5.3 The Rate of Deformation and Spin Tensors 
 
The velocity gradient can be decomposed into a symmetric tensor and a skew-symmetric 
tensor as follows (see §1.10.10): 
 

wdl          (2.5.6) 
 
where d is the rate of deformation tensor (or rate of stretching tensor) and w is the 
spin tensor (or rate of rotation, or vorticity tensor), defined by 
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   Rate of Deformation and Spin Tensors  

(2.5.7) 
 
The physical meaning of these tensors is next examined. 
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The Rate of Deformation 
 
Consider first the rate of deformation tensor d and note that 
 

 xvxl d
dt

d
dd                                                 (2.5.8) 

 
The rate at which the square of the length of xd  is changing is then 
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     (2.5.9) 

 

the last equality following from 2.5.6 and 1.10.31e.  Dividing across by 
2

2 xd , then leads 

to 
 

ndn ˆˆ



 Rate of stretching per unit stretch in the direction n̂        (2.5.10) 

 
where Xx dd /  is the stretch and xxn dd /ˆ   is a unit normal in the direction of xd .  

Thus the rate of deformation d gives the rate of stretching of line elements.  The diagonal 
components of d, for example  
 

1111 deed , 
 
represent unit rates of extension in the coordinate directions. 
 
Note that these are instantaneous rates of extension, in other words, they are rates of 
extensions of elements in the current configuration at the current time; they are not a 
measure of the rate at which a line element in the original configuration changed into the 
corresponding line element in the current configuration. 
 
Note: 

 Eqn. 2.5.10 can also be derived as follows: let N̂  be a unit normal in the direction of Xd , and 

n̂  be the corresponding unit normal in the direction of xd .  Then XNFxn dd ˆˆ  , or NFn ˆˆ  . 

Differentiating gives NlFNFnn ˆˆˆˆ     or  nlnn ˆˆˆ   .  Contracting both sides with n̂  

leads to   nlnnnnn ˆˆ/ˆˆˆˆ   .  But 0)ˆˆ(1ˆˆ  dtd nnnn  so, by the chain rule, 0ˆˆ nn   

(confirming that a vector n̂  of constant length is orthogonal to a change in that vector n̂d ), and 
the result follows 

 
Consider now the rate of change of the angle   between two vectors )2()1( , xx dd .  Using 
2.5.8 and 1.10.3d, 
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which reduces to 2.5.9 when )2()1( xx dd  .  An alternative expression for this dot product 
is 
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(2.5.12) 
 
Equating 2.5.11 and 2.5.12 leads to 
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where )()( / ii
i dd Xx  is the stretch and )()( /ˆ ii

i dd xxn   is a unit normal in the 

direction of )(idx . 
 
It follows from 2.5.13 that the off-diagonal terms of the rate of deformation tensor 
represent shear rates: the rate of change of the right angle between line elements aligned 
with the coordinate directions.  For example, taking the base vectors 11 n̂e  , 22 n̂e  , 
2.5.13 reduces to 

 

1212 2

1d                               (2.5.14) 

 
where 12  is the instantaneous right angle between the axes in the current configuration.  
 
The Spin 
 
Consider now the spin tensor w; since it is skew-symmetric, it can be written in terms of 
its axial vector ω  (Eqn. 1.10.34), called the angular velocity vector: 
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v

       (2.5.15) 

 
(The vector ω2  is called the vorticity (or spin) vector.)  Thus when d is zero, the motion 
consists of a rotation about some axis at angular velocity ω  (cf. the end of §1.10.11), 

with rωv  , r measured from a point on the axis, and vrωwr  . 
 
On the other hand, when dl  , 0w  , one has oω  , and the motion is called 
irrotational. 
 
Example (Shear Flow) 
 
Consider a simple shear flow in which the velocity profile is “triangular” as shown in 
Fig. 2.5.2.  This type of flow can be generated (at least approximately) in many fluids by 
confining the fluid between plates a distance h apart, and by sliding the upper plate over 
the lower one at constant velocity V.  If the material particles adjacent to the upper plate 
have velocity 1eV , then the velocity field is 12ev x , where hV / .  This is a steady 
flow ( / t  v 0 ); at any given point, there is no change over time.  The velocity gradient 
is 21 eel    and the acceleration of material particles is zero:  a lv 0 .  The rate of 
deformation and spin are 
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and, from 2.5.14, 12   , the rate of change of the angle shown in Fig. 2.5.2. 
 

 
 

Figure 2.5.2: shear flow 
 
The eigenvalues of d are 2/,0    ( 0det d ) and the principal invariants, Eqn. 

1.11.17, are 0III,II,0I 2
4
1  ddd  .  For 2/  , the eigenvector is 

 T0111 n  and for 2/  , it is  T0112 n  (for 0  it is 3e ).  (The 

eigenvalues and eigenvectors of w are complex.)  Relative to the basis of eigenvectors, 

h
121 )( ev xv

V

12
1e

2e
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so at 45  there is an instantaneous pure rate of stretching/contraction of material. 
 

■  
 
 
2.5.4 Other Rates of Strain Tensors 
 
From 2.2.9, 2.2.22, 
 

  XEXXCXxx dddddd
dt

d  
2

1

2

1
         (2.5.16) 

 
This can also be written in terms of spatial line elements: 
 

  xFEFxXEX dddd 1T                            (2.5.17) 
 
But from 2.5.9, these also equal xxddd , which leads to expressions for the material time 
derivatives of the right Cauchy-Green and Green-Lagrange strain tensors (also given here 
are expressions for the time derivatives of the left Cauchy-Green and Euler-Almansi 
tensors {▲Problem 3}) 
 

elelde

bllbb

dFFE

dFFC









T

T

T

T2







        (2.5.18) 

 
Note that  
 

  EE ddt  

 
so that the integral of the rate of Green-Lagrange strain is path independent and, in 
particular, the integral of E  around any closed loop (so that the final configuration is the 
same as the initial configuration) is zero.  However, in general, the integral of the rate of 
deformation, 
 

dtd  

 
is not independent of the path – there is no universal function h such that dtd /hd   with 

  hd ddt .  Thus the integral dtd  over a closed path may be non-zero, and hence the 

integral of the rate of deformation is not a good measure of the total strain. 
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The Hencky Strain 
 

The Hencky strain is, Eqn. 2.2.37,   


3

1
ˆˆln

i iii nnh  , where in  are the principal 

spatial axes.  Thus, if the principal spatial axes do not change with time, 

  


3

1
ˆˆ/

i iiii nnh  .  With the left stretch  


3

1
ˆˆ

i iii nnv  , it follows that (and 

similarly for the corresponding material tensors), 11 ln,ln 





 vvvhUUUH  . 
 
For example, consider an extension in the coordinate directions, so 

  


3

1

3

1
ˆˆˆˆ

i i iiiiii NNnnvUF  .  The motion and velocity are 

 

 sum no, i
i

i
iiiiii xXxXx





   

 

so iiid  /  (no sum), and hd  .  Further, dt dh .  Note that, as mentioned above, 

this expression does not hold in general, but does in this case of uniform extension. 
 
 
2.5.5 Material Derivatives of Line, Area and Volume Elements 
 
The material derivative of a line element dtdd /)( x  has been derived (defined) through 
2.4.8.  For area and volume elements, it is necessary first to evaluate the material 
derivative of the Jacobian determinant J.  From the chain rule, one has (see Eqns 1.15.11, 
1.15.7) 
 

  FFF
F

F  ::)( T



 J
J

J
dt

d
J          (2.5.19) 

 
Hence {▲Problem 4} 
 

v

v

l

div

)grad(tr

)(tr

J

J

JJ



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      (2.5.20) 

 
Since wdl   and 0tr w , it also follows that dtrJJ  . 
 
As mentioned earlier, an isochoric motion is one for which the volume is constant – thus 
any of the following statements characterise the necessary and sufficient conditions for an 
isochoric motion: 
 

0:,0tr,0div,0,1 T   FFdv JJ         (2.5.21) 
 
Applying Nanson’s formula 2.2.59, the material derivative of an area vector element is 
{▲Problem 6} 
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    dsds
dt

d
nlvn ˆdivˆ T      (2.5.22) 

 
Finally, from 2.2.53, the material time derivative of a volume element is 
 

    dvdVJJdV
dt

d
dv

dt

d
vdiv          (2.5.23) 

 
 
Example (Shear and Stretch) 
 
Consider a sample of material undergoing the following motion, Fig. 2.4.3. 
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with ( )t  , ( )k k t . 

 
 

Figure 2.4.3: shear and stretch 
 
The deformation gradient and material strain tensors are 
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the Jacobian  FdetJ , and the spatial strain tensors are 
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This deformation can also be expressed as a stretch followed by a simple shear: 
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The velocity is 
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The velocity gradient is 
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and the rate of deformation and spin are 
 

  
  

  
  









































000

00/

0/0

,

000

0//

0/0

2
1

2
1

2
1

2
1













kk

kk

kk

kk

wd  

 
Also 
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As expected, from 2.5.20, 
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2.5.6 Problems 
 
1. (a) Differentiate the relation 1 FFI  and use 2.5.4, FlF  , to derive 2.5.5b, 

lFF 1
.

1   . 
(b) Differentiate the relation TT  FFI  and use 2.5.4, FlF  , and 1.10.3e to derive 

2.5.5c, TT
.

