
1 Umbrella sampling

We have already shown how to use several runs at β1 < . . . < βR to compute averages for any
β in the interval [β1, βR] and to compute free energy differences. The umbrella sampling (US)
method was introduced by Torrie and Valleau in 1977 to perform the same tasks by means of a
single simulation. The idea consists in performing MC simulations with a non-Boltzmann-Gibbs
distribution function of the form

π(x) =
1

Zπ

R∑
i=1

αie
−βiH(x) , (1)

where i runs over the R different temperatures, αi are positive constants that should be carefully
chosen as described below, and Zπ is the normalizing factor. Since

∑
x π(x) = 1, we have

Zπ =
∑
i

αiZi.

By sampling the distribution (1) one aims at sampling in a single run the configurations that
are typical for all βi’s and, as a consequence, all configuration space which is relevant for the
computation of 〈A〉β with β1 ≤ β ≤ βR. In order for the method to work two requirements should
be satisfied:

• The temperatures should be finely spaced, so that typical configurations at inverse temper-
ature βi overlap with those at βi±1. If this does not occur, the system is unable to move
in configuration space and does not visit the typical configuration domain of all βi’s. This
condition is the same that occurs in the application of the data reweighting method.

• A second important condition fixes the coefficients αi or, more precisely, their ratios. We
require that the typical configuration domains at each βi have approximately the same prob-
ability under π. For this purpose we require

1

Zπ
αiZi ≈

1

Zπ
αjZj ⇒ αi

αj
≈ Zj
Zi

= eβiF (βi)−βjF (βj) . (2)

The algorithm is correct, though not optimal, for any choice of the αi’s, so that it is enough
to have a very rough estimate of the free-energy differences to run a US simulation.

Note that we only fix the ratios of the αi’s: this is not a limitation since one can always set, say,
α1 = 1, by redefining Zπ.

Of course, the method is useful only if we are able to obtain canonical estimates at a given β. Let
us define

fπ(x) =
∑
i

αie
−βiH(x)

so that π(x) = fπ(x)/Zπ. Then, we have
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We obtain therefore

〈A〉β =
〈Ae−βH/fπ〉π
〈e−βH/fπ〉π

. (3)

The umbrella approach is very general and can be applied to any system. In general we consider
R different probability distributions πi defined on the state space and consider

π(x) =
∑
i

aiπi(x)

with ai > 0 and
∑

i ai = 1. In the previous example

πi =
1

Zi
e−βiH ai =

Zi
Zπ

αi.

The optimality condition (2) translates in

αi
αj
≈ Zj
Zi
⇒ Zπai

Zi

Zj
Zπaj

≈ Zj
Zi
⇒ ai

aj
≈ 1.

The weights ai should be approximately the same to have an optimal distribution.

2 Monte Carlo implementation

The umbrella sampling method can be implemented straightforwardly. Let us consider a system
of monoatomic molecules. Suppose that particles are in {r1, . . . , rN}. A Metropolis update of one
particle is performed as in the canonical case. We choose a molecule i and propose a shift in a
cubic box of size ∆3. The move is accepted with the Metropolis acceptance probability min(1,R),
where

R =

∑
i αie

−βiEnew∑
i αie

−βiEold

and Enew and Eold are the energies of the new and of the old configuration. This means that we
accept the move if Enew < Eold (check that, if this condition holds, R > 1); otherwise, we accept
the move with probability R.
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