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It appears that the genetic programming of humans and other complex organisms has been misun-
derstood for the past 50 years, due to the assumption that most genetic information is transacted by
proteins. However, the human genome contains only about 20,000 protein-coding genes, similar in
number and with largely orthologous functions as those in nematodes that have only 1000 somatic
cells. By contrast, the extent of non-protein-coding DNA increases with increasing complexity,
reaching 98.8% in humans. The majority of these sequences are dynamically transcribed, mainly into
non-protein-coding RNAs, with tens if not hundreds of thousands that show specific expression pat-
terns and subcellular locations, as well as many classes of small regulatory RNAs. The emerging evi-
dence indicates that these RNAs control the epigenetic states that underpin development, and that
many are dysregulated in cancer and other complex diseases. Moreover it appears that animals, par-
ticularly primates, have evolved plasticity in these RNA regulatory systems, especially in the brain.
Thus, it appears that what was dismissed as ‘junk’ because it was not understood holds the key to
understanding human evolution, development, and cognition.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The purpose of this article is to make the case that the genomic
programming of humans and other complex organisms has been
misunderstood, because of the assumption that most genetic infor-
mation is transacted by proteins. This assumption derived from the
early studies of the lac operon in Escherichia coli, and from the
ensuing common interpretation of the central dogma, i.e., that
information mostly flows from DNA through the temporary inter-
mediate of RNA, which is then translated into proteins that effect
all of the major structural, catalytic and (notably, for the purposes
of this discussion) regulatory functions of the cell. While it has al-
ways been clear that some RNAs are end-point gene products in
themselves, and Crick recognized this in the central dogma [1], this
has traditionally been thought to be limited to infrastructural RNAs
such as ribosomal, transfer, spliceosomal and small nucleolar
RNAs, involved directly or indirectly in protein expression and
other core cellular functions.

The protein-centric view of molecular genetics and cell biology,
extended later into developmental biology, has deep roots, dating
back to the early biochemical studies, even prior to the elucidation
of the double helical structure of DNA in 1953. It was fashioned in a
mechanical age that had little appreciation that genetic informa-
tion may be transacted (as opposed to inherited) in other ways,
although the use of codes and the code-breaking successes of
World War II, from Morse code through to the Enigma machine,
chemical Societies. Published by E
led to the ready acceptance of the concept of the ‘genetic code’,
at least insofar as it applied to protein-coding sequences, and later
to cis-acting sites in DNA and RNA recognized by regulatory
proteins.

This protein-centric view became entrenched within the first
few years of molecular biology, but was not without its contempo-
rary challengers. The Nobel Laureate Barbara McClintock, who was
celebrated for her insight that transposons are ‘controlling ele-
ments’ in corn, and was possibly the most original thinker in the
early years of molecular biology, wrote in 1950 [2]: ‘‘Are we letting
a philosophy of the [protein-coding] gene control [our] reasoning?
What, then, is the philosophy of the gene? Is it a valid philoso-
phy? . . . When one starts to question the reasoning behind the ori-
gin of the present notion of the gene (held by most geneticists), the
opportunity for questioning its validity becomes apparent.’’ It
seems few heeded her admonition, especially as her insights were
apparently discredited in the eyes of others by her promotion of
the idea that ‘controlling elements’ are the key to understanding
development.

A few others also kept an open mind. François Jacob and Jacques
Monod, who received the Nobel Prize for their work on the lac op-
eron, mooted the possibility that the lac repressor, which they had
identified genetically but not biochemically, might be an RNA [3].
However, the idea was lost when it was subsequently shown that
the lac repressor was a protein [4], which undoubtedly was an
important factor in the entrenchment of the protein-centric ortho-
doxy, especially as it pertained to gene regulation and the subse-
quent rise of the concept of ‘transcription factors’.
lsevier B.V. All rights reserved.
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Occasionally related ideas emerged. Most notably, in the late
1960s, Roy Britten and Eric Davidson, using renaturation hybrid-
ization kinetics to study the sequence complexity of DNA and
RNA, noted that the extent of genomic DNA broadly increased with
developmental complexity, and made two unexpected observa-
tions, specifically (i) that the population of ‘heterogenous nuclear
RNA’ (hnRNA) is far more complex than messenger RNA (mRNA),
and (ii) that a substantial proportion of the genome is comprised
of low complexity/high copy number ‘repetitive’ sequences, some
of which at least are differentially expressed at different develop-
mental stages. This led them to propose that there may be consid-
erable regulatory RNA in the nucleus of eukaryotic cells, and that
repetitive sequences (later found to be transposon-derived) may
comprise parts of regulatory networks [5,6]. They also predicted
that many of these putative nuclear regulatory RNAs would be
chromatin-associated, which has now been shown to be the case
(see below). Unfortunately, these ideas could not be tested at the
time and, although their papers have been highly cited, they ap-
pear to have been not well received, or ignored, by the mainstream,
similar to McClintock’s experience. In any case, and somewhat sur-
prisingly, these ideas were not re-visited later, when the discovery
of introns explained, at least in part, the nature of hnRNA, and the
genome projects later revealed the full repertoire of transposon-
derived sequences.
2. The great surprises

This protein-centric conceptual framework imbues almost
every aspect of the ‘philosophy’ (as McClintock put it) of molecular
biology, and has persisted until the present, despite a number of
subsequent surprises that, like Britten and Davidson’s observa-
tions, should have given serious pause for thought, and that collec-
tively paint an entirely different picture.