T   FlF . 
2. For the velocity field 

32133
2
222

2
11 3,2, xxxvxxvxxv   

determine the rate of stretching per unit stretch at (2,0,1) in the direction of the unit 
vector 

   5/34 21 ee   

And in the direction of 1e ? 

3. (a)   Derive the relation 2.5.18a, dFFC T2  directly from FFC T  
(b) Use the definitions TFFb   and 2/)( 1 bIe  to derive the relations 

2.5.18c,d: eleldebllbb  TT ,   
4. Use 2.5.4, 2.5.19, 1.10.3h, 1.10.6, to derive 2.5.20.  
5. For the motion 33212

2
11 ,,3 tXxtXXxttXx  , verify that lFF  .  What is 

the ratio of the volume element currently occupying )1,1,1(  to its volume in the 
undeformed configuration?  And what is the rate of change of this volume element, 
per unit current volume? 

6. Use Nanson’s formula 2.2.59, the product rule of differentiation, and 2.5.20, 2.5.5c, 

to derive the material time derivative of a vector area element, 2.5.22 (note that N̂ , 
a unit normal in the undeformed configuration, is constant). 
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2.6 Deformation Rates: Further Topics 
 
 
2.6.1 Relationship between l, d, w and the rate of change of R 

and U 
 
Consider the polar decomposition RUF = .  Since R is orthogonal, IRR =T , and a 
differentiation of this equation leads to 
 

TT RRRRΩR
&& −=≡              (2.6.1) 

 
with RΩ  skew-symmetric (see Eqn. 1.14.2).  Using this relation, the expression 1−= FFl & , 
and the definitions of d and w, Eqn. 2.5.7, one finds that {▲Problem 1} 
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        (2.6.2) 

 
Note that RΩ  being skew-symmetric is consistent with w being skew-symmetric, and that 
both w and d involve R, and the rate of change of U. 
 
When the motion is a rigid body rotation, then 0U =& , and 
 

TRRΩw R
&==         (2.6.3) 

 
 
2.6.2 Deformation Rate Tensors and the Principal Material and 

Spatial Bases 
 
The rate of change of the stretch tensor in terms of the principal material base vectors is 
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⊗+⊗+⊗=
3
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ˆˆˆˆˆˆ
i

iiiiiiiii NNNNNNU &&&&& λλλ      (2.6.4) 

 
Consider the case when the principal material axes stay constant, as can happen in some 
simple deformations.  In that case, U&  and 1−U  are coaxial (see §1.11.5): 
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     (2.6.5) 
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with UUUU && 11 −− =  and, as expected, from 2.5.25b, TRRΩw R
&== , that is, any spin is 

due to rigid body rotation. 
 
Similarly, from 2.2.37, and differentiating INN =⊗ ii

ˆˆ , 
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3
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2
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i
iiiiiiiiii NNNNNNE &&&& λλλλ .         (2.6.6) 

 

Also, differentiating ijji δ=⋅NN ˆˆ  leads to jiji NNNN && ˆˆˆˆ ⋅−=⋅  and so the expression 
 

m
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imi W NN ˆˆ
3

1
∑
=

=&        (2.6.7) 

 
is valid provided ijW  are the components of a skew-symmetric tensor, jiij WW −= .  This 
leads to an alternative expression for the Green-Lagrange tensor: 
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Similarly, from 2.2.37, the left Cauchy-Green tensor can be expressed in terms of the 
principal spatial base vectors: 
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Then, from inspection of 2.5.18c, Tbllbb +=& , the velocity gradient can be expressed as  
{▲Problem 2} 
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     (2.6.7) 

 
 
2.6.3 Rates of Change and the Relative Deformation 
 
Just as the material time derivative of the deformation gradient is defined as  
 

⎟
⎠
⎞

⎜
⎝
⎛
∂
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∂
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X
xXFF

t
t

t
),(&  

 
one can define the material time derivative of the relative deformation gradient, cf. §2.3.2, 
the rate of change relative to the current configuration: 
 

ttt t
=∂

∂
=

τ
τ

τ
),(),( xFxF&             (2.6.8) 
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From 2.3.8, 1),(),(),( −= tt XFXFxF ττ , so taking the derivative with respect to τ  (t is 
now fixed) and setting t=τ  gives  
 

1),(),(),( −= tttt XFXFxF &&  
 
Then, from 2.5.4, 
 

),( tt xFl &=      (2.6.9) 
 
as expected – the velocity gradient is the rate of change of deformation relative to the 
current configuration.  Further, using the polar decomposition, 
 

),(),(),( τττ xUxRxF ttt =  
 
Differentiating with respect to τ  and setting t=τ  then gives 
 

),(),(),(),(),( ttttt ttttt xUxRxUxRxF &&& +=  
 
Relative to the current configuration, IxUxR == ),(),( tt tt , so, from 2.4.34, 
 

),(),( tt tt xRxUl && +=      (2.6.10) 
 
With U symmetric and R skew-symmetric, ),(),,( tt tt xRxU &&  are, respectively, symmetric 
and skew-symmetric, and it follows that 
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again, as expected – the rate of deformation is the instantaneous rate of stretching and the 
spin is the instantaneous rate of rotation. 
 
The Corotational Derivative 

The corotational derivative of a vector a is waaa −≡ &
o

.  Formally, it is defined through 
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Section 2.6 

Solid Mechanics Part III                                                                                Kelly 256

 
The definition shows that the corotational derivative involves taking a vector a in the 
current configuration and rotating it with the rigid body rotation part of the motion, Fig. 
2.6.1.  It is this new, rotated, vector which is compared with the vector )( tt Δ+a , which 
has undergone rotation and stretch. 
 

 
 

Figure 2.6.1: rotation and stretch of a vector 
 
 
2.6.4 Rivlin-Ericksen Tensors 
 
The n-th Rivlin-Ericksen tensor is defined as 
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where ( )τtC  is the relative right Cauchy-Green strain.  Since ( ) IC =

=tt τ
τ , IA =0 .  To 

evaluate the next Rivlin-Ericksen tensor, one needs the derivatives of the relative 
deformation gradient; from 2.5.4, 2.3.8,  
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Then, with 2.5.5a, ( )( ) ( ) ( )TTT / ττττ lFF tt dd = ,  and 
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Thus the tensor 1A  gives a measure of the rate of stretching of material line elements (see 
Eqn. 2.5.10).  Similarly, higher Rivlin-Ericksen tensors give a measure of higher order 
stretch rates, λλ &&&&& , , and so on. 
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2.6.5 The Directional Derivative and the Material Time 
Derivative 

 
The directional derivative of a function )(tT  in the direction of an increment in t is, by 
definition (see, for example, Eqn. 1.15.27), 
 

)()(][ ttttt TTT −Δ+=Δ∂                (2.6.15) 
 
or 
 

t
dt

d
tt Δ=Δ∂

TT ][         (2.6.16) 

 
Setting 1=Δt , and using the chain rule 1.15.28, 
 

[ ][ ]
[ ]vT

xT
TT

x

x

∂=
∂∂=

∂=
1

]1[

t

t
&

                 (2.6.17) 

 
The material time derivative is thus equivalent to the directional derivative in the direction 
of the velocity vector. 
 
 
2.6.6 Problems 
 
1. Derive the relations 2.6.2. 
2. Use 2.6.9 to verify 2.5.18, Tbllbb +=& . 
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2.7 Small Strain Theory 
 
When the deformation is small, from 2.2.43-4, 
 

( )
uI

FuI
UIF

grad
grad

Grad

+≈
+=
+=

              (2.7.1) 

 
neglecting the product of ugrad  with UGrad , since these are small quantities.  Thus one 
can take uU gradGrad =  and there is no distinction to be made between the undeformed 
and deformed configurations.  The deformation gradient is of the form αIF += , where 
α  is small. 
 
 
2.7.1 Decomposition of Strain 
 
Any second order tensor can be decomposed into its symmetric and antisymmetric part 
according to 1.10.28, so that 
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     (2.7.2) 

 
where ε  is the small strain tensor 2.2.48 and Ω , the anti-symmetric part of the 
displacement gradient, is the small rotation tensor, so that F can be written as 
 

ΩεIF ++=    Small Strain Decomposition of the Deformation Gradient   (2.7.3) 
 
It follows that (for the calculation of e, one can use the relation ( ) δIδI −≈+ −1  for small 
δ ) 
 

εeE
εIbC

==
+== 2

                                                  (2.7.4) 

 
Rotation 
 
Since Ω  is antisymmetric, it can be written in terms of an axial vectorω , cf. §1.10.11, so 
that for any vector a, 
 

312113123, eeeωaωΩa Ω−Ω+Ω−=×=                              (2.7.5) 
 

The relative displacement can now be written as 
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( )
XωXε

Xuu
dd

dd

×+=
= grad                          (2.7.6) 

 
The component of relative displacement given by Xω d×  is perpendicular to Xd , and so 
represents a pure rotation of the material line element, Fig. 2.7.1. 
 

 
 

Figure 2.7.1: a pure rotation 
 
 
Principal Strains 
 
Since ε  is symmetric, it must have three mutually orthogonal eigenvectors, the principal 
axes of strain, and three corresponding real eigenvalues, the principal strains, 

321 ,, eee ), which can be positive or negative, cf. §1.11.  The effect of ε  is therefore to 
deform an elemental unit sphere into an elemental ellipsoid, whose axes are the principal 
axes, and whose lengths are 321 1,1,1 eee +++ .  Material fibres in these principal 
directions are stretched only, in which case the deformation is called a pure deformation; 
fibres in other directions will be stretched and rotated. 
 
