1 Simulated tempering

As the umbrella sampling (US) method, also the simulated tempering (ST) method aims at sampling
the configurations that are typical at a set of inverse temperatures 81 < ... < Bgr and, indeed, it
represents a stochastic version of the US method. In the ST case, one enlarges the configuration
space by adding an index ¢ which runs from 1 to R. Hence, a configuration in the ST simulation is
a pair (z,7). Configurations are sampled with probability (a; > 0)
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where Z is the same partition function we considered in the US case. Indeed, the condition
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The ST and the US method are essentially equivalent. The simulated tempering method is simply
a stochastic version of the umbrella sampling method. For instance, consider a variable A(z). If w
is the US probability distribution, the umbrella sampling average of A is
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while the ST average is
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The two expressions are clearly the same.

The simulated tempering dynamics is usually thought as a dynamics in which the temperature of
the systam varies. If the configuration is (x,%), one thinks of the configuration as the system z
at inverse temperature 3;. Analogously, transitions (z,7) — (x,j), are interpreted as temperature
changes, from 3; to ;.

Since the US method and the ST method are equivalent, the ST method works only if the conditions
we mentioned for the US method are satisfied:

e The temperatures should be finely spaced, so that typical configurations at inverse tempera-
ture B; overlap with those at 5;41.

e The coefficients «; should satisfy
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The algorithm is correct, though not optimal, for any choice of the «;’s,



Again, we should also specify how to obtain canonical averages from ST simulations. As we already
proved that ST and US averages are the same, we can use
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where the mean values in the right-hand side are ST averages and
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so that >, II(x, i) = fr(x)/Zx.
However, in ST simulations one often uses a different formula to compute average values at the
inverse temperatures ;. Define the indicator function

Ii(z, j) = i

Then, we consider
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If we set A(z) = 1, since (A)g, = 1, we have

These two relations imply

Let us understand the meaning of Eq. (4). If we work in the simulated tempering ensemble,
configurations are (x,4). In the Monte Carlo simulation we update both z, the configuration in the
state space, and the index, that is the inverse temperature. So, if we intend to measure averages
of A(x), we save, at constant intervals, both the index (the temperature) and the value of the
observable. Therefore, we collect the measures (i1, A1), (i2, A2), ..., (in, An), where Ay is the value
of A computed on the configuration at the k-th measure, while i is the value of the index when
we performed the k-th measure. Here n is the total number of measures. Now, let us estimate (I;).
As usual, the estimator is the sample mean:
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Now the sum simply counts how many measures were performed with i = i, so that
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Using Eq. (4), we see that the optimality condition «;Z; =~ o Z; can be rephrased in the requirement
that the number of measures N; performed at each 5; is essentially the same: during the simulation
the system equally visits all temperatures.



In an analogous way we can understand the meaning of (AI;). The estimator is
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The sum in the right-hand side is the sum of the measures Ay that correspond to systems that are
at temperature f3; (there are IN; measures at temperature ;). We call this sum S;(A) , so that
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This formula has a simple interpretation: the average at 3; is the usual sample average in which we
only consider the data collected at the inverse temperature ;. There is only one caveat: while the
average is the usual one, one cannot use the usual formulae for the errors, since here the number of
measures V; is a stochastic variable. Errors should be computed using a robust method, like the
jackknife method.

2 Implementation

In a simulated tempering simulation we must update both x and i. Let us see how to implement
a Metropolis simulation.
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Update of . We keep i fixed and propose x — y with proposal matrix ngg . We accept the move

with probability min(1,R,,), where
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The acceptance is the same we use in the case of canonical simulations, setting 8 equal to the
current inverse temperature.

Update of i. We keep z fixed and change i. We typically only propose moves ¢ — ¢ = 1. We have
already discussed this algorithm in Lesson 8: Metropolis. Examples (I). The proposal is
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The acceptance is min(1,R; ;+1) with
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Note that the ratio of the proposal matrices is 1, except when i or ¢+ 1 correspond to the boundary
values (see the discussion in Lesson 8, where a different, less efficient updating method is also
discussed).

The full algorithm. The full algorithm is obtained by performing both updates of x and updates
of i. The relative frequency of the two moves is a free parameter of the algorithm, that can be
optimized to achieve the smallest errors.

It is usually a good idea to collect the transition frequencies a;;+1 that give the probability that
a transition ¢ — ¢ + 1 is performed. One would like the transition frequencies to vary between 0.2
and 0.5. If larger numbers are observed, one can decrease the number of temperatures; if smaller
numbers are observed, it is possible that the parameters «; are not optimized or that the 8 intervals
are too wide, so that the energy distributions have little overlap. In this case it is better to review
the parameters that have been chosen.