The first of these was the discovery in late 1977 that most pro-
tein-coding genes in mammals and other complex organisms are
not co-linear with their encoded products, but are mosaics of small
segments of protein-coding sequences (‘exons’) interspersed with
often vast tracts of non-protein-coding sequences (‘intervening se-
quences’ or ‘introns’) [7,8]. Without question, this was then and
still remains the biggest surprise in the history of molecular biol-
ogy [9]. However, within a very short period it was universally con-
cluded that, because they did not code for protein, and despite the
fact that they are transcribed into RNA, these sequences are mostly
non-functional evolutionary debris [10,11], which was then ratio-
nalized as the likely hangover of the early evolution/assembly of
genes [12,13] and/or retrotransposition of ‘selfish DNA’ (see be-
low). The fact that these sequences were excised (and apparently
discarded) and a contiguous mRNA assembled by splicing allowed
the community to breathe easy, as the core flow of information
from DNA to protein was left operationally undisturbed. There is,
of course, another far more interesting interpretation, with poten-
tially profound consequences – that the excised RNAs are also
transmitting information, which would mean that the system, at
least in the higher eukaryotes, is far more complex and sophisti-
cated than conventionally thought, and by logical extension that
there is a hidden layer of RNA regulatory networks that might be
important, even central, to developmental ontogeny [14].

The second surprise, extending from the earlier work of Britten
and Davidson, was that the genomes of humans and other complex
eukaryotes are full of transposon-derived sequences of various
classes, pejoratively referred to as ‘repetitive elements’ or more
simply ‘repeats’. Again, on the same logic (that they do not encode
proteins, except occasionally for their own mobilization) and de-
spite McClintock’s insights, these sequences were quickly assumed
to be mostly non-functional and their presence rationalized as
‘selfish DNA’ [15,16], part of the emerging view of most of the hu-
man genome as an evolutionary graveyard. The vast tracts of inter-
genic and intronic sequences in the human genome, riddled with
transposon-derived sequences, have been described, among other
things, as ‘junk . . . in the attic’, on the proposition that some have
been exapted for function but many or most only have potential fu-
ture value [17], although the proportion that may have been exap-
ted for function was and is still unknown. Again, of course, there is
a more interesting and potentially more profound explanation.

The raw material for evolution is duplication and transposition,
with the latter providing far more flexibility in terms of dissemina-
tion of functional cassettes and re-structuring of regulatory net-
works for phenotypic divergence. This appears to be the major
place that evolution has played in relation to the radiation of ani-
mals, which generally have a similar proteome (see next). None-
theless, and again despite McClintock’s insights, on the dubious
and entirely circular assumption of the non-functionality of the
transposon-derived ‘ancient repeats’ (ARs) that are common to
the genomes of human and other mammals (which have persisted
with us for tens if not hundreds of millions of years), and the inde-
pendent but equally dubious assumption that the recognizable ex-
tant population of ARs is representative of the original distribution,
not simply its more conserved end [18], it has been estimated that
only�5% of the human genome is under purifying selection [19,20]
(although other analyses, which do not rely on this assumption,
have indicated that evolutionary selection is widespread across
the genome [21]). That is, the assumed non-functionality of a small
proportion of the genome has been used to impute the non-func-
tionality of most of the remainder, because they are evolving at
similar rates. If either this or the other assumption mentioned
above is wrong, then so is the conclusion [18].

The third great surprise, which was entirely contrary to
expectations, is that the number and repertoire of protein-coding
genes remains relatively static across the metazoan lineage, de-
spite enormous increases in developmental and cognitive com-
plexity [22]. The simple nematode Caenorhabiditis elegans,
which only has �1000 somatic cells, has almost 20,000 pro-
tein-coding genes, similar to that in the human [23–25]. How-
ever, humans have approximately 1014 cells, sculpted into a
myriad of different muscles, bones and organs that have com-
plex architectures, as well as a brain with approximately 1011

neurons [26]. Moreover, despite some interesting expansions
and innovations, such as RNA editing in vertebrates (see below),
the majority of these genes are orthologous (i.e., have similar
functions), even in sponge, the most primitive metazoan [27],
including most of those involved in the cell signaling and home-
otic pathways that underpin multicellular development. That is,
all animals have a similar protein toolkit [28], and therefore
the relevant information that programs progressively more com-
plex organisms must lie elsewhere in the genome, presumably in
an expanded regulatory architecture.
3. Scaling of regulatory architecture

The response to this lack of gene scaling and limited proteomic
diversification has been to assert the power of combinatoric con-
trol – specifically that the power of combinatorial control by tran-
scription factors (and other regulatory proteins, such as those
involved in alternative splicing), will lead to ‘‘a dramatic expansion
in regulatory complexity’’ [29]. As a logical extension, it is then
simply proposed that the developmental programming of more
complex organisms has been enabled by an expansion in the num-
bers and complexity of the cis-acting sequences recognized by
these regulatory proteins, alteration of which, along with altera-
tions in the expression of the regulatory proteins and the networks
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in which they participate, lies at the heart of phenotypic diversity
[29,30].

While there is little doubt that regulatory alterations and expan-
sions underpin the emergence and divergence of more develop-
mentally complex organisms, the essential argument here
(although not spelled out explicitly in mathematical terms) is that
the range of regulatory options scales factorially with the numbers
of regulatory proteins, and that in animals this number is so great
(P1000 regulatory proteins in human or C. elegans [29] = poten-
tially P1000! combinations � a number far bigger than the esti-
mated number of atoms in the universe) as to be superficially
more than capable, even if heavily discounted, of providing suffi-
cient regulatory complexity to program human development, so
there is no need for further concern or further justification. The nec-
essary power is implicit in the assumption. However, while it is
clear that many factors can influence a decision to transcribe a gene,
so there is some sort of ‘combinatorial’ control, it is by no means
clear that this scales factorially. Indeed, the implied assertion has
not only never been clearly articulated, but it has also (conse-
quently) never been justified, mathematically, by reference to deci-
sion theory, or mechanistically; nor has it been subjected to critical
scrutiny, as the lack of articulation obscures the issue, and the
assertion fits comfortably with mainstream preconceptions.