The term Xεd  in 2.7.6 therefore corresponds to a pure stretch along the principal axes.  
The total deformation is the sum of a pure deformation, represented by ε , and a rigid 
body rotation, represented by Ω .  This result is similar to that obtained for the exact finite 
strain theory, but here the decomposition is additive rather than multiplicative.  Indeed, 
here the corresponding small strain stretch and rotation tensors are εIU +=  and 

ΩIR += , so that 
 

ΩεIRUF ++==      (2.7.7) 
 
Example 
 
Consider the simple shear (c.f. Eqn. 2.2.40) 
 

3322211 ,, XxXxkXXx ==+=  
 
where k is small.  The displacement vector is 12eu kx=  so that 
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The deformation can be written as the additive decomposition 
 

XΩXεu ddd +=      or     XωXεu ddd ×+=  
 
with 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
002/
02/0

,
000
002/
02/0

k

k

k

k

Ωε  

 
and 3)2/( eω k−= .  For the rotation component, one can write  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=+=

100
012/
02/1

k

k

ΩIR  

 
which, since for small θ , θθθ ≈≈ sin,1cos , can be seen to be a rotation through an 
angle 2/k−=θ  (a clockwise rotation). 
 
The principal values of ε  are 0,2/k±  with corresponding principal directions 

211 )2/1()2/1( een += , 212 )2/1()2/1( een +−=  and 33 en = . 
 
Thus the simple shear with small displacements consists of a rotation through an angle 

2/k  superimposed upon a pure shear with angle 2/k , Fig. 2.6.2. 
 

 
 

Figure 2.6.2: simple shear 
 

■  
 
 
2.7.2 Rotations and Small Strain 
 
Consider now a pure rotation about the 3X  axis (within the exact finite strain theory), 

XRx dd = , with  

2n 1n

θ+ =
2/k=θ
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This rotation does not change the length of line elements Xd .  According to the small 
strain theory, however,  
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which does predict line element length changes, but which can be neglected if θ  is small.  
For example, if the rotation is of the order rad10 2− , then 4

2211 10−== εε .  However, if 
the rotation is large, the errors will be appreciable; in that case, rigid body rotation 
introduces geometrical non-linearities which must be dealt with using the finite 
deformation theory. 
 
Thus the small strain theory is restricted to not only the case of small displacement 
gradients, but also small rigid body rotations. 
 
 
2.7.3 Volume Change 
 
An elemental cube with edges of unit length in the directions of the principal axes 
deforms into a cube with edges of lengths 321 1,1,1 eee +++ , so the unit change in 
volume of the cube is 
 

( )( )( ) )2(1111 321321 Oeeeeee
dV

dVdv
+++=−+++=

−                    (2.7.9) 

 
Since second order quantities have already been neglected in introducing the small strain 
tensor, they must be neglected here.  Hence the increase in volume per unit volume, called 
the dilatation (or dilation) is 
 

uε divtr321 ===++= iieeee
V

Vδ
     Dilatation              (2.7.10) 

 
Since any elemental volume can be constructed out of an infinite number of such 
elemental cubes, this result holds for any elemental volume irrespective of shape. 
 
 
2.7.4 Rate of Deformation, Strain Rate and Spin Tensors 
 
Take now the expressions 2.4.7 for the rate of deformation and spin tensors.  Replacing v 
in these expressions by u& , one has 
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For small strains, one can take the time derivative outside (by considering the ix  to be 
material coordinates independent of time): 
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        (2.7.12) 

 
The rate of deformation in this context is seen to be the rate of strain, εd &= , and the spin 
is seen to be the rate of rotation, Ωw &= . 
 
The instantaneous motion of a material particle can hence be regarded as the sum of three 
effects: 

(i) a translation given by u&  (so in the time interval tΔ  the particle has been 
displaced by tΔu& ) 

(ii) a pure deformation given by ε&  
(iii) a rigid body rotation given by Ω&  

 
 
2.7.5 Compatibility Conditions 
 
Suppose that the strains ijε  in a body are known.  If the displacements are to be 
determined, then the strain-displacement partial differential equations 
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need to be integrated.  However, there are six independent strain components but only 
three displacement components.  This implies that the strains are not independent but are 
related in some way.  The relations between the strains are called compatibility 
conditions, and it can be shown that they are given by 
 

0,,,, =−−+ ikjmjmikijkmkmij εεεε          (2.7.14) 
 
These are 81 equations, but only six of them are distinct, and these six equations are 
necessary and sufficient to evaluate the displacement field. 
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2.9 Rigid Body Rotations of Configurations 
 
In this section are discussed rigid body rotations to the current and reference 
configurations. 
 
 
2.9.1 A Rigid Body Rotation of the Current Configuration 
 
As mentioned in §2.8.1, the circumstance of two observers, moving relative to each other 
and examining a fixed configuration (the current configuration) is equivalent to one 
observer taking measurements of two different configurations, moving relative to each 
other1.  The objectivity requirements of the various kinematic objects discussed in the 
previous section can thus also be examined by considering rigid body rotations and 
translations of the current configuration. 
 
Any rigid body rotation and translation of the current configuration can be expressed in 
the form 
 

( ) ( ) )(,)(,* tttt cXxQXx +=                                       (2.9.1) 
 
where Q is a rotation tensor.  This is illustrated in Fig. 2.9.5.  The current configuration is 
denoted by S  and the rotated configuration by *S . 
 
Just as XFx dd = , the deformation gradient for the configuration *S  relative to the 
reference configuration 0S  is defined through XFx dd ** = .  From 2.9.1, as in §2.8.5 (see 
Eqn. 2.8.23),  and similarly for the right and left Cauchy-Green tensors, 
 

TT***

*T**

*

QbQFFb
CFFC

QFF

==

==

=

            (2.9.2) 

 
Thus in the deformations SS →0:F  and *

0
* : SS →F , the right Cauchy Green tensors, 

C and *C , are the same, but the left Cauchy Green tensors are different, and related 
through T* QbQb = . 
 
All the other results obtained in the last section in the context of observer transformations, 
for example for the Jacobian, stretch tensors, etc., hold also for the case of rotations to the 
current configuration. 
 

                                                 
1 Although equivalent, there is a difference: in one, there are two observers who record one event (a material 
particle say) as at two different points, in the other there is one observer who records two different events 
(the place where the one material particle is in two different configurations) 
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Figure 2.9.1: a rigid body rotation and translation of the current configuration 
 
 
2.9.2 A Rigid Body Rotation of the Reference Configuration 
 
Consider now a rigid-body rotation to the reference configuration.  Such rotations play an 
important role in the notion of material symmetry (see Chapter 5). 
 
The reference configuration is denoted by 0S  and the rotated/translated configuration by 

◊S , Fig. 2.9.2.  The deformation gradient for the current configuration S relative to ◊S  is 
defined through XQFXFx ddd ◊◊◊ == .  But XFx dd =  and so (and similarly for the 
right and left Cauchy-Green tensors) 
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◊

T

TT

T

           (2.9.3) 

 
Thus the change to the right (left) Cauchy-Green strain tensor under a rotation to the 
reference configuration is the same as the change to the left (right) Cauchy-Green strain 
tensor under a rotation of the current configuration.  
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Figure 2.9.2: a rigid body rotation of the reference configuration 
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3 Stress and the 
Balance Principles 

 
Three basic laws of physics are discussed in this Chapter: 
 

(1) The Law of Conservation of Mass 
(2) The Balance of Linear Momentum 
(3) The Balance of Angular Momentum 

 
together with the conservation of mechanical energy and the principle of virtual work, 
which are different versions of (2). 
  
(2) and (3) involve the concept of stress, which allows one to describe the action of 
forces in materials. 



 316
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3.1 Conservation of Mass 
 
 
3.1.1 Mass and Density 
 
Mass is a non-negative scalar measure of a body’s tendency to resist a change in motion. 
 
Consider a small volume element vΔ  whose mass is mΔ .  Define the average density of 
this volume element by the ratio 
 

v

m

Δ
Δ

=AVEρ               (3.1.1) 

 
If p is some point within the volume element, then define the spatial mass density at p to 
be the limiting value of this ratio as the volume shrinks down to the point, 
 

v

m
t v Δ

Δ
= →Δ 0lim),(xρ      Spatial Density                 (3.1.2) 

 
In a real material, the incremental volume element vΔ  must not actually get too small 
since then the limit ρ  would depend on the atomistic structure of the material; the 
volume is only allowed to decrease to some minimum value which contains a large 
number of molecules.  The spatial mass density is a representative average obtained by 
having vΔ  large compared to the atomic scale, but small compared to a typical length 
scale of the problem under consideration. 
 
The density, as with displacement, velocity, and other quantities, is defined for specific 
particles of a continuum, and is a continuous function of coordinates and time, 

),( txρρ = .  However, the mass is not defined this way – one writes for the mass of an 
infinitesimal volume of material – a mass element, 
 

dvtdm ),(xρ=        (3.1.3) 
 
or, for the mass of a volume v of material at time t, 
 

( )∫=
v

dvtm ,xρ                   (3.1.4) 

 
 
3.1.2 Conservation of Mass 
 
The law of conservation of mass states that mass can neither be created nor destroyed.   
 
