I Compito di esonero di Calcolo e Biostatistica (5 Dicembre 2013)

Cognome e Nome :	Nome :				matricola			
(stampatello)								
			_					

(Svolgere l'esercizio solo per il caso segnato con la crocetta)

1. La legge con cui varia nel tempo la lunghezza l, misurata in μm , di un microrganismo é lineare in t, per $t \in [0, 10]$ (t é misurato in ore). Si osserva che il tasso di variazione e il valore iniziale della lunghezza sono, rispettivamente

(a)
$$0.25 e l(0) = 1 \mu m$$

(b)
$$0.4 e l(0) = 2\mu m$$

(c)
$$0.2 e l(0) = 1.5 \mu m$$

Scrivere la funzione l(t) che descrive il fenomeno per $t \in [0, 10]$ e dire dopo quanto tempo la lunghezza del microrganismo vale $3\mu m$.

Per $t \in (10, 15]$ si ha invece che l(t) = l(10). Valutando l(12) come se la lunghezza continuasse a crescere con la precedente legge lineare anche nell'intervallo (10,15], di quanto, in percentuale, si sovraestimerebbe la lunghezza del microrganismo?

2. Studiare la funzione seguente e disegnarne il grafico

(a)
$$f(x) = \frac{\sqrt{1-3x}}{x}$$

(b)
$$f(x) = \frac{\sqrt{x}}{2x-1}$$

(a)
$$f(x) = \frac{\sqrt{1-3x}}{x}$$
 (b) $f(x) = \frac{\sqrt{x}}{2x-1}$ (c) $f(x) = \frac{x^2}{\sqrt{1-2x}}$

3. Per quali valori di $k \in \mathbf{R}$ la matrice

(a)
$$A = \begin{pmatrix} 1-k & -2 \\ 0 & 3-k \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 1 & k-1 \\ 2-k & 0 \end{pmatrix}$ (c) $A = \begin{pmatrix} 0 & k+1 \\ 2-k & 3 \end{pmatrix}$

ha il determinante uguale a zero? Per questi valori di k, quali sono le componenti dei vettori $\mathbf{v_1}$ e $\mathbf{v_2}$ formati dalle colonne di A? Trovare, in questo caso, modulo, direzione e verso del vettore $\mathbf{w} = x\mathbf{v_1} + y\mathbf{v_2}$, combinazione lineare di $\mathbf{v_1}$ e $\mathbf{v_2}$.

4. Calcolare il limite

(a)
$$\lim_{x\to+\infty} \frac{\sqrt{x^2-3}}{(2x^3+1)^{1/3}}$$

re il limite
(a)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 - 3}}{(2x^3 + 1)^{1/3}}$$
 (b) $\lim_{x \to +\infty} \frac{(4x^4 + 1)^{1/4}}{\sqrt{x^2 - 2}}$ (c) $\lim_{x \to +\infty} \frac{\sqrt{x^2 + x}}{(3x^5 + 1)^{1/5}}$

(c)
$$\lim_{x\to+\infty} \frac{\sqrt{x^2+x}}{(3x^5+1)^{1/5}}$$