How do regulatory factors really scale with gene number? This
is a difficult question to answer, but the available evidence sug-
gests that it is quite the opposite to that which is assumed. Pro-
karyotic genomes are predominantly composed of protein-coding
sequences, and therefore it is possible to do a first approximation
analysis of the relationship between the numbers of genes encod-
ing regulatory factors and the total numbers of genes in cells of dif-
ferent genetic complexity (despite the existence of a limited set of
regulatory RNAs in these organisms). This is not possible with
eukaryotes, which contain indeterminate but apparently large
numbers of regulatory RNAs, both large and small (see below). In
prokaryotes, however, it is clear that the number of regulatory
genes R (those encoding proteins with characteristic motifs such
as DNA-binding domains) scales quadratically with gene number
N (R / N2, not as some sort of inverse factorial R / 1=N!), over
the entire range of bacterial genome sizes [31–33]. This empirical
fact has many implications. Since regulatory genes are scaling
twice as fast as total genes, and there is no hint of any deviation
at the top end of the range, there must be a limit (as the number
of regulatory genes cannot exceed the total), which is ostensibly
the observed upper limit of bacterial genome sizes (about 10 Mb,
�9000 genes), where over 20% of the genes are regulatory. This
limit was likely reached early in evolution.

The quadratic relationship and inferred limit also implies that
higher complexity eukaryotes must have solved this problem, in
all likelihood by moving to a more genomically efficient (and evo-
lutionarily flexible) RNA-based regulatory system (that separates
regulatory signal from consequent action, as exemplified by RNA
interference pathways [34,35]), together with the introduction of
other levels of control and compartmentalization, all hallmarks of
eukaryotes, to mitigate the global scaling problem. Finally, this
relationship implies that combinatorial action of regulatory fac-
tors, as envisaged to allow dramatic expansions in regulatory
capacity, does not hold, at least in prokaryotes (as the scaling of
regulatory factors would be entirely different) and therefore also
probably not in eukaryotes, unless one can conceive of chemical
space (specifically protein–protein interaction space) that is per-
mitted in eukaryotes but not prokaryotes. If so, the clear implica-
tion is that in all cells, and indeed in all functionally integrated
complex systems, the proportion of regulatory information in-
creases with increasing complexity, i.e., occupies a progressively
greater amount of the total information required to program the
ontogeny and operation of the system [33].
Few would disagree that increased developmental complexity
requires an expansion of regulatory information and that this
information resides mainly in the non-protein-coding portion of
the genome. As noted already, most molecular biologists have as-
sumed that this information is (largely) restricted to cis-acting reg-
ulatory sequences that interact with ‘regulatory’ proteins to
control gene expression, and, since it is inconceivable that such se-
quences could cover a huge fraction of the human genome, have
been generally comfortable with the proposition that the majority
of the genome is non-functional. However, while the number of
protein-coding genes and the extent of protein-coding sequences
remains surprisingly static, it is clear that the extent of non-pro-
tein-coding intronic and intergenic sequences does scale with in-
creased developmental complexity [22,36] (Fig. 1), and indeed is
the only variable yet demonstrated to do so (along with the com-
plement of regulatory RNAs, see below). This does not prove any-
thing, but is at least consistent with the proposition that high
developmental complexity requires a vastly expanded regulatory
architecture, which can only be falsified by a downward exception,
i.e., a complex organism that has much less non-coding sequence
that demonstrably simpler ones (as opposed to an upward outlier
that has more non-coding sequence than organisms of equivalent
complexity), which so far has not been observed. Here it is impor-
tant to note that Fugu rubripes and Arabidopsis thaliana, which pos-
sess the smallest known vertebrate and angiosperm genomes,
respectively, do not deviate substantially from the broad relation-
ship described above [22].
4. Pervasive transcription of the genome

The fourth great surprise of genomic analyses has been that,
irrespective of the extent of non-protein-coding sequences in dif-
ferent genomes, the vast majority of these sequences are tran-
scribed, apparently in a developmentally regulated manner,
mainly into non-protein-coding RNAs (ncRNAs). A variety of tran-
scriptomic studies, primarily using high throughput sequence
analyses of normalized cDNA libraries [37–42] and cDNA interro-
gation of genome tiling arrays [43–48], have shown that the mam-
malian transcriptome is amazingly complex and consists of a
myriad of overlapping and interlacing transcripts from both
strands, including intronic, antisense and intergenic transcripts
that exhibit different start sites, termination points, splicing and
expression patterns in different cells [49–52].

A frequent response to these observations, especially as many of
these unexpected ncRNAs appear to be expressed at relatively low
levels, has been to suspect or assert that they are ‘transcriptional
noise’, an alternative hypothesis with the appeal of not disturbing
the prevailing orthodoxy of gene regulation. Despite the substan-
tial evidence that genomic sequences specifying these ncRNAs
have all of the hallmarks of conventional genes and the rapidly
accumulating numbers of functionally validated examples ([53],
see below), the debate about the relevance of these transcripts con-
tinues. A recent article, for example, that compared the signals de-
rived from transcriptomic interrogation of genome tiling arrays
with next generation short read sequencing data, concluded that
the former had significant problems with false positives, that many
of the short sequence ‘singleton’ tags in the latter were so scattered
as to appear ‘‘of random character’’ (i.e., consistent with noise) and
that much of the genome is ‘‘not pervasively transcribed’’ [54].

However, apart from problems with the methodology em-
ployed, the data are equally consistent with low level sampling
of rare transcripts (that may, e.g., be cell type-specific), considering
that such deep sequencing suffers from diminishing sensitivity for
uncommon transcripts by the dominance of common highly ex-
pressed (usually protein-coding) RNAs [55], especially in the brain



Fig. 1. The proportion of non-coding DNA increases with developmental complexity. Adapted from [22].
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where much of the analysis was done [54]. Indeed some ncRNAs
are easily detectable by the relatively insensitive technique of
in situ hybridization in particular subregions of the brain, such as
the dentate gyrus [56] (Fig. 2), which occupies a tiny fraction of
the brain and would be difficult to detect in whole brain transcrip-
tomic analysis, even by ‘deep’ sequencing. Moreover, a new
technique called RNA Capture-Seq, which combines array capture
of cDNAs with deep sequencing to increase the sensitivity of
transcriptomic interrogation of targeted loci, has revealed that
so-called ‘gene deserts’ actually express a wide range of spliced
transcripts, many of which were not detected by a single tag in
pre-capture libraries, as well as previously unknown isoforms of
intensively studied protein-coding loci such as p53 [57].
5. A world of long non-coding RNAs