Consider a collection of matter located somewhere in space.  This quantity of matter with 
well-defined boundaries is termed a system.  The law of conservation of mass then 
implies that the mass of this given system remains constant,  
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0=
Dt

Dm
          Conservation of Mass               (3.1.5) 

 
The volume occupied by the matter may be changing and the density of the matter within 
the system may be changing, but the mass remains constant. 
 
Considering a differential mass element at position X in the reference configuration and 
at x in the current configuration, Eqn. 3.1.5 can be rewritten as 
 

),()( tdmdm xX =          (3.1.6) 
 
The conservation of mass equation can be expressed in terms of densities.  First, 
introduce 0ρ , the reference mass density (or simply the density), defined through 
 

V

m
V Δ

Δ
= →Δ 00 lim)(Xρ       Density             (3.1.7) 

 
Note that the density 0ρ  and the spatial mass density ρ  are not the same quantities1.   
 
Thus the local (or differential) form of the conservation of mass can be expressed as (see 
Fig. 3.1.1) 
 

const),()(0 === dvtdVdm xX ρρ        (3.1.8) 
 

 
 

Figure 3.1.1: Conservation of Mass for a deforming mass element 
 
Integration over a finite region of material gives the global (or integral) form, 

 
const),()(0 === ∫∫

vV

dvtdVm xX ρρ        (3.1.9) 

or 
 

0),( === ∫
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dm
m xρ&            (3.1.10) 

                                                 
1 they not only are functions of different variables, but also have different values; they are not different 
representations of the same thing, as were, for example, the velocities v and V.  One could introduce a 
material mass density, )),,((),( ttXxtX ρ=Ρ , but such a quantity is not useful in analysis 
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3.1.3 Control Mass and Control Volume 
 
A control mass is a fixed mass of material whose volume and density may change, and 
which may move through space, Fig. 3.1.2.  There is no mass transport through the 
moving surface of the control mass.  For such a system, Eqn. 3.1.10 holds. 
 

 
 

Figure 3.1.2: Control Mass 
 
By definition, the derivative in 3.1.10 is the time derivative of a property (in this case 
mass) of a collection of material particles as they move through space, and when they 
instantaneously occupy the volume v, Fig. 3.1.3, or 
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Alternatively, one can take the material derivative inside the integral sign: 
 

[ ] 0),( == ∫
v

dvt
dt

d

dt

dm xρ        (3.1.12) 

 
This is now equivalent to the sum of the rates of change of mass of the mass elements 
occupying the volume v. 
 

 
 

Figure 3.1.3: Control Mass occupying different volumes at different times 
 
 
A control volume, on the other hand, is a fixed volume (region) of space through which 
material may flow, Fig. 3.1.4, and for which the mass may change.  For such a system, 
one has 
 

)(),),((, 111 tvttm xρ )(),),((, 222 tvttm xρ

time t  

time tt Δ+  
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Figure 3.1.4: Control Volume 
 
 
3.1.4 The Continuity Equation (Spatial Form) 
 
A consequence of the law of conservation of mass is the continuity equation, which (in 
the spatial form) relates the density and velocity of any material particle during motion.  
This equation can be derived in a number of ways: 
 
Derivation of the Continuity Equation using a Control Volume (Global Form) 
 
The continuity equation can be derived directly by considering a control volume - this is 
the derivation appropriate to fluid mechanics.  Mass inside this fixed volume cannot be 
created or destroyed, so that the rate of increase of mass in the volume must equal the rate 
at which mass is flowing into the volume through its bounding surface. 
 
The rate of increase of mass inside the fixed volume v is 
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The mass flux (rate of flow of mass) out through the surface is given by Eqn. 1.7.9,  
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where n is the unit outward normal to the surface and v is the velocity.  It follows that 
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Use of the divergence theorem 1.7.12 leads to 
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leading to the continuity equation, 
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(3.1.17) 
 
This is (these are) the continuity equation in spatial form.  The second and third forms of 
the equation are obtained by re-writing the local derivative in terms of the material 
derivative 2.4.7 (see also 1.6.23b). 
 
If the material is incompressible, so the density remains constant in the neighbourhood of 
a particle as it moves, then the continuity equation reduces to 
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v   Continuity Eqn. for Incompressible Material   (3.1.18) 

 
Derivation of the Continuity Equation using a Control Mass 
 
Here follow two ways to derive the continuity equation using a control mass. 
 
1. Derivation using the Formal Definition 
 
From 3.1.11, adding and subtracting a term: 
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The terms in the second square bracket correspond to holding the volume v fixed and 
evidently equals the local rate of change: 
 

∫∫∫
−Δ+

→Δ
Δ+

Δ
+

∂
∂

=
)()(

0
),(1lim

tvttv
t

vdv

dvtt
t

dv
t

dv
dt

d xρρρ                     (3.1.20) 

 
The region )()( tvttv −Δ+  is swept out in time tΔ .  Superimposing the volumes )(tv  and 

)( ttv Δ+ , Fig. 3.1.5, it can be seen that a small element vΔ  of )()( tvttv −Δ+  is given by 
(see the example associated with Fig. 1.7.7) 
 

stv Δ⋅Δ=Δ nv                                                 (3.1.21) 
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where s is the surface.  Thus 
 

∫∫∫ ⋅=⋅Δ+Δ
Δ

=Δ+
Δ →Δ

−Δ+
→Δ

ss
t

tvttv
t

dstdsttt
t

dvtt
t

nvxnvxx ),(),(1lim),(1lim
0

)()(
0

ρρρ    (3.1.22) 

 
and 3.1.15 is again obtained, from which the continuity equation results from use of the 
divergence theorem.  
 

 
 

Figure 3.1.5: Evaluation of Eqn. 3.1.22 
 
 
2. Derivation by Converting to Mass Elements 
 
This derivation requires the kinematic relation for the material time derivative of a 
volume element, 2.5.23: dvdtdvd vdiv/)( = .  One has 
 

( ) ( ) 0div),(
.

≡+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=== ∫∫∫∫

vvvv

dvdvdvdv
dt

d
dvt

dt

d

dt

dm ρρρρρρ vx &&       (3.1.23) 

 
The continuity equation then follows, since this must hold for any arbitrary region of the 
volume v.  
 
Derivation of the Continuity Equation using a Control Volume (Local Form) 
 
The continuity equation can also be derived using a differential control volume element.  
This calculation is similar to that given in §1.6.6, with the velocity v replaced by vρ . 
 
 
3.1.5 The Continuity Equation (Material Form) 
 
From 3.1.9, and using 2.2.53, JdVdv = ,  
 

[ ] 0),()),,(()(0 =−∫
V

dVtJtt XXχX ρρ                    (3.1.24) 
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n
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Since V  is an arbitrary region, the integrand must vanish everywhere, so that 
 

),()),,(()(0 tJtt XXχX ρρ =   Continuity Equation (Material Form)   (3.1.25) 
 

This is known as the continuity (mass) equation in the material description.  Since 
00 =ρ& , the rate form of this equation is simply 

 

0)( =J
dt

d ρ              (3.1.26) 

 
The material form of the continuity equation, Jρρ =0 , is an algebraic equation, unlike 
the partial differential equation in the spatial form.  However, the two must be equivalent, 
and indeed the spatial form can be derived directly from this material form: using 2.5.20, 

vdiv/ JdtdJ = , 
 

( )vdiv

)(

ρρ

ρρρ

+=

+=

&

&&

J

JJJ
dt

d
        (3.1.27) 

 
This is zero, and 0>J , and the spatial continuity equation follows. 
 
Example (of Conservation of Mass) 
 
Consider a bar of material of length 0l , with density in the undeformed configuration 0ρ  
and spatial mass density ),( txρ , undergoing the 1-D motion )1/( At+= xX , 

XXx At+= .  The volume ratio (taking unit cross-sectional area) is AtJ += 1 .  The 
continuity equation in the material form 3.1.25 specifies that 
 

)1(0 At+= ρρ  
 
Suppose now that  
 

XX 2
0

2)(
l

m
o =ρ  

 

so that the total mass of the bar is ∫ =ol
md

0 0 )( XXρ .  It follows that the spatial mass 

density is 
 

22
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2
0
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)1(
2

1
2
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Evaluating the total mass of the bar at time t leads to 
 

∫∫
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+
=
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d
Atl

m
dt xxxxρ  
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which is again m, as required. 

 
 

 
 

Figure 3.1.6: a stretching bar 
 
 
The density could have been derived from the equation of continuity in the spatial form: 
since the velocity is  
 

At

A
tttA

dt

td
t

+
==== −

1
)),,((),(,),(),( 1 xxχVxvXXxXV  

 
one has 
 

0
11
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+
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∂
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∂
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x
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Without attempting to solve this first order partial differential equation, it can be seen by 
substitution that the value for ρ  obtained previously satisfies the equation. 

