Basic Microeconomics

Topics: page titles

Consumer's choice

Max
$$U(x,y)$$

s.t. $m=xp_x+yp_y$

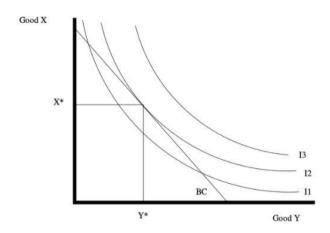
$$\frac{araph}{MU_x} = \frac{p_x}{p_y}$$
 $MRS = -\frac{MU_x}{MU_y}$

$$x^d(p_x, p_y, m)$$

$$X^d(p_x)$$
 $Y^d(p_y)$

For a generic good demand function q(p)

Consumer's choice



Linear demand

$$q = \alpha - \beta p$$

$$p = \frac{\alpha}{\beta} - \frac{1}{\beta} q = a - bq$$
p
a

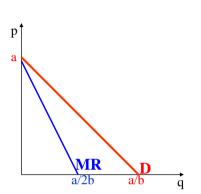
Linear demand and marginal Revenue (MR)

$$\varepsilon = -\frac{dq}{dp}\frac{p}{q} = \beta \frac{p}{q} = \frac{\alpha - q}{q}$$

$$R = pq = (a - bq)q =$$

$$= aq - bq^{2}$$

$$MR = a - 2bq$$



Demand elasticity

$$\varepsilon = -\frac{dq}{dp} \frac{p}{q} \cong -\frac{\Delta q / q}{\Delta p / p}$$

measures the responsiveness of <u>demand</u> to a change in the price

$$\frac{-\Delta \% \text{ quantity}}{\Delta \% \text{ price}}$$

Firms maximise profits

$$\Pi = R - TC$$

- Revenue: R=pq
- Demand function q=D(p)
 Inverse demand function p=P(q)
- Technology, i.e. costs
 - Cost minimization

Cost minimization

- Costs depend on technology used in the production process, i.e. on the production function
- The production function gives the maximum output that can be produced using a given combination of the inputs:

$$q = f(x_1, x_2, ... x_n)$$

Production funtion. Inputs: labour and capital



 Given the level of input K, the graph shows the output as a function of input L

Cost minimization

Suppose only two inputs. Costi minimizarion requires:

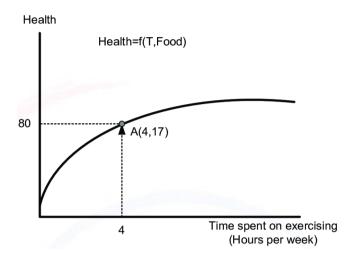
min
$$w_1 x_1 + w_2 x_2$$

t.c. $q = f(x_1, x_2)$

Optimal combination of inputs requires

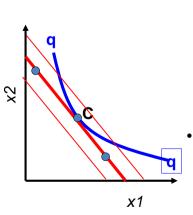
$$-\frac{MP_1}{MP_2} = TRS = -\frac{w_1}{w_2}$$

Health production function



11

Cost minimization



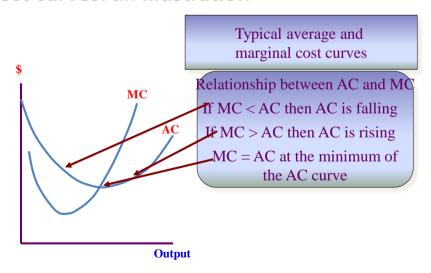
- The optimal combination of inputs to produce quantity q is at the tangency point between cost curve and isoquant of production.
 - By repeating for each quantity → Total cost of production: **TC(q)**

Cost Relationships

- -total cost of producing output Q TC(Q)=VC(Q) +F
- average cost: AC(Q) = TC(Q)/Q
- marginal cost: cost of one more unit
 - formally: MC(Q) = dC(Q)/d(Q)

13

Cost curves: an illustration



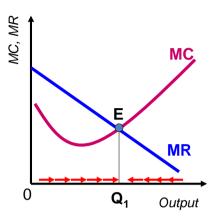
Profit maximization

MONOPOLY							
Q	F	MC	VC	TC	P=10-Q	Revenues	Profits
1	10	2	2	12	9	9	-3
2	10	2	4	14	8	16	2
3	10	2	6	16	7	21	5
4	10	2	8	18	6	24	6
5	10	2	10	20	5	25	5

The First Order Condition: MR = MC

- Profit is $\pi(q) = R(q) C(q)$
- Profit maximization: $d\pi/dq = 0$
- This implies dR(q)/dq dC(q)/dq = 0
- But dR(q)/dq = marginal revenue
- dC(q)/dq = marginal cost
- So profit maximization implies MR = MC

Profit maximization



If MR > MC, profit can be increased by producing more.

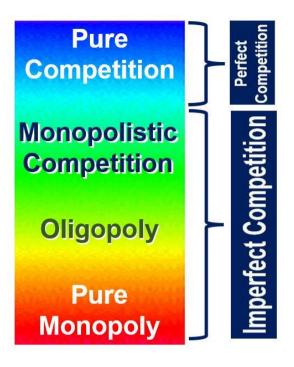
If MR < MC, profit can be increased by reducing output.

Profit are mazimized at Q_1 , where MR = MC.

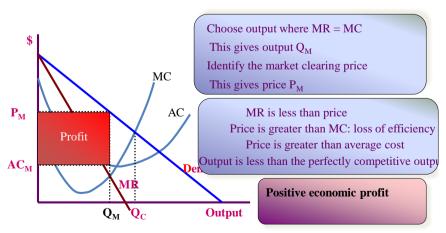
17

Market Performance and Efficiency

- Contrast two polar cases
 - perfect competition
 - monopoly
- (Pareto) Efficiency
 - no reallocation of the available resources makes one economic agent better off without making some other economic agent worse off



Monopoly MR=MC → P>MC



Perfect Competition

- 1. Firms are *price-takers*
 - Firms can sell as much as they like at the ruling market price

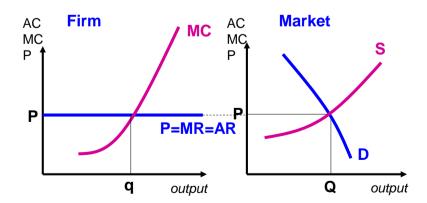
→ marginal revenue equals price

• 2. Profit maximization requires to equate marginal revenue with marginal cost

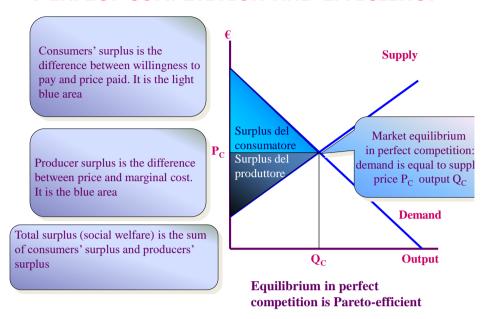
• 3. In a perfectly competitive equilibrium **price** equals marginal cost

21

Perfect competition



Perfect competition and efficiency



Deadweight loss of monopoly