There are tens if not hundreds of thousands of long antisense,
intergenic and intronic ncRNAs (lncRNAs) expressed from mam-
malian genomes [41,57], with abundant evidence of their
involvement in eukaryotic cell and developmental biology (for re-
cent review see [58]). A large fraction of lncRNAs is expressed in
the brain [56,59–61]. Many lncRNAs are also derived from
enhancers [62–65], enigmatic non-coding regulatory elements
that act at a distance to control gene expression during develop-
ment, and which are thought to act by recruiting transcription
factors and inducing chromosomal looping to bring these factors
into contact with target promoters [66]. Reciprocally some lncR-
NAs emulate the properties of enhancers [67], which suggests
that enhancer action may integrally involve a derived RNA [68],
possibly to mediate higher order chromatin interactions and/or
epigenetic changes [69,70]. These effects may explain the equally
enigmatic genetic phenomena of transvection [68,69] and tran-
sinduction [63], the latter (along with clear evidence of selection
on synonymous codon sites [71]) suggesting that even mRNAs
may have embedded regulatory functions in addition to their
protein-coding capacity.

It has also recently become evident that conventional protein-
coding loci may also produce both small and large non-coding
RNAs, by regulated post-transcriptional cleavage of mRNAs
[72,73], including within 30 untranslated regions (30UTRs) [74,75].
The latter can be expressed in a highly cell-specific manner (e.g.,
in the cortex and hippocampus in the brain, or Sertoli cells in the
testis) [75] (Fig. 3), with genetic evidence dating back many years
showing that these sequences can transmit information in trans
separately from their normally associated protein-coding se-
quences and independently of their normal cis-acting functions
in the regulation of mRNA translation and stability. This includes
the restoration of the oogenesis defect in Drosophila oskar mutants
[76] and the inhibition of cell division, suppression of malignancy
and induction of differentiation by ectopically expressed 30UTRs
from a variety of genes in mammalian cells [77–81].

In addition, genome tiling array-based transcriptomic studies,
which do not require ribosomal RNA depletion by oligo(dT) purifi-
cation, showed that almost half of the transcripts found in human
cells are not polyadenylated, and are largely of a different sequence
composition from the RNA polymerase II-derived polyA+ fraction
[46]. These transcripts are possibly synthesized by RNA polymerase
III [82], indicating that for a generation a large portion of the tran-
scriptome has been hidden from view for technical reasons. The
same applies to repetitive sequences, which are frequently masked
out of such analyses, but for which there is increasing evidence of
differential expression [83–86], dating back many years [87,88].
6. Functions of lncRNAs

Although the vast majority of lncRNAs await characterization,
there are compelling genome-wide indices of their functionality
[53], as indicated by:



Fig. 2. Regionally enriched expression of ncRNAs in mouse hippocampus, cerebral cortex, and cerebellum. ISH images of ncRNA expression (accession numbers indicated) in
sagittal plane accompanied by false-color heat map below. (A) No probe control in hippocampus, with the functionally distinct CA1, CA2, CA3, and dentate gyrus (DG)
subfields indicated. (B–F) Enriched ncRNA expression in DG (B), CA1 (C), CA1–CA3 (D) and DG and CA1/CA2-3 in combination (E and F). (G) No probe control with labeled
cortical layer boundaries. (H–L) Enriched ncRNA expression that correlates with specific cortical laminae. (M) No probe control in cerebellum, with the molecular (MO),
Purkinje (PU), and granular (GR) layers indicated on detailed Inset. (N–R) Enriched ncRNA expression associated with cerebellar subregions. Adapted from [56].

Fig. 3. Separate expression of Myadm coding sequences and 30UTR in mouse testis [75]. Image courtesy of Dagmar Wilhelm.
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(i) Conservation of their promoters, splice junctions, exons, pre-
dicted structures, genomic position and expression patterns
[41,89–100].

(ii) Dynamic expression and alternative splicing during differen-
tiation [94,95,101–103].

(iii) Altered expression or splicing patterns in cancer and other
diseases [103–117].
(iv) Association with particular chromatin signatures that are
indicative of actively transcribed genes [94,95].

(v) Regulation of their expression by key morphogens,
transcription factors and hormones [94,95,116,118,119]
and

(vi) Tissue- and cell-specific expression patterns and subcellular
localization [59,102,116,120–130].



Fig. 4. RNA regulation of epigenetic processes. Reproduced from [184] with permission.
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Indeed, different but substantial subsets of all of polled lncRNAs
are differentially and dynamically expressed in all differentiation
or disease systems that have been examined. These include the dif-
ferentiation of embryonic stem cells [94], neuronal cells [131],
muscle cells [102], T cells [132], breast epithelial cells [103] and
cancer [117]. A survey of the expression of over 1300 lncRNAs in
mouse brain showed that over 600 were expressed in highly spe-
cific locations, such as different regions of the hippocampus, differ-
ent layers of the cortex, or different parts of the cerebellum (Fig. 2),
with most (where the resolution was sufficient to determine)
showing specific subcellular locations [56]. Since lack of conserva-
tion is uninformative [18,89], the only reliable index of function,
although by no means proof of function, is differential expression
[18]. By this criterion, most of the genome is imputed to be
functional.