■  
 
 
3.1.6 Material Derivatives of Integrals 
 
Reynold’s Transport Theorem 
 
In the above, the material derivative of the total mass carried by a control mass, 
 

∫
v

dvt
dt

d ),(xρ , 

 
was considered.  It is quite often that one needs to evaluate material time derivatives of 
similar volume (and line and surface) integrals, involving other properties, for example 
momentum or energy.  Thus, suppose that ),( txA  is the distribution of some property 
(per unit volume) throughout a volume v (A is taken to be a second order tensor, but what 
follows applies also to vectors and scalars).  Then the rate of change of the total amount 
of the property carried by the mass system is 
 

end of bar ( 0l== Xx ) 
at 0=t  

end of bar ( 00 ),1( lAtl =+= Xx ) 
at time t
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∫
v

dvt
dt

d ),(xA  

 
Again, this integral can be evaluated in a number of ways.  For example, one could 
evaluate it using the formal definition of the material derivative, as done above for 

ρ=A .  Alternatively, one can evaluate it using the relation 2.5.23,  dvdtdvd vdiv/)( = , 
through 
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Thus one arrives at Reynold’s transport theorem 
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 Reynold’s Transport Theorem    (3.1.29) 

 
The index notation is shown for the case when A is a second order tensor.  In the last of 
these forms2 (obtained by application of the divergence theorem), the first term represents 
the amount (of A) created within the volume v whereas the second term (the flux term) 
represents the (volume) rate of flow of the property through the surface.  In the last three 
versions, Reynold’s transport theorem gives the material derivative of the moving control 
mass in terms of the derivative of the instantaneous fixed volume in space (the first term). 
 
Of course when ρ=A , the continuity equation is recovered. 
 
Another way to derive this result is to first convert to the reference configuration, so that 
integration and differentiation commute (since dV  is independent of time): 
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2 also known as the Leibniz formula 
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Reynold’s Transport Theorem for Specific Properties  
 
A property that is given per unit mass is called a specific property.  For example, 
specific heat is the heat per unit mass.  Consider then a property B, a scalar, vector or 
tensor, which is defined per unit mass through a volume.  Then the rate of change of the 
total amount of the property carried by the mass system is simply 
 

[ ] [ ] ∫∫∫∫∫ ====
vvvvv

dv
dt

d
dm

dt

d
dm

dt

d
dv

dt

d
dvt

dt

d BBBBxB ρρρ ),(         (3.1.31) 

 
Material Derivatives of Line and Surface Integrals  
 
Material derivatives of line and surface integrals can also be evaluated.  From 2.5.8, 

xlx ddtdd =/)( , 
 

[ ]∫∫ += xAlAxxA ddt
dt

d &),(                  (3.1.32) 

 
and, using 2.5.22, ( ) ( ) dsdtdsd nlvn ˆdiv/ˆ T−= , 
 

( )[ ]∫∫ −+=
ss

dsdst
dt

d nlvAAnxA ˆdivˆ),( T&             (3.1.33) 

 
 
3.1.7 Problems 
 
1. A motion is given by the equations 

332
2

12211 ),1(,3 XxtXtXxtXXx =++−=+=  
(a) Calculate the spatial mass density ρ  in terms of the density 0ρ  
(b) Derive a first order ordinary differential equation for the density ρ  (in terms of 

x and t only) assuming that it is independent of position x 
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3.2 The Momentum Principles 
 
In Parts I and II, the basic dynamics principles used were Newton’s Laws, and these are 
equivalent to force equilibrium and moment equilibrium.  For example, they were used to 
derive the stress transformation equations in Part I, §3.4 and the Equations of Motion in 
Part II, §1.1.  Newton’s laws there were applied to differential material elements. 
 
An alternative but completely equivalent set of dynamics laws are Euler’s Laws; these 
are more appropriate for finite-sized collections of moving particles, and can be used to 
express the force and moment equilibrium in terms of integrals.  Euler’s Laws are also 
called the Momentum Principles: the principle of linear momentum (Euler’s first law) 
and the principle of angular momentum (Euler’s second law). 
 
 
3.2.1 The Principle of Linear Momentum 
 
Momentum is a measure of the tendency of an object to keep moving once it is set in 
motion.  Consider first the particle of rigid body dynamics: the (linear) momentum p is 
defined to be its mass times velocity, vp m= .  The rate of change of momentum p&  is 
 

avvp
m

dt

d
m

dt

md

dt

d
===

)(     (3.2.1) 

 
and use has been made of the fact that 0/ =dtdm .  Thus Newton’s second law, aF m= , 
can be rewritten as 
 

)( vF m
dt

d
=      (3.2.2) 

 
This equation, formulated by Euler, states that the rate of change of momentum is equal to 
the applied force.  It is called the principle of linear momentum, or balance of linear 
momentum.  If there are no forces applied to a system, the total momentum of the system 
remains constant; the law in this case is known as the law of conservation of (linear) 
momentum. 
 
Eqn. 3.2.2 as applied to a particle can be generalized to the mechanics of a continuum in 
one of two ways.  One could consider a differential element of material, of mass dm  and 
velocity v.  Alternatively, one can consider a finite portion of material, a control mass in 
the current configuration with spatial mass density ),( txρ  and spatial velocity field 

),( txv .  The total linear momentum of this mass of material is 
 

( )∫=
v

dvttt ,),()( xvxL ρ     Linear Momentum    (3.2.3) 

 
The principle of linear momentum states that 
 

( ) )(,),()( tdvtt
dt

d
t

v

FxvxL == ∫ ρ&          (3.2.4) 
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where )(tF  is the resultant of the forces acting on the portion of material. 
 
Note that the volume over which the integration in Eqn. 3.2.4 takes place is not fixed; the 
integral is taken over a fixed portion of material particles, and the space occupied by this 
matter may change over time. 
 
By virtue of the Transport theorem relation 3.1.31, this can be written as 
 

( ) )(,),()( tdvttt
v

FxvxL == ∫ && ρ           (3.2.5) 

 
The resultant force acting on a body is due to the surface tractions t acting over surface 
elements and body forces b acting on volume elements, Fig. 3.2.1: 
 

dvbdstFdvdst
v

i

s

ii

vs
∫∫∫∫ +=+= ,)( btF        Resultant Force     (3.2.6) 

 
and so the principle of linear momentum can be expressed as 
 

∫∫∫ =+
vvs

dvdvds vbt &ρ      Principle of Linear Momentum      (3.2.7) 

 
 

 
 

Figure 3.2.1: surface and body forces acting on a finite volume of material 
 
The principle of linear momentum, Eqns. 3.2.7, will be used to prove Cauchy’s Lemma 
and Cauchy’s Law in the next section and, in §3.6, to derive the Equations of Motion. 
 
 
3.2.2 The Principle of Angular Momentum 
 
Considering again the mechanics of a single particle: the angular momentum is the 
moment of momentum about an axis, in other words, it is the product of the linear 
momentum of the particle and the perpendicular distance from the axis of its line of 
action.  In the notation of Fig. 3.2.2, the angular momentum h is 
 

vrh m×=                                                           (3.2.8) 
 
which is the vector with magnitude vmd ×  and perpendicular to the plane shown. 
 

tn

ds

b

dv
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Figure 3.2.2: surface and body forces acting on a finite volume of material 

 
Consider now a collection of particles.  The principle of angular momentum states that 
the resultant moment of the external forces acting on the system of particles, M , equals 
the rate of change of the total angular momentum of the particles: 
 

dt

dhFrM =×=                                                (3.2.9) 

 
Generalising to a continuum, the angular momentum is 
 

∫ ×=
v

dvvrH ρ      Angular Momentum           (3.2.10) 

 
and the principle of angular momentum is 
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   Principle of Angular Momentum      

(3.2.11) 
 
The principle of angular momentum, 3.2.11, will be used, in §3.6, to deduce the 
symmetry of the Cauchy stress. 

•
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3.3 The Cauchy Stress Tensor 
 
 
3.3.1 The Traction Vector 
 
The traction vector was introduced in Part I, §3.3.  To recall, it is the limiting value of 
the ratio of force over area; for Force FΔ  acting on a surface element of area SΔ , it is 
 

S

F
S Δ

Δ
=

→Δ 0

)( limnt                                                       (3.3.1) 

 
and n denotes the normal to the surface element.  An infinite number of traction vectors 
act at a point, each acting on different surfaces through the point, defined by different 
normals. 
 
 
3.3.2 Cauchy’s Lemma 
 
Cauchy’s lemma states that traction vectors acting on opposite sides of a surface are 
equal and opposite1.  This can be expressed in vector form: 
 

)()( nn tt −−=  Cauchy’s Lemma      (3.3.2) 
 
This can be proved by applying the principle of linear momentum to a collection of 
particles of mass mΔ  instantaneously occupying a small box with parallel surfaces of 
area sΔ , thickness δ  and volume sv Δ=Δ δ , Fig. 3.3.1.  The resultant surface force 
acting on this matter is ss Δ+Δ − )()( nn tt . 
 

 
 

Figure 3.3.1: traction acting on a small portion of material particles 
 
The total linear momentum of the matter is ∫∫ ΔΔ

=
mV

dmdv vvρ .  By the mean value 

theorem (see Appendix A to Chapter 1, §1.B.1), this equals mΔv , where v  is the velocity 
at some interior point.  Similarly, the body force acting on the matter is vdv

V
Δ=∫Δ bb , 

where b  is the body force (per unit volume) acting at some interior point.  The total mass 

                                                 
1 this is equivalent to Newton’s (third) law of action and reaction – it seems like a lot of work to prove this 
seemingly obvious result but, to be consistent, it is supposed that the only fundamental dynamic laws 
available here are the principles of linear and angular momentum, and not any of Newton’s laws 

)(nt

)( nt −

n

n−

sΔ

thickness δ  
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can also be written as vdvm
V

Δ==Δ ∫Δ ρρ .  From the principle of linear momentum, 

Eqn. 3.2.7, and since mΔ  does not change with time, 
 

[ ]
dt

d
s

dt

d
v

dt

d
mm

dt

d
vss

vvvvbtt nn Δ=Δ=Δ=Δ=Δ+Δ+Δ − δρρ)()(              (3.3.3) 

 
Dividing through by sΔ  and taking the limit as 0→δ , one finds that )()( nn tt −−= . 
Note that the values of )()( , nn tt −  acting on the box with finite thickness are not the same 
as the final values, but approach the final values at the surface as 0→δ . 
 
