
1 Parallel tempering

1.1 General considerations

Umbrella sampling and simulated tempering have a serious shortcoming. One needs to optimize
the coefficients αi and this requires the computation of partition function ratios. Here we introduce
a different approach that is called in a variety of different ways: Metropolis-coupled Markov chain
Monte Carlo, replica-exchange algorithm, parallel tempering method. Mathematicians prefer to
indicate it as swapping algorithm. It does not require the computation of partition function ratios.

The parallel-tempering algorithm is an algorithm that works in a a state space S′ which consists
in R replicas of the original state space S: S′ = S × . . .× S. On S′ one takes as probability

Π(x1, . . . , xR) =
e−β1H(x1)

Zβ1

e−β2H(x2)

Zβ2
. . .

e−βRH(xR)

ZβR

The probability Π is simply the product of the canonical-ensemble probabilities at the different
temperatures. Obtaining canonical-ensemble averages is therefore straightforward:

〈A(x)〉βi =
∑

x1,...xN

A(xi)Π(x1, . . . , xR)

Stated differently, to compute averages at inverse temperature βi, we simply consider the configu-
rations xi that are distributed with the correct canonical distribution. The proof of this relation is
trivial. Indeed, the right-hand side is

∑
x1,...xN

A(xi)
e−β1H(x1

Zβ1
. . .

e−βRH(xR

ZβR
=(∑

x1

e−β1H(x1)

Zβ1

)(∑
x2

e−β2H(x2)

Zβ2

)
. . .

(∑
xi

A(xi)
e−βiH(xi)

Zβi

)
. . .

(∑
xR

e−βRH(xR)

ZβR

)
. (1)

All sums give 1, except the sum over xi that gives 〈A(x)〉βi .
The algorithm considers two different types of moves: 1) canonical moves on the systems (we
change the configurations x1, x2, and so on; 2) swapping moves. Note that if we only use canonical
moves on the systems (moves of type 1) we would also obtain a valid algorithm. It corresponds
to a simulation in which the R systems are simulated together, but independently. This type of
simulations are sometimes performed on parallel machines and they correspond to the most trivial
parallelization of the simulation.

The swapping moves are the moves that characterize the parallel tempering method. They are
implement as follows:

a) Choose two replicas i, i + 1 randomly (we randomly choose i in [0, R − 1]). The proposal
matrix is clearly symmetric.

b) We propose the swap

(x1, . . . , xi, xi+1, . . . xR)→ (x1, . . . , xi+1, xi, . . . xR) .

1



Since the proposal matrix is symmetric the acceptance is

Aswap = min

(
1,
e−βiEi+1−βi+1Ei

e−βi+1Ei+1−βiEi

)
= min

(
1, e(βi+1−βi)(Ei+1−Ei)

)
,

where Ei = H(xi).

As we have already discussed several times, to define the algorithm we consider a random choice
for the pair. However, it is also possible to choose the pair sequentially: first, we propose a swap
of replicas 1 and 2, then of replicas 2 and 3, and so on. The sequential algorithm is also correct,
although it does not satisfy detailed balance (it satisfies the stationarity condition).

As in the US or ST case, in order to perform a PT simulation, one must decide the number R of
inverse temperatures and their values. As for the US and ST methods, temperatures should be
close enough, so that the typical configuration domains at nearby temperatures overlap.

In the formal setting, the algorithm is defined as an algorithm in which the configurations are
swapped. However, it is more natural to think of the algorithm as one in which the temperatures
are swapped. We run standard canonical simulations on R different systems and the swapping
move corresponds to a temperature swap. In this intepretation, the parallel tempering algorithm
represents a generalization of the simulated tempering method. In this framework, temperatures
“follow” the configurations. In practice one defines a vector B of length R. At the beginning of the
simulation one sets B = (β1, β2, β3, . . . βR); in C-notation B[0] = β1, H[1] = β2, and so on. Then,
whenever one performs a swap on the pair i, i+ 1, one does the following:

a1 = B[i-1]; a2 = B[i];

B[i-1] = a2; B[i] = a1;

At each time the variable B gives the current inverse temperature: B[0] gives the current inverse
temperature of system 1; B[1] gives the current temperature of system 2 and so on.

Whenever a PT run is performed, it is important to verify that the algorithm is working correctly.
The simplest quantity to measure is the swapping rate ai,i+1 between adjacent temperatures, that
is the fraction of accepted swaps. The algorithm works efficiently only if, for all i, ai,i+1 is not too
small. The optimal value for ai,i+1 lies between 0.2 and 0.3, but larger, or slightly smaller values,
although not optimal, are still acceptable. A reasonable swapping rate is, however, not enough
to guarantee that the algorithm is working correctly. Indeed, there are situations in which the
swapping rates take the desired values, but the PT simulation is inefficient. This typically occurs
when there is a “bottleneck” at a certain temperature βK (typically, this occurs close to phase
transitions). In this case aK−1,K and aK,K+1 are both reasonable, but the algorithm is unable to
modify a configuration that is typical at βK+1 into one that is typical at βK−1. To investigate
this issue, it is useful to define the average round-trip time, i.e. the Monte Carlo time between
occurences of B[i] = β1 and B[i] = βR. If the swapping procedure is working efficiently, the round-
trip time should be comparable to the return time of a random walker moving among temperatures
with the swapping rates actually measured in the simulation. On the contrary, if the swapping
procedure has a bottleneck, then the round-trip time becomes large and is essentially controlled by
the time it takes for a replica to go through the bottleneck.

2