Many lncRNAs are associated with particular subcellular struc-
tures [133], including novel subnuclear domains in a subset of neu-
rons [125] or Purkinje cells [56], and paraspeckles, which are as yet
not well understood mammal-specific subnuclear domains
involved in the retention of edited transcripts (containing Alu
elements, see below) and induced in differentiated cells [102,
126–129,134–136]. What feature of mammalian differentiation
and development that involves these structures (and is not
required in other vertebrates) is not known, but is an intriguing
question, especially in view of the recent report that mice lacking
paraspeckles appear superficially normal [137]. Preliminary evi-
dence suggests that paraspeckles may have a role in regulating
the nuclear-cytoplasmic shuttling of RNAs that are subject to
RNA editing [134,138], which appears to be associated with the
rise of cognition (see below), and may be a feature not only of
mammalian brain function, but also other aspects of mammalian
reproduction, development and physiology associated with the
exchange of high reproductive rates for extended nurturing, pre-
sumably with a net advantage for survival and reproductive fitness.

Although very few have yet been studied, there are rapidly
increasing numbers of reports showing that lncRNAs have biolog-
ical function [139], usually using siRNA-mediated knockdown
and/or ectopic expression in cell-based assays (for recent compila-
tions see [53,140]). These include functions, for example, in the
modulation of the reprogramming of induced pluripotent stem
cells [141], regulation of homeotic gene expression [101], cancer
metastasis [117,142], breast development [103,143], retinal devel-
opment [144,145], parental imprinting [146–151], X-chromosome
dosage compensation [152–157], paraspeckle assembly [102,126–
129] and p53 regulation [158–160].
In some cases, mechanistic insights into the mode of action of
lncRNAs are emerging. For example, the nuclear lncRNA Malat1
(‘metastasis-associated lung adenocarcinoma transcript 1’) is ex-
pressed in numerous tissues and is highly abundant in neurons,
where it has been shown to play a role in synaptogenesis [161]
and to regulate alternative splicing by interacting with SR family
pre-mRNA-splicing factors [161,162] and other nuclear RNA bind-
ing proteins [163]. It also yields a tRNA-like cytoplasmic RNA by 30

end processing, although the function of this small RNA is un-
known [164].

Most functionally characterized lncRNAs appear to play a role in
differentiation and development, which is the broad prediction
from the presence and progressive expansion of these transcripts
in developmentally complex organisms. Consistent with this, a ma-
jor, if not the major, function of these lncRNAs appears to be the
regulation of epigenetic processes.

7. RNA regulation of epigenetic processes

Epigenetic processes are central to differentiation and develop-
ment [165–170], long-term responses to environmental variables
[171,172], and brain function [173–179]. Epigenetic information
is encoded by the methylation [180] and hydroxymethylation
[181,182] of cytosines in DNA, and in a wide range of modifications
of the histones that package DNA into nucleosomes [183]. These
are catalyzed by a suite of �60 generic enzymes/chromatin modi-
fying complexes that impose a myriad of different chemical marks
at hundreds of thousands of genomic locations in different cells at
different stages of differentiation [183].

What determines the site-selectivity of these chromatin remod-
eling complexes, how is the position of nucleosomes regulated, and
what is the molecular basis of environment–epigenome interac-
tions? The likely answer to all of these questions is RNA
[184–186]. It had been thought that these processes were directed
by transcription factors, which clearly can exert powerful effects
on cell state, capable of (re-)programming stem cells [187] or forcing
differentiation into e.g., myoblasts [188]. However, the enormous
and underappreciated challenge for genetic programming is not
simply to define the phenotypic state of a cell, or to wind it back or
forward, but rather to organize the 4-dimensional growth and differ-
entiation of cells into a myriad of precisely 3-and 4-dimensionally
sculpted organs and tissues [189] – different vertebrae or muscles,
for example, have a unique architecture tuned to their functional
position. While many proteins, including transcription factors and
homeotic proteins, which are often differentially expressed and
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state-specific (see e.g., [190,191]), have a role in this process, these
clearly also require additional information for their site-specificity
(as only a subset of potential sites are actually addressed in any given
context). This additional information increasingly appears to be
embedded in regulatory RNAs that control chromatin architecture
by directing effector ‘regulatory’ proteins to their sites of action
[184] (Fig. 4).

The evidence implicating RNAs in the epigenetic control of
chromatin architecture and transcription dates back many years
[69,184,192–194] and includes the physical association of RNA
with chromatin [195–198] and chromatin regulatory proteins such
as DNA methyltransferases and REST [199,200], the presence of
RNA binding domains in proteins in chromatin remodeling com-
plexes [201–206] and the observations that major classes of tran-
scription factors, such as zinc finger and Y-box proteins, have
RNA or RNA:DNA binding activity [207–209]. The direct evidence
of lncRNA involvement in epigenetic processes includes the associ-
ation of subsets of lncRNAs with Trithorax-group proteins and
forms of modified histones in active chromatin [94,210], or with
Polycomb-group proteins and histone modifications associated
with repressed chromatin [101,150,151,198,200,211–217], which
also appears to involve elements of the RNA interference pathway
[218–220].

Apart from lncRNAs that regulate allele-specific expression at
imprinted loci and sex chromosomes, a number of interesting
examples have emerged over the past few years. These include
the epigenetic regulation of the tumour suppressor gene p15
by its antisense RNA [217,221], called ANRIL, independently
shown to be associated with susceptibility to range of complex
diseases, including coronary disease, intracranial aneurysm, type
2 diabetes, gliomas and basal cell carcinomas, among others,
with preliminary evidence suggesting that the common factor
is its role in the regulation of cell proliferation and senescence
[222]. Indeed, most genetic variants associated with complex
diseases are non-coding [223], presumably regulatory, many if
not most of which may affect intergenic, intronic and antisense
lncRNAs [53].

Another that has been well studied (by lncRNA standards) is
HOTAIR, a relatively rapidly evolving mammal-specific transcript
[224], which is derived from the HOXC locus and was first identi-
fied among 231 HOX-associated lncRNAs that are differentially ex-
pressed along spatiotemporal axes during development [101]. It
represses transcription at the HOXD locus in trans [101], is up-reg-
ulated in breast cancer and increases cancer invasiveness and
metastasis [142], which has also been observed with another
lncRNA SPRY4-IN1, which is up-regulated in melanoma [117].