 
3.3.3 Stress 
 
In Part I, the components of the traction vector were called stress components, and it was 
illustrated how there were nine stress components associated with each material particle.  
Here, the stress is defined more formally, 
 
Cauchy’s Law 
 
Cauchy’s Law states that there exists a Cauchy stress tensor σ  which maps the normal 
to a surface to the traction vector acting on that surface, according to 
 

jiji nt σ== ,nσt        Cauchy’s Law                   (3.3.4) 
 
or, in full, 
 

3332321313

3232221212

3132121111

nnnt

nnnt

nnnt

σσσ
σσσ
σσσ

++=
++=
++=

       (3.3.5) 

 
Note: 
• many authors define the stress tensor as σnt = .  This amounts to the definition used here 

since, as mentioned in Part I, and as will be (re-)proved below, the stress tensor is symmetric, 

jiij σσ == ,Tσσ  
• the Cauchy stress refers to the current configuration, that is, it is a measure of force per unit 

area acting on a surface in the current configuration. 
 
Stress Components 
 
Taking Cauchy’s law to be true (it is proved below), the components of the stress tensor 
with respect to a Cartesian coordinate system are, from 1.9.4 and 3.3.4, 
 

( )j

ijiij
eteeσe ⋅==σ                                                (3.3.6) 

 
which is the ith component of the traction vector acting on a surface with normal je .  
Note that this definition is inconsistent with that given in Part I, §3.2 – there, the first 
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subscript denoted the direction of the normal – but, again, the two definitions are 
equivalent because of the symmetry of the stress tensor.  
 
The three traction vectors acting on the surface elements whose outward normals point in 
the directions of the three base vectors je  are 
 

j
j eσt e =)( ,           

( )

( )

( )
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33222212

33122111

3

2

eeet

eeet

eeet

1
e

1
e

1
e1

σσσ

σσσ

σσσ

++=

++=

++=

      (3.3.7) 

 
Eqns. 3.3.6-7 are illustrated in Fig. 3.3.2. 
 

 
 
Figure 3.3.2: traction acting on surfaces with normals in the coordinate directions; 

(a) traction vectors, (b) stress components 
 
 
Proof of Cauchy’s Law 
 
The proof of Cauchy’s law essentially follows the same method as used in the proof of 
Cauchy’s lemma. 
 
Consider a small tetrahedral free-body, with vertex at the origin, Fig. 3.3.3.  It is required 
to determine the traction t in terms of the nine stress components (which are all shown 
positive in the diagram). 
 
Let the area of the base of the tetrahedran, with normal n, be sΔ .  The area 1ds  is then 

αcossΔ , where α  is the angle between the planes, as shown in Fig. 3.3.3b; this angle is 
the same as that between the vectors n and 1e , so ( ) snss Δ=Δ⋅=Δ 111 en , and similarly 
for the other surfaces: sns Δ=Δ 22  and sns Δ=Δ 33 . 
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Figure 3.3.3: free body diagram of a tetrahedral portion of material; (a) traction 
acting on the material, (b) relationship between surface areas and normal 

components 
 
The resultant surface force on the body, acting in the 1x  direction, is 
 

snsnsnst Δ−Δ−Δ−Δ 3132121111 σσσ  
 
Again, the momentum is MΔv , the body force is vΔb  and the  mass is 

shvm Δ=Δ=Δ )3/(ρρ , where h is the perpendicular distance from the origin (vertex) to 
the base.  The principle of linear momentum then states that 
 

dt

vd
shshbsnsnsnst 1

13132121111 )3/()3/( Δ=Δ+Δ−Δ−Δ−Δ ρσσσ  

 
Again, the values of the traction and stress components on the faces will in general vary 
over the faces, so the values used in this equation are average values over the faces. 
 
Dividing through by sΔ , and taking the limit as 0→h , one finds that  
 

3132121111 nnnt σσσ ++=  
 
and now these quantities, 1312111 ,,, σσσt , are the values at the origin.  The equations for 
the other two traction components can be derived in a similar way. 
 
Normal and Shear Stress 
 
The stress acting normal to a surface is given by 
 

)(ntn ⋅=Nσ                                                      (3.3.8) 
 
The shear stress acting on the surface can then be obtained from 

3x
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n
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2sΔ α
1e

(a) (b) 



Section 3.3 

Solid Mechanics Part III            Kelly 334

 
22)(
NS σσ −= nt                                                  (3.3.9) 

 
Example 
 
The state of stress at a point is given in the matrix form 
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Determine 
(a) the traction vector acting on a plane through the point whose unit normal is 

321 ˆ)3/2(ˆ)3/2(ˆ)3/1(ˆ eeen −+=  
(b) the component of this traction acting perpendicular to the plane 
(c) the shear component of traction. 
 
Solution 
 
(a) The traction is 
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or 321

)ˆ( ˆˆ3ˆ)3/2( eeet n −+−= . 
 
(b) The component normal to the plane is the projection of )ˆ(nt  in the direction of n̂ , i.e. 

 
.4.29/22)3/2()3/2(3)3/1)(3/2(ˆ)ˆ( ≈=++−=⋅= nt n

Nσ  
 

(c) The shearing component of traction is  
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eee
eee

nt n

++−=
+−+−+−−=

−=Sσ
 

 
      i.e. of magnitude 1.2)27/17()27/37()27/40( 222 ≈++− , which equals  

      22)ˆ(ˆ
Nσ−nt . 

■  
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3.4 Properties of the Stress Tensor 
 
 
3.4.1 Stress Transformation 
 
Let the components of the Cauchy stress tensor in a coordinate system with base vectors 

ie  be ijσ .  The components in a second coordinate system with base vectors je′ , ijσ ′ , are 
given by the tensor transformation rule 1.10.5: 
 

pqqjpiij QQ σσ =′                                                     (3.4.1) 
 
where ijQ  are the direction cosines, jiijQ ee ′⋅= . 
 
Isotropic State of Stress 
 
Suppose the state of stress in a body is 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0

0

00
00
00

σ
σ

σ
σ  

 
One finds that the application of the tensor transformation rule yields the very same 
components no matter what the coordinate system.  This is termed an isotropic state of 
stress, or a spherical state of stress (see §1.13.3).  One example of isotropic stress is the 
stress arising in fluid at rest, which cannot support shear stress, in which case 
 

Iσ p−=                                                            (3.4.2) 
 
where the scalar p is the fluid hydrostatic pressure.  For this reason, an isotropic state of 
stress is also referred to as a hydrostatic state of stress. 
 
A note on the Transformation Formula 
 
Using the vector transformation rule 1.5.5, the traction and normal transform according to 
[ ] [ ][ ] [ ] [ ][ ]nQntQt TT , =′=′ .  Also, Cauchy’s law transforms according to [ ] [ ][ ]nσt ′′=′  
which can be written as [ ][ ] [ ][ ][ ]nQσtQ TT ′= , so that, pre-multiplying by [ ]Q , and since 
[ ]Q  is orthogonal, [ ] [ ][ ][ ]{ }[ ]nQσQt T′= , so [ ] [ ][ ][ ]TQσQσ ′= , which is the inverse tensor 
transformation rule 1.13.6a, showing the internal consistency of the theory. 
 
In Part I, Newton’s law was applied to a material element to derive the two-dimensional 
stress transformation equations, Eqn. 3.4.7 of Part I.  Cauchy’s law was proved in a 
similar way, using the principle of momentum.  In fact, Cauchy’s law and the stress 
transformation equations are equivalent.  Given the stress components in one coordinate 
system, the stress transformation equations give the components in a new coordinate 
system; particularising this, they give the stress components, and thus the traction vector, 
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acting on new surfaces, oriented in some way with respect to the original axes, which is 
what Cauchy’s law does. 
 
 
3.4.2 Principal Stresses 
 
Since the stress σ  is a symmetric tensor, it has three real eigenvalues 321 ,, σσσ , called 
principal stresses, and three corresponding orthonormal eigenvectors called principal 
directions.  The eigenvalue problem can be written as 
 

nnσt n σ==)(                (3.4.3) 
 
where n is a principal direction and σ  is a scalar principal stress.  Since the traction 
vector is a multiple of the unit normal, σ  is a normal stress component.  Thus a principal 
stress is a stress which acts on a plane of zero shear stress, Fig. 3.4.1. 

 
 

Figure 3.4.1: traction acting on a plane of zero shear stress 
 
The principal stresses are the roots of the characteristic equation 1.11.5, 
 

032
2

1
3 =−+− III σσσ         (3.4.4) 

 
where, Eqn. 1.11.6-7, 1.11.17, 
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=
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           (3.4.5) 

 

no shear stress – only a normal 
component to the traction 

n

332211
)( eeet n ttt ++=
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The principal stresses and principal directions are properties of the stress tensor, and do 
not depend on the particular axes chosen to describe the state of stress., and the stress 
invariants 321 ,, III  are invariant under coordinate transformation. c.f. §1.11.1.   
 
