1 Umbrella sampling

We have already shown how to use several runs at 51 < ... < Br to compute averages for any
B in the interval [81,Br] and to compute free energy differences. The umbrella sampling (US)
method was introduced by Torrie and Valleau in 1977 to perform the same tasks by means of a
single simulation. The idea consists in performing MC simulations with a non-Boltzmann-Gibbs
distribution function of the form
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where ¢ runs over the R different temperatures, «; are positive constants that should be carefully
chosen as described below, and Z; is the normalizing factor. Since ) 7(x) = 1, we have
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By sampling the distribution (1) one aims at sampling in a single run the configurations that
are typical for all §8;’s and, as a consequence, all configuration space which is relevant for the
computation of (4)g with 81 < f < fg. In order for the method to work two requirements should
be satisfied:

e The temperatures should be finely spaced, so that typical configurations at inverse temper-
ature (§; overlap with those at 8;41. If this does not occur, the system is unable to move
in configuration space and does not visit the typical configuration domain of all §;’s. This
condition is the same that occurs in the application of the data reweighting method.

e A second important condition fixes the coefficients «; or, more precisely, their ratios. We
require that the typical configuration domains at each 5; have approximately the same prob-
ability under w. For this purpose we require
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The algorithm is correct, though not optimal, for any choice of the «;’s, so that it is enough
to have a very rough estimate of the free-energy differences to run a US simulation.

Note that we only fix the ratios of the «;’s: this is not a limitation since one can always set, say,
a1 = 1, by redefining Z.
Of course, the method is useful only if we are able to obtain canonical estimates at a given 5. Let
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so that m(z) = fz(2)/Z%. Then, we have
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We obtain therefore A o—BH
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The umbrella approach is very general and can be applied to any system. In general we consider
R different probability distributions m; defined on the state space and consider

m(x) = Z a;mi(z)

with a; > 0 and ), a; = 1. In the previous example
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The optimality condition (2) translates in
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The weights a; should be approximately the same to have an optimal distribution.

2 Monte Carlo implementation

The umbrella sampling method can be implemented straightforwardly. Let us consider a system
of monoatomic molecules. Suppose that particles are in {ry,...,ry}. A Metropolis update of one
particle is performed as in the canonical case. We choose a molecule ¢ and propose a shift in a
cubic box of size A3. The move is accepted with the Metropolis acceptance probability min(1,R),
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and Fpew and Fgq are the energies of the new and of the old configuration. This means that we

accept the move if Epew < Folq (check that, if this condition holds, R > 1); otherwise, we accept
the move with probability R.
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