These examples are undoubtedly the tip of a very big iceberg,
especially when one considers that, in all likelihood, most of the
1014 cells in a human, like the 103 in C. elegans, will have a unique
ontogeny and positional identity (a proposition that is supported
by the phenotypic similarity of monozygotic twins) that is epige-
netically controlled by such regulatory RNAs.

8. A world of small RNAs

There are also many classes of small RNAs that have been
discovered in recent years. The best characterized is microRNAs
(miRNAs), �23 nt small RNAs derived from short hairpin precur-
sors that generally appear to control mRNA translation and stabil-
ity via their (usually imperfect) recognition of target sites usually
in the 30UTR of mRNAs) and interaction with Argonaute-containing
RNA-induced silencing complexes (RISCs) [225]. Approximately
1000 miRNAs have been identified in human, but there are likely
to be many more, especially if significant numbers are lineage-
or species-restricted [226] and/or, like lsy6 in C. elegans [227], are
cell-specific.
The repertoire of miRNAs, like lncRNAs, has expanded during
animal evolution [228–231]. They regulate most mRNAs
[232,233] (and possibly lncRNAs), appear to influence almost every
facet of animal and plant development [234–242], as well as many
aspects of brain function (see e.g., [243–246]), and are often dys-
regulated in cancer and other complex diseases [247,248]. There
is much more to be learned about their biology and functional
mechanisms, including the parameters that determine target rec-
ognition [249–252], especially in view of the observations that
miRNA isoforms are developmentally regulated [253] and that at
least some miRNAs are localized in the nucleus [254,255].

Similar small RNAs, termed siRNAs (small interfering RNAs), de-
rived from longer hairpin precursors or duplex RNAs, also act
through the RNA interference pathway, usually by perfect matches
with the target sequence, resulting in mRNA degradation [35] as
well as transcriptional silencing via epigenetic effects on target se-
quences [184,219,256–258], with as yet not well understood inter-
play between different facets of the RNA interference system [35].
There appear to be a number of pathways as well as intercellular
transport of small RNA signals involved, at least in plants [259],
and possibly also in animals [260].

Related animal-specific small (�24–30 nt) RNAs that also in-
volve the RNA interference system, piRNAs (piwi-interacting RNAs)
[261–263], are involved in the silencing of transposons, primarily
in the germline [264–267]. PiRNAs are 20-O-methylated at their
30 ends, which permits their specific recognition by the PAZ do-
main of specific Argonautes that are expressed in the germline
[268,269]. They appear to be involved in genome defense
[267,270,271], although another more interesting possibility is
that they have evolved to regulate retrotransposon expression in
more subtle ways during early development [256,272–276]. These
RNAs are also linked to epigenetic changes (DNA methylation and
histone modifications) [277–279], assembly of the telomere pro-
tection complex [273], and complex genetic phenomena such as
hybrid dysgenesis [280], position effect variegation [256] and
trans-silencing [281].

Another class of small RNAs, termed small nucleolar RNAs
(snoRNAs), which may be spread by retrotransposition [282–
284], are derived from the introns of protein-coding and non-cod-
ing host transcripts [285–288], with at least two cases of the latter
having independent functions as lncRNAs [103,289]. SnoRNAs
guide specialized protein complexes to impart sequence-specific
20-O-methylation (box C/D snoRNAs) or the isomerization of spe-
cific uridines to pseudouridines (box H/ACA snoRNAs) in target
RNAs, and are usually localized in the nucleolus, with a related
class of box H/ACA snoRNAs found in (nuclear) Cajal-bodies
[290–293] using a specific localization signal that is also found in
telomerase RNA [294]. SnoRNAs were initially thought simply to
modify ribosomal RNAs to tune their chemical properties in trans-
lation [295], but some show imprinted, tissue-specific and/or con-
text-dependent expression, especially in the brain [296–300], and
target other cellular RNAs, including small nuclear (spliceosomal)
RNAs (snRNAs), transfer RNAs (tRNAs) and possibly even mRNAs,
in ways and for purposes that are not yet well-defined or under-
stood [291]. RNA can also be modified by cytosine methylation.
Dnmt2, named because of its homology to DNA methyltransfer-
ases, is in fact an RNA methyltransferase [301,302], which,
although its target spectrum is not known, plays a role in the
development of the brain and other organs [303] and is required
for retrotransposon silencing in somatic cells of Drosophila [304].

Recently, it has been shown that snoRNAs, snRNAs and tRNAs
are cleaved at specific positions to produce smaller RNAs
[305–307]. Most, if not all, small nucleolar RNAs in eukaryotes,
from fission yeast to human, are processed to three different sub-
species of small RNAs of three different canonical sizes (�17–19
nt and �30 nt from boxC/D snoRNAs, and �20–24 nt from box
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H/ACA snoRNAs), which show altered expression patterns in mu-
tants affecting the RNA interference pathway [306]. The size of
the box H/ACA-derived small RNAs is similar to miRNAs, and some
have been shown to function as miRNAs [308,309]. A number of
annotated miRNA precursors have box H/ACA snoRNA features
[310] and some miRNAs have a nucleolar location [254]. Small
RNAs derived from box C/D snoRNAs have been implicated in the
regulation of splicing [311], whereas those derived from tRNAs
have been found to be preferentially associated with different Arg-
onautes, and to affect the global regulation of the RNA silencing
system [307]. These findings all point to a complex evolutionary
and functional interplay between different classes of small RNAs
in the regulation of gene expression, whose dimensions have
barely begun to be explored.

Analysis of deep sequencing small RNAs datasets identified a
new class of animal-specific nuclear-localized tiny (�18 nt) RNAs
derived just downstream from transcription initiation sites (tiR-
NAs) [255,312]. Their size and position suggest that tiRNAs may
be produced by RNA polymerase II interaction with the first down-
stream nucleosome and backtracking [312,313], a well established
phenomenon that involves TFIIS-mediated cleavage of a small RNA
from the 30 end of the nascent transcript prior to resumption of
synthesis [314]. This possibility was given strong support by the
finding that the position of tiRNAs is different in human and Dro-
sophila, reflecting the different position of the first nucleosome
downstream of the transcription start site [313] (Fig. 5), with the
implication that tiRNAs may be marking, and perhaps regulating,
the position of the nucleosome [313].

While it has been known for some time that there is a nucleo-
some-free region around transcription start sites, with periodicity
elsewhere in nucleosome spacing [315–319], it came as a signifi-
cant surprise to discover recently that nucleosomes are in fact pref-
erentially positioned at exons in somatic cells [320–324] and germ
cells [323], the latter implying trans-generational epigenetic inher-
itance, for which there is increasing evidence [325–327] and which
may provide selective advantage to cope with environmental chal-
lenges [328]. Presumably there is also some logic to the positioning
of nucleosomes in intronic and intergenic regions, which also pro-
duce many functional (non-coding) RNAs, although this has yet to
be established. In any case, this finding shows that chromatin is far
more organized than previously suspected, and that the position of
nucleosomes must be regulated by some active or passive mecha-
nism(s). It also provides an explanation for the observed coupling
of chromatin structure, transcription and splicing [329], and a po-
tential basis for exon selection through various histone modifica-
tions within these nucleosomes that report the status of
particular exons during differentiation and development [323] –
i.e., that alternative splicing may be controlled by histone modifi-
cations [320–324], a prediction that has since been confirmed, at
least in part [330,331].

Subsequent deep sequencing of nuclear small RNAs identified
another class of small RNAs positioned at splice sites (spliRNAs)
[255] (Fig. 6). These spliRNAs are similar in size (17–18 nt) to tiR-
NAs and, like tiRNAs, are only found in animals. This suggests that
they may have a similar ontogeny and function, but spliRNAs are
derived from the 30 end of exons [255], whereas tiRNAs are posi-
tioned on the 50 side (upstream) of the first nucleosome [313].
However, there is (at least) one form of modified histone
(H3K36me3) that has a different position, which is associated with
actively expressed genes [332] and which appears to be positioned
at the exon–intron boundary [333], or just downstream of it [323].
This would (in principle) place spliRNAs on the 50 side of these
nucleosomes, like tiRNAs, a possibility that we are currently testing
by deep sequencing on small RNAs associated with different forms
of modified nucleosomes. It is worth noting that individual tiRNAs
and spliRNAs are only present at very low levels in deep sequenc-
ing datasets [255,312]: neither would have been identified without
the orthogonal intersection of small RNA datasets with specific
genomic features (transcription start sites and exon–intron junc-
tions, respectively), which also suggests that there may be many
more locus-specific regulatory RNAs to be discovered.

9. Transcriptomic, epigenomic and genomic plasticity in gene-
environment interactions and brain function

RNA also appears to be the substrate for environmental–
epigenome interactions. There is emerging evidence that RNA is
subject to a great deal of context-dependent editing, especially in
the brain. RNA editing involves base deamination (as distinct from
snoRNA-mediated modification) and is catalyzed by two classes of
enzymes in animals: ADARs (adenosine deaminases that act on
RNA) change adenosine to inosine (A > I) [334,335], which behaves
similarly to guanosine (e.g., in sequencing protocols), but has dif-
ferent base pairing qualities; and APOBECs (named after ‘ApoB
editing complex’, see below), which are vertebrate-specific and
change cytosine to uracil (C > U) and may act on RNA or DNA
[336,337].

There are three ADAR orthologs in animals. ADAR1 and ADAR2
occur in invertebrates and vertebrates [338], and are expressed in
most tissues, but particularly highly expressed in the nervous
system [334,335,339]. Loss of these genes in mice is embryonic
or postnatally lethal [340,341]. ADAR3 is vertebrate-and brain-
specific [338,342], but little is known about its function. Little is
known about how RNA editing is regulated [343], but ADARs can
be localized in both the nucleus and cytoplasm [344,345], and
there is evidence that RNA editing activity is connected to canoni-
cal cell signaling pathways [346], implying response to external
cues.

A > I editing was first discovered a generation ago by cDNA-
genomic comparisons of sequences encoding important neurore-
ceptors, such as glutamate, GABA and serotonin receptors, where
it alters the amino acid sequence, ostensibly to tune the electro-
physiological properties of the synapse [334]. It has since been re-
garded as an interesting but somewhat idiosyncratic subfield of
both molecular biology and neuroscience. However four papers
published in 2004, which have attracted surprisingly little atten-
tion, showed by comparison of large scale cDNA libraries with
genomic DNA that A > I editing is far more widespread than previ-
ously suspected, and occurs in thousands of transcripts [347–350].
Most of the edited sites occur in non-coding regions, implying that
editing is not only modifying the structure-function properties of
proteins, but also RNA-based regulatory circuits, and therefore
potentially epigenetic processes, which are central to learning
and brain function [173–177,179,351].

Moreover, these studies showed that there is a massive increase
(�35�) in the intensity of RNA editing in humans compared to
mouse. Most (>90%) of this editing occurs in primate-specific Alu
sequences [347–350], which evolved from a functional RNA ances-
tor (the 7SL RNA of the signal recognition particle) [352,353]. Alu
sequences invaded the primate lineage in three successive waves,
and now comprise �1.2 million mostly sequence unique copies
that collectively occupy �10.5% of our genome [354,355]. A subse-
quent study showed that the intensity of A > I editing also in-
creased during primate evolution, and that new editable Alu
insertions after the human-chimpanzee split are significantly en-
riched in genes related to neurological functions and neurological
diseases [356]. These SINEs (short interspersed nuclear elements),
consistent with the general view of such elements as junk, have
long been regarded as the most recent transpositional storm to
hit our lineage. However, these observations suggest a radically
different and much more interesting interpretation – i.e., that such
sequences, while having being recruited for many functions [353],



Fig. 5. A model of tiRNA biogenesis, and evidence that tiRNAs are linked to the position of the first nucleosome downstream of the transcription start site (TSS). (A) RNAPII
generates a short nascent RNA, stalls at the first (+1) nucleosome and backtracks, and the 30 end of the nascent RNA is cleaved by TFIIS to generate an �18 nt tiRNA. Values
next to human or fly silhouettes show the average distances from the TSS to the nucleosome or the putative position of tiRNA biogenesis. (B) Peak densities of the 50 ends of
tiRNAs in human and Drosophila are offset, consistent with positions of phased +1 nucleosomes, which are different between the two species, and the proposed model of
biogenesis. Reproduced from [313] with permission.
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have flourished as modular substrates for RNA editing, permitting
the introduction and spread of the transcriptomic and epigenomic
plasticity necessary for epigenome–environment interactions, dri-
ven by positive selection for cognitive function [185,328,356,357].

The APOBECs are even more intriguing. They were discovered
initially by their action on ApolipoproteinB mRNA where a C > U
change introduces a stop codon to generate a truncated isoform of
the protein in intestine versus the longer form produced in liver
[336]. There are five families of APOBECs, two of which (APOBEC 1
and 3) are mammal-specific [336,337]. The best characterized is
AID, which is involved in somatic rearrangements and hypermuta-
tion of immunoglobulins in the immune system [337]. AID appears
to act on DNA but may be targeted by RNA [358]. Moreover, AID dea-
minates 50 methylcytosine (to form thymine) [359] and is required
for the reprogramming of cells to pluripotency [360], and APOBEC2
is required for muscle differentiation [361], suggesting a wider role



Fig. 6. Small RNAs are associated with splice sites (spliRNAs). The position of small RNA 3 ends is plotted with respect to the splice donor site (the 3 end of the exon). The
schematics at top depict the position of spliRNAs detected in human THP-1 cells and their strand orientation with respect to exon–exon junctions. Small RNAs, dominantly
�17 or 18 nt, are >35-fold enriched at the 5 splice site in nuclei (A) compared to the background or (B) cytoplasmic small RNAs. Adapted from [255] with permission.

Fig. 7. A simplified biological history of the earth indicating the proposed major events and transitions on the evolutionary path from simple eukaryotes to developmentally
complex and cognitively advanced organisms.
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for such enzymes in developmental processes. Interestingly, there
are many parallels between the nervous and adaptive immune sys-
tems, including the presence of immunoglobulin domains in many
neuronal cell surface receptors [362,363], indicating that the adap-
tive immune system evolved (in vertebrates) from the nervous sys-
tem, and that both may use similar mechanisms to tune receptor
interactions. Moreover, the existence of many unusual DNA repair
enzymes, many of which appear to be linked to reverse transcrip-
tase activity, suggests that RNA-directed DNA recoding may play a
role in long-term memory formation [357].

The APOBEC3 family originated after the divergence of the mar-
supial and placental lineages and has greatly expanded in the pri-
mate lineage, with very strong signatures of positive selection
[337,364,365]. At least some (as well as APOBEC1 [366]) appear
to be involved in the control of exogenous and endogenous retro-
transposition, possibly by inhibition of reverse transcription, and
are therefore thought to be involved in host/genome defense
[337,367–370], but why this should be particularly important in
mammals and especially primates is problematic. An alternative
possibility is that these enzymes (one of which, APOBEC3G) is ex-
pressed in neurons [371]) have evolved to domesticate transposi-
tion. This possibility has been given strong support by the recent
observations that de novo L1 retrotransposition events occur in
neural progenitor cells and may therefore contribute to individual
somatic mosaicism in the brain [372,373]. Moreover, this process
that appears to be regulated by Wnt signaling pathways and tran-
scription factors known to be important in neural differentiation
[374]. The process is also regulated by MeCP2 (methyl-CpG-bind-
ing protein 2), which is involved in global DNA methylation and
neurodevelopmental diseases [375], and is modulated in the brain
itself by environmental influences [376]. That is, transposon mobi-
lization may not simply have played a role in genome evolution
but also in real time genome dynamics that enable the extraordi-
nary in situ evolution [377] and functional complexity of the neu-
ronal networks in the human brain [378].

10. Concluding remarks

The emerging evidence suggests that evolution has shaped the
human genome in far more sophisticated ways than ever imagined,
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and that most of the information it holds is involved in complex
regulatory processes that underpin development and brain func-
tion. This includes the vast numbers of non-coding RNAs and trans-
posons, which rather than being junk, appear to provide the
regulatory power and plasticity required to program our ontogeny
and cognition [14,69,184,185,194,379–381]. In this scenario, DNA
might be viewed as a zip file/hard disc, proteins (including most
‘regulatory’ proteins) as the analog effectors, and RNA as the com-
putational engine of the system [189,382]. Moreover, it seems that
the major challenge that evolution had to overcome to evolve
developmentally complex organisms was regulatory, and that the
barriers imposed by the rising cost of regulation were overcome
by moving to a hierarchical RNA-based regulatory system.

It seems plausible that the deep roots of this system lay in the
compartmentalization of eukaryotic cells and the consequent
separation of transcription from translation. This enabled group II
self-splicing introns (the precursors of modern nuclear introns)
to invade genes and, following the evolution of the spliceosome,
to evolve to express regulatory RNAs along with a receptive protein
infrastructure, which then allowed the progressive attainment of
higher developmental complexity and the exploration of design
variations [14,69,381], which exploded in the Cambrian, where
recognizable ancestors of most modern phyla are observable in
the fossil record [383] (Fig. 7). The subsequent competition
within and between these dynasties to refine their body plans
and colonize new niches, including the land and the air, resulted
in the wonderful diversity of multicellular life on this planet, and
is usually thought of as the exemplar of Darwinian evolution.
However, perhaps the real story and the last great mountain that
evolution climbed was the superimposition of environmentally
responsive plasticity on this system, including the cooption and
domestication of retrotransposons, to allow the development of
higher order information processing, learning, language and
thought, the most powerful selective advantage of all.
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