If one chooses a coordinate system to coincide with the three eigenvectors, one has the 
spectral decomposition 1.11.11 and the stress matrix takes the simple form 1.11.12, 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗= ∑

=
3

2

13

1 00
00
00

,ˆˆ
σ

σ
σ

σ σnnσ
i

iii            (3.4.6) 

 
Note that when two of the principal stresses are equal, one of the principal directions will 
be unique, but the other two will be arbitrary – one can choose any two principal 
directions in the plane perpendicular to the uniquely determined direction, so that the 
three form an orthonormal set.  This stress state is called axi-symmetric.  When all three 
principal stresses are equal, one has an isotropic state of stress, and all directions are 
principal directions. 
 
 
3.4.3 Maximum Stresses 
 
Directly from §1.11.3, the three principal stresses include the maximum and minimum 
normal stress components acting at a point.  This result is re-derived here, together with 
results for the maximum shear stress 
 
Normal Stresses 
 
Let 321 ,, eee  be unit vectors in the principal directions and consider an arbitrary unit 
normal vector 332211 eeen nnn ++= , Fig. 3.4.2.  From 3.3.8 and Cauchy’s law,  the 
normal stress acting on the plane with normal n is 
 

( ) nnσnt n ⋅=⋅= )(
Nσ            (3.4.7) 

 

 
 

Figure 3.4.2: normal stress acting on a plane defined by the unit normal n 
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directions 
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With respect to the principal stresses, using 3.4.6, 
  

333222111
)( eeenσt n nnn σσσ ++==                     (3.4.8) 

 
and the normal stress is 
 

2
33

2
22

2
11 nnnN σσσσ ++=                                   (3.4.9) 

 
Since 12

3
2
2

2
1 =++ nnn  and, without loss of generality, taking 321 σσσ ≥≥ , one has 

 
( ) Nnnnnnn σσσσσσ =++≥++= 2

33
2
22

2
11

2
3

2
2

2
111      (3.4.10) 

 
Similarly, 
 

( ) 3
2
3

2
2

2
13

2
33

2
22

2
11 σσσσσσ ≥++≥++= nnnnnnN      (3.4.11) 

 
Thus the maximum normal stress acting at a point is the maximum principal stress and 
the minimum normal stress acting at a point is the minimum principal stress. 
 
Shear Stresses 
 
Next, it will be shown that the maximum shearing stresses at a point act on planes 
oriented at 45o to the principal planes and that they have magnitude equal to half the 
difference between the principal stresses. 
 
From 3.3.39, 3.4.8 and 3.4.9, the shear stress on the plane is 
 

( ) ( )22
33

2
22

2
11

2
3

2
3

2
2

2
2

2
1

2
1

2 nnnnnnS σσσσσσσ ++−++=            (3.4.12) 
 
Using the condition 12

3
2
2

2
1 =++ nnn  to eliminate 3n  leads to 

 
( ) ( ) ( ) ( )[ ]23

2
232

2
131

2
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2
2

2
3

2
2

2
1

2
3

2
1

2 σσσσσσσσσσσ +−+−−+−+−= nnnnS    (3.4.13) 
 
The stationary points are now obtained by equating the partial derivatives with respect to 
the two variables 1n  and 2n  to zero: 
 

( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]{ } 02
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2
232

2
13132322
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2

2
232

2
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1
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nnn
n

nnn
n

S

S
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σ
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σ

      (3.4.14) 

 
One sees immediately that 021 == nn  (so that 13 ±=n ) is a solution; this is the principal 
direction 3e  and the shear stress is by definition zero on the plane with this normal.  In 
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this calculation, the component 3n  was eliminated and 2
Sσ  was treated as a function of 

the variables ),( 21 nn .  Similarly, 1n  can be eliminated with ),( 32 nn  treated as the 
variables, leading to the solution 1en = , and 2n  can be eliminated with ),( 31 nn  treated as 
the variables, leading to the solution 2en = .  Thus these solutions lead to the minimum 
shear stress value 02 =Sσ . 
 
A second solution to Eqn. 3.4.14 can be seen to be 2/1,0 21 ±== nn  (so that 

2/13 ±=n ) with corresponding shear stress values ( )2
324

12 σσσ −=S .  Two other 
solutions can be obtained as described earlier, by eliminating 1n  and by eliminating 2n .  
The full solution is listed below, and these are evidently the maximum (absolute value of 
the) shear stresses acting at a point: 
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          (3.4.15) 

 
Taking 321 σσσ ≥≥ , the maximum shear stress at a point is 
 

( )31max 2
1 σστ −=     (3.4.16) 

 
and acts on a plane with normal oriented at 45o to the 1 and 3 principal directions.  This is 
illustrated in Fig. 3.4.3. 
 

 
 

Figure 3.4.3: maximum shear stress at  apoint 
 
 
Example (maximum shear stress) 
 
Consider the stress state  
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[ ]
⎥
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⎤

⎢
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⎣

⎡

−
−−=

1120
1260
005

ijσ  

 
This is the same tensor considered in the example of §1.11.1.  Using the results of that 
example, the principal stresses are 15,5,10 321 −=== σσσ  and so the maximum shear 
stress at that point is 

( )
2
25

2
1

31max =−= σστ  

 
The planes and direction upon which they act are shown in Fig. 3.4.4. 
 

 
 

Figure 3.4.4: maximum shear stress 
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3.6 The Equations of Motion and Symmetry of Stress 
 
In Part II, §1.1, the Equations of Motion were derived using Newton’s Law applied to a 
differential material element.  Here, they are derived using the principle of linear 
momentum. 
 
 
3.6.1 The Equations of Motion (Spatial Form) 
 
Application of Cauchy’s law σnt =  and the divergence theorem 1.14.21 to 3.2.7 leads 
directly to the global form of the equations of motion 
 

[ ] ∫∫∫∫ =
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ij

vv

dvvdvb
x

dvdv && ρ
σ

ρ ,div vbσ             (3.6.1) 

 
The corresponding local form is then 
 

dt

dv
b

xdt

d i
i

j

ij ρ
σ

ρ =+
∂

∂
=+ ,div vbσ    Equations of Motion    (3.6.2) 

 
The term on the right is called the inertial, or kinetic, term, representing the change in 
momentum.  The material time derivative of the spatial velocity field is 
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and it can be seen that the equations of motion are non-linear in the velocities. 
 
Equations of Equilibrium 
 
When the acceleration is zero, the equations reduce to the equations of equilibrium, 
 

0div =+ bσ      Equations of Equilibrium        (3.6.3) 
 
Flows 
 
A flow is a set of quantities associated with the system of forces t and b, for example the 
quantities ρ,,σv .  A flow is steady if the associated spatial quantities are independent of 
time.  A potential flow is one for which the velocity field can be written as the gradient 
of a scalar function, φgrad=v .  An irrotational flow is one for which 0curl =v . 
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3.6.2 The Equations of Motion (Material Form) 
 
In the spatial form, the linear momentum of a mass element is dvvρ .  In the material 
form it is dVV0ρ .  Here, V is the same velocity as v, only it is now expressed in terms of 
the material coordinates X, and dVdv 0ρρ = .  The linear momentum of a collection of 
material particles occupying the volume v in the current configuration can thus be 
expressed in terms of an integral over the corresponding volume V in the reference 
configuration: 
 

( ) ( )∫=
V

dVtt ,)( 0 XVXL ρ     Linear Momentum (Material Form)    (3.6.4) 

 
and the principle of linear momentum is now, using 3.1.31, 
 

( ) ( ) )(, 00 tdV
dt

d
dVt

dt

d

VV

FVXVX ≡= ∫∫ ρρ                        (3.6.5) 

 
The external forces F to be considered are those acting on the current configuration.  
Suppose that the surface force acting on a surface element ds  in the current configuration 
is dSdsd Ttf ==surf , where t and T are, respectively, the Cauchy traction vector and the 
PK1 traction vector (Eqns. 3.5.3-4).  Also, just as the PK1 stress measures the actual force 
in the current configuration, but per unit surface area in the reference configuration, one 
can introduce the reference body force B: this is the actual body force acting in the 
current configuration, per unit volume in the reference configuration.  Thus if the body 
force acting on a volume element dv  in the current configuration is bodyfd , then  

 
dVdvd Bbf ==body                       (3.6.6) 

 
The resultant force acting on the body is then 

 
dVBdSTFdVdSt

V

i

S

ii

VS
∫∫∫∫ +=+= ,)( BTF                  (3.6.7) 

 
Using Cauchy’s law, PNT = , where P is the PK1 stress, and the divergence theorem 
1.12.21, 3.6.5 and 3.6.7 lead to 
 

[ ] ∫∫ =+
VV

dV
dt

d
dV

VBP 0Div ρ                 (3.6.8) 

 
and the corresponding local form is 
 

dt

dV
B

X

P

dt

d i
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j

ij
00 ,Div ρρ =+

∂
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=+

VBP  

Equations of Motion (Material Form)     (3.6.9) 
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Derivation from the Spatial Form 
 
The equations of motion can also be derived directly from the spatial equations.  In order 
to do this, one must first show that ( )TDiv −FJ  is zero.  One finds that (using the 
divergence theorem, Nanson’s formula 2.2.59 and the fact that 0div =I ) 
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           (3.6.10) 

 
This result is known as the Piola identity.  Thus, with the PK1 stress related to the 
Cauchy stress through 3.5.8, T−= σFP J , and using identity 1.14.16c, 
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             (3.6.11) 

 
From 2.2.8c, 
 

σP divDiv J=                  (3.6.12) 
 
Then, with JdVdv =  and 3.6.6, the equations of motion in the spatial form can now be 
transformed according to 
 

[ ] [ ] ∫∫∫∫ =+→=+
VVvv

dVdVdvdv VBPvbσ && 0Divdiv ρρ  

 
as before.  
 
 
3.6.3 Symmetry of the Cauchy Stress 
 
It will now be shown that the principle of angular momentum leads to the requirement 
that the Cauchy stress tensor is symmetric.  Applying Cauchy’s law to 3.2.11,  
 

( )

dvvx
dt

d
dvbxdSnx

dv
dt

d
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vvs

∫∫∫
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ρεεσε
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                  (3.6.13) 

 
The surface integral can be converted into a volume integral using the divergence 
theorem.  Using the index notation, and concentrating on the integrand of the resulting 
volume integral, one has, using 1.3.14 (the permutation symbol is a constant here, 

0/ =∂∂ lijk xε ), 
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where E  is the third-order permutation tensor, Eqn. 1.9.6, ( )kjiijk eee ⊗⊗= εE .  Thus, 
with the Reynold’s transport identity 3.1.31, 
 

{ } ( )∫∫∫ ×=×++×
vvv
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d
dvdv vrbrσσr ρTdiv :E                (3.6.15) 

 
The material derivative of this cross product is  
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and so 
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⎭
⎬
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vv
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d
dv

vbσrσ ρ:E                   (3.6.17) 

 
From the equations of motion 2.6.2, the term inside the brackets is zero, so that 

 
0,0T == kjijkσεσ:E                    (3.6.18) 

 
It follows, from expansion of this relation, that the matrix of stress components must be 
symmetric: 

 
jiij σσ == ,Tσσ      Symmetry of Stress                  (3.6.19) 

 
 
3.6.4 Consequences in the Material Form 
 
Here, the consequences of 3.6.19 on the PK1 and PK2 stresses is examined.  Using the 
result Tσσ =  and 3.5.8, T1PFσ −= J , 
 

( ) T1TT1T1 FPPFPF −−− == JJJ                           (3.6.20) 
 
so that 
 

jkikjkik PFFP == ,TT FPPF               (3.6.21) 
 
These equations are trivial when ji = , not providing any constraint on P.  On the other 
hand, when ji ≠  one has the three equations 
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PFPFPFFPFPFP

++=++
++=++
++=++

                  (3.6.22) 

 
Thus angular momentum considerations imposes these three constraints on the PK1 stress 
(as they imposed the three constraints 2112 σσ = , 3113 σσ = , 3223 σσ =  on the Cauchy 
stress). 
 
It has already been seen that a consequence of the symmetry of the Cauchy stress is the 
symmetry of the PK2 stress S; thus, formally, the symmetry of S is the result of the 
angular momentum principle. 
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3.7 Boundary Conditions and The Boundary Value 
Problem 

 
In order to solve a mechanics problem, one must specify certain conditions around the 
boundary of the material under consideration.  Such boundary conditions will be 
discussed here, together with the resulting boundary value problem (BVP).  (see Part I, 
3.5.1, for a discussion of stress boundary conditions.) 
 
 
3.7.1 Boundary Conditions 
 
There are two types of boundary condition, those on displacement and those on traction.  
Denote the body in the reference condition by 0B  and in the current configuration by B.  
Denote the boundary of the body in the reference configuration by S  and in the current 
configuration by s, Fig. 3.7.1. 
 
Displacement Boundary Conditions 
 
The position of particles may be specified over some portion of the boundary in the 
current configuration.  That is, ( )Xχx =  is specified to be x  say, over some portion us  of 
s, Fig. 3.7.1, which corresponds to the portion uS  of S .  With )()( xXxxu −= , or 

XXxXU −= )()( , this can be expressed as 
 

u

u

XXUXU
xxuxu

S

s

∈=

∈=

),()(
),()(

                                            (3.7.1) 

 
These are called displacement boundary conditions.  The most commonly encountered 
displacement boundary condition is where some portion of the boundary is fixed, in 
which case ( ) oxu = . 
 

 
 

Figure 3.7.1: Boundary conditions 
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Traction Boundary Conditions 
 
Traction tt =  can be specified over a portion σs  of the boundary, Fig. 3.7.1.  These 
traction boundary conditions are related to the PK1 traction TT =  over the 
corresponding surface σS  in the reference configuration, through Eqns. 3.5.1-4, 
 

dsdsdSdS σntPNT ===                                           (3.7.2) 
 
One usually knows the position of the boundary S  and the normal )(XN  in the reference 
configuration.  As deformation proceeds, the PK1 traction develops according to PNT =  
with, from 3.5.8, T−= σFP J .  The PK1 stress will in general depend on the motion x  and 
the deformation gradient F , so the traction boundary condition can be expressed in the 
general form 
 

( )FxXTT ,,=                                                      (3.7.3) 
 
Example: Fluid Pressure 
 
Consider the case of fluid pressure p around the boundary, nt p−= , Fig. 3.7.2.  The 
Cauchy traction t  depends through the normal n  on the new position and geometry of 
the surface σs .  Also, NFT T−−= pJ , which is of the general form 3.7.3. 
 

 
 

Figure 3.7.2: Fluid pressure on deforming material 
 
Consider a material under water with part of its surface deforming as shown in Fig. 3.7.2.  
Referring to the figure, 1EN −= , 21 sincos een θθ +−= , Iσ p−= , ( )2xhgp −= ρ  and 
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The traction vectors and PK1 stress are  
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with (note that θcos/ =dsdS ) p=t  and θcos/p=T .  The traction vectors clearly 
depend on both position, and the deformation through θ .  In this example, 

21
1 tanGradgrad eeFIUIFu ⊗=−==−= − θ  and 

 
( ) uuuu grad:gradarctangradarctangrad ==θ  

■  
 
 
Dead Loading 
 
A special case of loading is that of dead loading, where 
 

( )XTT =                                                         (3.7.4) 
 
Here, the PK1 stress on the boundary does not change with the deformation and an 
initially normal traction will not remain so as deformation proceeds. 
 
For example, if one considers again the geometry of Fig. 3.7.2, this time take 
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3.7.2 The Boundary Value Problem 
 
The equations of motion 3.6.2, 3.6.9, are a set of three differential equations.  In the 
solution of any problem, one would have to supplement these equations with others, for 
example a constitutive equation expressing a relationship between the stress and the 
kinematic variables (see Part IV).  This constitutive relation will typically relate the stress 
to the strains, or rates of strain, for example ),( deσ f= .  Suppose then that the stresses 
are known in terms of the strains and hence the displacements u.  The equations of 
motion are then a set of three second order differential equations in the three unknowns 

iu  (assuming that the body force b is a prescribed function of the problem).  They need to 
be subjected to certain boundary and initial conditions. 
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Assume that the boundary conditions are such that the displacements are specified over 
that part of the surface us  and tractions are specified over that part σs , with the total 
surface σu sss += , with 0=∩ σu ss  1.  Thus 
 

us

s

on,
on,

uu
tnσt

=
== σ        Boundary Conditions            (3.7.5) 

 
where the overbar signifies quantities which are prescribed.  Initial conditions are also 
required for the displacement and velocity, so that 
 

0at),(),(
0at),(),(

0

0

==
==

t

t

xutxu
xutxu

&&
     Initial Conditions             (3.7.6) 

 
and it is usually taken that Xx =  at 0=t .  Comparing 3.7.5 and 3.7.6, one also requires 

that uu =0 , 
⋅

= uu0&  over us , so that the boundary and initial conditions are compatible. 
 
These equations together, the differential equations of motion and the boundary and 
initial conditions, are called the strong form of the initial boundary value problem 
(BVP): 
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     Strong form of the Initial BVP       (3.7.7) 

 
 
When the problem is quasi-static, so the accelerations can be neglected, the equations of 
motion reduce to the equations of equilibrium 3.6.3.  In that case one does not need initial 
conditions and one has a boundary value problem involving 3.7.5 only. 
 
It is only in certain special cases and in certain simple problems that an exact solution can 
be obtained to these equations.  An alternative solution strategy is to convert these 
equations into what is known as the weak form.  The weak form, which is in the form of 
integrals rather than differential equations, can then be solved approximately using a 
numerical technique, for example the Finite Element Method2.  The weak form is 
discussed in §3.9. 
 
                                                 
1 It is possible to specify both traction and displacement over the same portion of the boundary, but not the 
same components.  For example, if one specified 11et t=  on a boundary, one could also specify 22eu u= , 

but not 11eu u= .  In that case, one could imagine the boundary to consist of two separate boundaries, one 

with conditions with respect to 1e  and one with respect to 2e , and still write 0=∩ σu ss . 
2 Further, it is often easier to prove results regarding the uniqueness and stability of solutions to the problem 
when it is cast in the weak form 
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In the material form, the boundary conditions are 
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and the initial conditions are 
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      Initial Conditions              (3.7.9) 

 
and the initial vale problem is 
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     Strong form of the Initial BVP       (3.7.10) 
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