Methods in Protein Analysis

Western Blot

Recombinant Proteins

Immunoprecipitation

Protein Pull Down Assay

Protein Extraction

- More complicated than nucleic acid extraction:
 - Proteins are in different cellular compartments, might be in the membrane.
 - Proteins can be polar/non-polar, hydrophobic, non soluble, etc...
 - Enzymes and catalytic activities.
- -Cell lysis in conditions ensuring:

Membrane break, protein dissociation \rightarrow <u>Detergents</u>: SDS, Triton, Tween

Protein Inhibitors; Leupeptin, Pepstatin, PMSF, EDTA, 4 C

Protein Electrophoresis

Harder than nucleic acid electrophoresis:

Proteins differ in charge

Proteins differ in conformation

A polyacrylamide gel can be:

Native (non denaturing conditions)

SDS-gel (denaturing conditions)

Polyacrylamide Gel

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Denaturing conditions

Anionic detergent tightly binding proteins in a fixed ratio (1mol SDS/2 mol aminoacids)

For each SDS denatured protein, the ratio between **m and q is constant**.

Considerations

- Once negatively charged, all proteins run toward +
- The smaller are the proteins, the faster they run
- Denaturing conditions allow proteins to move according to their size only, no influence from conformation

Molecular Weights

We can separate proteins by mass.

Polyacrylamide Gel Electrophoresis (PAGE)

Isoelectric Focusing Electrophoresis (IFE)

- -Fractionation based on Isoelectric Point (pI)
- -The buffer generates a pH gradient
- -When reaches the pl, the protein loses its charge (q=0) and stops in the gel

2D-PAGE

- First separation based on Isofocused Electrophoresis (pl)
- Second separation by SDS-PAGE (size)
- High resolution
- Proteomics study

2-dimensional Gel Electrophoresis

A second electrophoretic run, orthogonal to the previous one and governed by protein size, allows proteins to be highly resolved as single spots

Spot coordination

- pl
- MW

2-dimensional Gel Electrophoresis

Application: Proteomics

How we identify proteins: Western Blot assay

Specific protein detection (presence/absence)

Gene expression analysis

Comparing different conditions

Western Blot Assay: steps

- -SDS-PAGE
- -Blot
- -Blocking
- -Binding of primary Ab
- -Wash by buffer
- -Binding of secondary Ab
- -Wash by buffer
- -Signal Detection

SDS-PAGE

Blot

Blot

Blocking

Saturation of free hydrophobic spots on the membrane Avoids aspecific binding of primary Ab to the membrane Skimmed milk or Bovin Serum Albumin used

This reduces **background leading to clearer results**, and eliminates false positives

Antibody production

POLICLONAL

Multiple immunization rounds of the animal through injection of the antigen (peptide, purified protein, recombinant protein)

Blood collection and serum purification

Heterogeneous pool of antibodies against different immunogenic epitopes

MONOCLONAL

Antibody Bound

ECL (Enhanced Chemio-Luminescence) method

membrane **Autoradiographic film** secondary Ab-HRP peracid oxidised product protein primary Ab enhancer Figura 9.14 Uso della chemiluminescenza intensificata per la rivelazione della perossidasi di rafano

The substrate is metabolised by HRP (peroxidase) emitting light

Protein Detection

Adapted from Ballarino et al, 2015

Aspecific Primary Ab? Excess of Secondary Ab? Unsufficient blocking? Week wash conditions?

Protein Tagging

•Protein Tagging is a strategy for fusing a protein to a well-characterized peptide. The peptide (TAG) confers the protein with the possibility to go through easy purification, allowing to isolate it in big amounts or to identify multiprotein or RNA/DNA/protein complexes.

• Tagged proteins can be obtained by cloning into expression vectors:

DNA encoding for the protein + DNA encoding for the Tag

The fusion protein is a recombinant protein

Recombinant proteins

- Biomedical research
- Commercially relevant factors
- Therapeutic molecules

Recombinant vaccines Cytomegalovirus Diphtheria Hepatitis B Hepatitis C Influenza HIV Malaria

Hormones

ACTH

TSH (Tiretropin)

HGH (Growth hormone)

EPO

Somatotropin

Calcitonin

Glucagon Insulin

Recombinant proteins in

biomedical research

Peptide bioactive

Interferon
Interleuchin

Inibitori di proteasi

Poliomyelitis

Growth factors

HNG (human nerve growth factor) BGNF (brain derived neurotropic factor)

NT-3 (Neurotrophin-3) NT-

4 (Neurotrophin-4)

GDNF (gliale-derived neurotrophin)

CNTF (Rat ciliary neurotrophin)

Leptin

Protein secreted by adipose cells in order to regulate the fat mass.

