
1 Computation of the conserved Hamiltonian: Sketch
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Now we compute H3 associated with iL3 = [iLq, iLp]:
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Now we compute H4 associated with iL4 = [iLq, [iLq, iLp]] = [iLq, iL3]:
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Now we compute H5 associated with iL5 = [iLp, [iLq, iLp]] = [iLp, iL3]:
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Now, it can be shown that
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so that
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This formula holds with corrections of order ∆t3.

We can apply this result to the harmonic oscillator with U(q) = 1
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To relate this result with the exact result obtained a few lessons ago, note that, if we take
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