Cognome:	Nome:
CFU	

Probabilità

Prof. L.Beghin - G.Salinetti

APPELLO STRAORDINARIO

19 aprile 2012

Esercizio 1

Ci sono due giocatori A e B che giocano a testa e croce con una moneta bilanciata. Il primo dei due che vince per sei turni (non necessariamente consecutivi) ottiene un premio.

Supponiamo che ad un certo punto il giocatore A abbia vinto già 5 volte e B solo 3 volte.

- i) Si calcoli la probabilità, attuale, che B vinca il premio e la si confronti con quella iniziale.
- ii) Si calcoli il numero atteso di ulteriori turni di gioco necessari perchè uno dei due vinca il premio.

Esercizio 2

Siano X e Y due v.a. indipendenti ed esponenziali di parametro rispettivamente pari a $\lambda_1,\lambda_2>0$. Sia inoltre

$$Z = \frac{X}{Y}$$

- i) Calcolare la densità della v.a. Z.
- ii) Studiare la convergenza in distribuzione della successione $\{Z_n\}$ definita come

$$Z_n = \frac{X_n}{Y_n}$$

in cui X_n e Y_n hanno la stessa distribuzione di X e Y, per ogni $n \geq 0$, nei seguenti casi:

a)
$$\lambda_1 = \frac{1}{n} e \lambda_2 = \frac{1}{n^2}$$

b) $\lambda_1 = \frac{1}{n^2} e \lambda_2 = \frac{1}{n}$
c) $\lambda_1 = \lambda_2 = \frac{1}{n^2}$

$$F_{\epsilon}(t) = P(Y > \frac{X}{\xi})$$

$$= \lambda_1 \int_0^{+\infty} e^{-\lambda_1 x} \left(-e^{-\lambda_2 y} \right) \frac{x}{x}$$

$$= \frac{\lambda_1 \left(-\frac{e^{-\left(\frac{\lambda_1 + \lambda_2}{L} \right) \times}}{\lambda_1 + \frac{\lambda_2}{L}} \right)}{\frac{\lambda_1 + \lambda_2}{L}} = \frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

 $f_{t}(t) = \frac{\lambda_{1} \lambda_{2}}{(\lambda_{1} t + \lambda_{2})^{2}}$

(i) a)
$$f_{t_n}(t) = \begin{cases} \frac{2}{u} & t \leq 0 \\ \frac{2}{u} + \frac{1}{u^2} & u \geq t \leq 0 \end{cases}$$

b)
$$F_{2u}(+) \rightarrow 0$$
 $\forall z \text{ punction} \ c)$ $F_{3u}(+) \rightarrow \int_{3u}^{3u} \left(\frac{z}{z^{2}}\right) dz$