In order to express a protein in an heterologous system we need:

Expression vector Expression host

Expression Host

Genes can be theoretically expressed in any system

The choice depends on the aim and on the protein features

Bacteria	Escherichia coli

Bacillus subtilis

Fungi Sacarocmices cerevisiae

Aspergillus nidulans

Plants *Arabidopsis thaliana,*

Nicotiana tabacco

protoplasti piante transgeniche

cellule in coltura

cellule in coltura

Insects Dorifera californica

Animals

Drosophila melanogaster

oociti cellule in coltura

organismi interi

organismi interi

Pros

Cons

Bacteria

- Simple
- Short generation time
- High yeald
- Low costs

- Misfolding
- Inclusion bodies
- Possible toxicity of exogenous proteins
- Few post-translational modifications

Yeast

- Simple
- Short generation time
- High yeald
- Low costs
- Post-translational modifications

- Active proteases
- Possible toxicity

Insects

Plants

Animals

• Post-translational modifications

More expensive systems

Why do we express proteins in heterologous systems?

- Big amounts of products
- Expression in higher organisms can be difficult due to gene regulation
- •Simple model systems are easy to be obtained and manipulated

CLONING AND INDUCTION ORF Sphil Sphil Sphil Sphil Sphil Sphil Sphil Sphil Sphil Hindlill Hindlill lac O - lac O - RBS - ATG - 6xHis - MOS - Stop Codons **Selective Medium** E.Coli Inocule pQE-30, pQE-31, pQE-32 3.4 kb ColET Logarithmic Phase 0.5-0.6 OD +IPTG Induction {10,11}

OPERONE LAC

Operon turned off (lactose absent)

Copyright 6 olds frames Emission, p.C.

Operon turned on (lactose inactivates repressor)

CONCURS OF THE PERSON PROPERTY AND

Procariotic gene expression is regulated

Eucariotic Expression Vector

Inducible expression

Expression and Purification of a recombinant protein

- 1. TRANSFORMATION (Expression vector in the expression host).
- 2. AMPLIFICATION of the positive bacterial/yeast strain.

- 1. INDUCTION of the recombinant protein.
- 2. PURIFICATION of the recombinant protein.

Purification of a (recombinant) proteins

Purifications of proteins
 Antibodies
 TAG

2. Purifications of proteins

- → Protein production
- →Interaction studies

Purification of proteins: TAGs

Tag	Description	Affinity ligand
•His ₆	6 histidines	Ni++, Co++, Cu++
•GST	glutathion-S-transferase	glutathion
•TAP		
•FLAG		
•HA		Maltose
·MBP	Maltose binding protein	IgG
Protein	Protein A	Calmodulin
•CBP (40 • Epitopi	OkDa) Calmodulin binding protein biotinilati	

TAGs confer to proteins 2 properties: specific affinity for a ligand, specific recognition from an antibody

The GST TAG SYSTEM E.Coli 0.5-0.6 OD Protein of Interest **IPTG Induction of protein expression** Glutathione/Sephaarose Resin **GST interacts to Resin-bound Glutathione** Elution through an excess of free Gluthatione

Protein Purification by Affinity Chromatography

GST

The HIS TAG System

Elution By Imidazole (a histidine analogue)

Tandem Affinity Purification (TAP) System

Protein Pull Down Assay

TAGGING (and consequent affinity for a ligand) can be exploited to verify protein interactions

The tagged protein is incubated with an homologous cell extracts and partners can be identified also in the absence of a specific antibody (alternative to co-immunoprecipitation)

Protein Pull Down Assay

Purification of proteins: Antibody Immunoprecipitation

Isolation (enrichment) of antigen/antibody complexes

- Requires: specific antibodies directed toward the target protein or its recombinant variant
- Allows: identification of ribonucleoprotein (RNP complexes)

Immunoprecipitation: the role of protein A or G

Antibodies
specifically bind
protein A or G from
Staphylococcus,
through their Fc
region.

Binding Characteristics of Some Immunoglobulins			
Immunoglobulin		Protein A	Protein G
Mouse	IgG1	+	++
	IgG2a	+++	+++
	IgG2b	++	++
	IqG3	+	+++
	IgM	-	-
	IgA	-	-
	IgE	-	-
Rat	IgG1	+	+
	IgG2a	-	+++
	IqG2b	-	++
	IgG2c	+	++
Human	IgG1	+++	+++
	IgG2	+++	+++
	IgG3	-	+++
	IgG4	+++	+++

Immunoprecipitation (IP)

- Suitable antibody is added.
- 2 Antibody binds to protein of interest.
- 3 Protein A or G added to make antibody-protein complexes insoluble.
- Centrifugation of solution pellets antibody-protein complex. Removal of supernatant and washing.

Magnetic beads!

Immunoprecipitation: an example

a

Input

Ctrl

TDP-43 IP

TDP-43

Untreated cells

RA-treated cells

Di Carlo V. et al, 2013

Co-Immunoprecipitation (Co-IP)

- Suitable antibody is added.
- 2 Antibody binds to protein of interest.
- Or Protein A or G added to make antibody-protein complexes insoluble.
- Centrifugation of solution pellets antibody-protein complex. Removal of supernatant and washing.

Untreated RA-treated cells cells

Di Carlo V. et al, 2013

Immunoprecipitation (IP)

Immunoprecipitation (IP)

Finding molecular parterns:

