Robert Boyle 1680

"acids...substances able to turn to red the indicator paper and to react with bases being neutralised..."

Chrozophora tinctoria

Roccella tinctoria also called tornasole

2-hydroxyphenazine

What do you notice in this structure ?!

Acids & bases, definition

Arrhenius Theory (1883)

ACID: Produces H⁺ in Water BASE: Produces OH⁻ in Water

Bronsted/Lowry Theory (1923) ACID: proton, H⁺ DONOR BASE: proton, H⁺ ACCEPTOR

> Lewis Theory (1938) a more general acid base theory. ACID: accepts pair of electrons for sharing BASE: donates pair of electrons for sharing

 $\mathbf{X} + : \mathbf{Y} \rightarrow \mathbf{X} : \mathbf{Y}$ acid base

OPERATIVE DEFINITIONS

generally, •an acid donates one (or more) H⁺ to an acceptor base

•An acid accepts one (or more) *lone pair(s)* form a donor base

•H⁺ is a very efficient *lone pair* acceptor
•OH⁻ is avery efficient *lone pair(s)*3 of them) *donor*...!.

HCl is an acid, since it releases H⁺ (accepting a *lone pair*) NaOH is a base, since it releases OH⁻ (donating a *lone pair*)

Acid base reaction (most common)

HC1 + NaOH

 $\Delta G \ll 0 \approx$ - 57 KJ/mol

The calorie, again

1 cal \sim 4.18 joules

Acids and bases of biomedical interest

ACIDS			
HCll	hydrochloric ac.	Strong	gastric jouce
HNO ₃	nitric ac.	strong	caustic
H_2SO_4	sulphoric ac.	strong	caustic
H ₂ SO ₃	sulphoric ac.	strong	caustic
H ₃ PO ₄	phosphoric ac.	weak	biological buffer
H ₃ BO ₃	boric ac.	weak	external disinfectant
H ₂ CO ₃	carbonic ac.	weak	biological buffer
НСООН	formic ac.	weak	
CH ₃ COOH	acetic ac.	weak	vinegar
BASES (HYDROX)	(DES)		
NaOH	sodium hydroxide	strong	caustic
КОН	potassium hydroxide	caustic	
Ca(OH) ₂	calcium hydroxide	caustic	
$Mg(OH)_2$	magnesium hydroxide	estrong	caustic
Al(OH) ₃	aluminum hydroxide	strong	caustic
NH ₃ .H ₂ O	ammonia	weak	
NH ₄ OH	ammonium hydroxide	e	

Paolo Sarti 2003 Dip. Scienze Biochimiche La Sapienza

Acid-base conjugated couple (Brönsted & Lowry)

Acid-base reaction

Conjugated couple 1

After H+ donation, the acid turns into the conjugated base while the base turns into the conjugated acid **The cojugated species have opposite strength** !

Sapienza

Water auto-protolysis

 $H_2O \leftarrow H^+ + OH^ 2H_2O \leftarrow H_3O^+ + OH^-$

 $2 H_2 O \longrightarrow H_3 O^+ + OH^-$

Keq =
$$\frac{[H_3O^+] [OH^-]}{[H_2O]^2}$$
 = $\frac{(10^{-7}) (10^{-7})}{(55.5)^2}$ = 3.2 x 10⁻¹⁸

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

$$H_2O \leftarrow H^+ + OH^-$$

$$[H_2O] = 55.\overline{5} M$$
, costant !!

 $K_{eq} \times [H_2O] = [H^+] [OH^-] = 10^{-14} = K_W (costant, at cost T)$ *ion product* of water

Cojugated (acid-base) couples (Brönsted & Lowry)

strength of an acid/base in H₂O

Defined by the tendency to donate/accept H^+

 $[H_2O] \approx costant!$

Examples

Sapienza

Let's figure out: The same equilibrium read from left to right and vice-versa...!

AH
$$\xrightarrow{\text{on}}$$
 A⁻ + H⁺

BUT pay attention to approximations !

$$B + H_2O \longrightarrow HB^+ + OH^-$$

$$K_{eq} \rightarrow K_b = \frac{[HB^+][OH^-]}{[B]} \qquad [OH^-] = \frac{K_w}{[H^+]} \qquad in H_2O \quad Kw = [H^+][OH^-]$$

$$K_b = \frac{[HB^+]K_w}{[B][H^+]} = \frac{K_w}{K_a}$$

Thus Kb and Ka are inversely related...!

$$K_b \propto 1/K_a \rightarrow K_b = K_w/K_a$$
 and

 $K_a \propto 1/K_b \rightarrow K_a = K_w/K_b$

The strength of the hydroxides (inorganic strong bases) is commonly expressed as dissociation of OH⁻

$BOH = B^+ + OH^-$

CONCLUDING:

- •The stronger the acid, the larger K_a
- •The stronger the base, the larger K_b

			K _a an	id K _b Values		
	Name of Acid	Acid	Ka	Name of Base	Base	Kb
•	Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO4-	very small
	Hydrochloric acid	HC1	large	chloride ion	C1-	very small
	Nitric acid	HNO ₃	large	nitrate ion	NO3"	very small
	Hydronium ion	H ₂ O ⁺	55.5	water	H ₂ O	1.8 × 10-16
•	Hydrogen sulfate ion	HSO4-	1.2 × 10 ⁻²	sulfate ion	SO42-	8.3 × 10-1
•	Phosphoric acid	H ₂ PO ₄	7.5 x 10 ⁻³	dihudrogen phosphate ion	H-PO4-	1.3 × 10-12
	Hexaaguairon(III) ion	Fe(H2O)63+	6.3 × 10 ⁻³	pentaaguahydroxoiron(III) ion	Fe(H ₂ O) ₅ OH ²⁺	1.6 × 10-12
	Hydrofluoric acid	HF	7.4 × 10 ⁻⁴	fluoride ion	F-	1.4 × 10-11
•	Formic acid	HCO ₂ H	1.8×10^{-4}	formate ion	HCO2"	5.6 x 10-1
	Benzoic acid	CeHsCO2H	6.3 × 10 ⁻⁵	benzoate ion	CeHsCO2-	1.6 × 10 ⁻¹⁰
•	Acetic acid	CH3CO2H	1.8 × 10 ⁻⁵	acetate ion	CH2CO2	5.6 x 10 ⁻¹
	Hexaaguaaluminum ion	A1(H2O)63+	7.9 × 10 ⁻⁶	pentaaguahydroxoaluminum ion	A1(H2O)50H2+	1.3 × 10-9
•	Carbonic acid	H ₂ CO ₃	4.2 × 10-7	hydrogen carbonate ion	HCO3-	2.4 × 10-8
	Hydrogen sulfide	Hos	1 × 10 ⁻⁷	hudrogen sulfide ion	HS-	1 × 10 ⁻⁷
•	Dihudrogen phosphate ion	H-PO4-	6.2 x 10 ⁻⁸	hydrogen phosphate ion	HPO42-	1.6 × 10-7
	Hypochlorous acid	HÊIO	3.5 × 10 ⁻⁸	hypochlorite ion	C10-	2.9 × 10-7
	Ammonium ion	NH4+	5.6 x 10 ⁻¹⁰	ammonia	NHa	1.8 × 10-5
	Hydrocyanic acid	HCN	4.0 × 10 ⁻¹⁰	cuanide ion	CN-	2.5 × 10-5
	Hexaaguairon(II) ion	Fe(H2O)62+	3.2 × 10 ⁻¹⁰	pentaaguahydroxoiron(II) ion	Fe(H2O)sOH+	3.1×10^{-5}
•	Hydrogen carbonate ion	HCO3-	4.8 × 10-11	carbonate ion	CO22-	2.1×10^{-4}
•	Hydrogen phosphate ion	HPO42-	3.6 x 10 ⁻¹³	phosphate ion	PO43-	2.8 × 10-2
	Water	HO	1.8 × 10 ⁻¹⁶	hudroxide ion	OH-	55.5
	Hudrogen sulfide ion	HS-	1 × 10-19	sulfide ion	S2-	1×10^{5}

Acido acetico	1,75-10-5
Acido amminoacetico	Ka1 4,47 · 10 ⁻³
(glicina)	Ka2 1,67-10-10
Acido amminobenzensolfonico (solfanilico)	K _a 5,86-10 ⁻⁴
Acido arsenico	$K_{a1} 5,8 \cdot 10^{-3}$ $K_{a2} 1,10 \cdot 10^{-7}$ $K_{a3} 3,2 \cdot 10^{-12}$
Acido arsenioso	5,1.10-10
Acido aspartico	K _{a1} 1,02 · 10 ⁻² K _{a2} 1,26 · 10 ⁻⁴ K _{a3} 9,95 · 10 ⁻¹¹
Acido benzoico	6,28 - 10-5
Acido borico	$K_{a1} 5,81 \cdot 10^{-10}$ $K_{a2} 1,82 \cdot 10^{-13}$ $K_{a3} 1,58 \cdot 10^{-14}$
Acido butanoico	1,52 - 10 - 5
Acido cis-butendioico (maleico)	K _{a1} 1,23 · 10 ⁻² K _{a2} 4,66 · 10 ⁻⁷
Acido trans-butendioico (fumarico)	K _{a1} 8,85 · 10 ⁻⁴ K _{a2} 3,21 · 10 ⁻⁵
Acido carbonico	$K_{a1} 4,45 \cdot 10^{-7}$ $K_{a2} 4,69 \cdot 10^{-11}$
Acido cianidrico	6,2.10-10
Acido cítrico	$K_{a1} 7,44 \cdot 10^{-4}$ $K_{a2} 1,73 \cdot 10^{-5}$ $K_{a3} 4,02 \cdot 10^{-7}$
Acido cloroacetico	1,36.10-3
Acido cloroso	1,12 · 10 - 2
Acido cromico	K_{a1} 1,6 K_{a2} 3,1 · 10 ⁻⁷
Acido	
D-2,3-diidrossibutandioico (D-tartarico)	$K_{a1} 9,20 \cdot 10^{-4}$ $K_{a2} 4,31 \cdot 10^{-5}$

Acido etilendiamminotetraacetico	Ka1 1.0
	Kaz 0,032
	K _{a3} 0,010
	Ka4 0,0021
	Ka5 7,8.10-7
	K _{a6} 6,8 10 ⁻¹¹
Acido formico	1,80.10-4
Fenolo	1,05.10-10
Fluoruro di idrogeno	6,8·10 ⁻⁴
Acido fosforico	Kai 7.11.10 ⁻³
*	Ka2 6,32.10 ⁻⁸
	K_{a3} 7,1.10 ⁻¹³
Acido fosforoso	Ka1 3.10-2
	Ka2 1,62 10-7
Acido o-ftalico	Ka1 1,12.10 ⁻³
	Ka2 3,90-10 ⁻⁶
Acido glutammico	Ka1 5,9.10 ⁻³
*	Ka2 3,8.10-5
	K _{a3} 1,12 · 10 ⁻¹⁰
Acido idrossiacetico (glicolico)	1,48.10-4
Acido 2-idrossibenzoico	K_{a1} 1,07 \cdot 10 ⁻³
salicilico)	K_{a2} 1,82 \cdot 10 ⁻¹⁴
Acido L- idrossibutandioico	Ka1 3,48.10 ⁻⁴
(malico)	Kaz 8.00-10 ⁻⁶
Acido iodico	0,17
Acido ipobromoso	2,3.10-9
Acido ipocloroso	3,0.10-8
Acido ipofosforoso	5,9.10-2
Acido ipoiodoso	2,3.10-11
Acido lattico 🔸	1,37.10-4
Acido malonico	K_{a1} 1,42 \cdot 10 ⁻³
*	$K_{a2} 2,01 \cdot 10^{-6}$

Acido mandelico	3,88-10-4
Acido nitroso	7,1.10-4
Acido ossalico	$K_{a1} 5,60 \cdot 10^{-2}$ $K_{a2} 5,42 \cdot 10^{-5}$
Acido ossobutandioico (ossalacetico)	$K_{a1} 2.8 \cdot 10^{-3}$ $K_{a2} 4.3 \cdot 10^{-5}$
Acido ossopropanoico (piruvico)	2,8.10-3
Acido piridin-2-carbossilico (picolinico)	$K_{a1} 9.8 \cdot 10^{-2}$ $K_{a2} 4.1 \cdot 10^{-6}$
Acido piridin-3-carbossilico (nicotinico)	$K_{41} 8,9 \cdot 10^{-3}$ $K_{42} 1,55 \cdot 10^{-5}$
Acido pirofosforico	$K_{a1} 0.16$ $K_{a2} 6 \cdot 10^{-3}$ $K_{a3} 2.0 \cdot 10^{-7}$ $K_{a4} 4.0 \cdot 10^{-10}$
Acido propanoico	1,34.10-5
Acido propenoico (acrilico)	5,52 · 10-5
Acido solfidrico	$K_{a1} 9,5 \cdot 10^{-5}$ $K_{a2} 1,3 \cdot 10^{-14}$
Acido solforico (seconda dissoc.)	1,02.10-2
Acido solforoso	$K_{a1} 1.23 \cdot 10^{-2}$ $K_{a2} 6.6 \cdot 10^{-8}$
Acido succinico (butandioico) 😽	$K_{a1} 6,21 \cdot 10^{-5}$ $K_{a2} 2,31 \cdot 10^{-6}$
Acido tiasolforico	K _{a1} 0,3 K _{a2} 3·10 ⁻²
and the second second second second second	0.22

Thus

The stronger the acid:

• the higher its Ka (H⁺ dissociation)

The stronger the base:

- the higher its Kb value (H+ association)
- the lower the Ka value (of the conjugated acid)
- the higher the efficiency to dissociate OH- (hydroxides only)

Ka or Kb values can be numbers *difficult to handle*, e.g. rather small (10^{-x}) whose, again, small variations induce big effects !

This is why it was introduced the notation **p**; $\mathbf{p} = \operatorname{colog} (-\log x = \log 1/x) \ base = 10$ of Ka or Kb

if [Ka] =
$$10^{-5}$$

pKa = 5
-log 10⁻⁵, log 1/10⁻⁵ = log 10⁵ = 5

The weaker the acid:

•The lower its Ka value &

•The higher its pKa value

Ka & pKa

Acids	Ka	pKa	
Trichloroethanoic acid	5.10 × 10 ⁻²	1.29	Stronger
Chloroethanoic acid	1.38×10^{-3}	2.86	Acid
Methanoic acid	1.77 x 10 ⁻⁴	3.75	
Ethanoic acid	1.78×10^{-5}	4.75	
Propanoic acid	1.26 × 10 ⁻⁵	4.90	
Carbonic acid	3.98 × 10-7	6.40	
Water	1.00 x 10 ⁻⁷	7.00	Weak
	Ka increas	es pKa Decrea	ses Acid
Si	trong Acid - High Veak Acid - Low K	Ka - Low pKa a - High pKa	

Remember relationship between Ka and α ?

What happens to α upon diluting a solution of a weak electrolyte ?!

What is the molecular reason for different acid/base strength?

Different H+ bond energy (covalent etheropolar) (electronegativity + inductive effects + charge distribution)

Strenght of hydro-chloro acids

Bond energy !

Poly-functional acids (*poly*-protic)

Electronegativity $\rightarrow f(E_i, A_e)$

Distribution of electronegativity

polyfunctional acids

$$H_2SO_4 \longrightarrow HSO_4^- + H^+ \qquad K_{a1} = \infty$$

 $HSO_4^- \longrightarrow SO_4^{2-} + H^+ \qquad K_{a2} = 10^{-2}$

 $[H^+] = 10^{-7} M$? The log $1/10^{-7} = \log 10^7 = 7$ pH = 7 (neutral pH!)

Ex.s:
$$[H^+] = 2,5119 \times 10^{-8} \rightarrow pH 7.6$$

 $[H^+] = 3,9810 \times 10^{-8} \rightarrow pH 7.4$
 $[H^+] = 5,0118 \times 10^{-8} \rightarrow pH 7.3$
 $[H^+] = 6,3095 \times 10^{-8} \rightarrow pH 7.2$
 $[H^+] = 3,1623 \times 10^{-7} \rightarrow pH 6.5$

[H⁺] to pH conversion

Biological fluids

 $[H^+] \times [OH^-] = cost = 10^{-14}$ pH + pOH = 14

pH = log 1/0.1 = 1.0

pH of a weak acid solution

 $AH \longrightarrow A^- + H^+$

 $Ka = \frac{[A^{-}] [H_{3}O^{+}]}{[AH]} = \frac{[H^{+}]^{2}}{[AH]}$

 $[H^+]^2 = Ka [AH]$

$$[H^+] = \sqrt{Ka \times Ca}$$

How many atoms are in the human body?

A 70 kg body would have approximately 7*10²⁷ atoms. That is, 7 followed by 27 zeros: 7,000,000,000,000,000,000,000,000,000

Of that, 4.7*10²⁷ would be hydrogen atoms, which have one proton and one electron each.

Another 1.8*1027 would be oxygen, which has 8 protons, 8 neutrons and 8 electrons.

There are 7.0*1026 carbon atoms, which have 6 protons, 6 neutrons and 6 electrons. Now, let's add that all up:

	Protons	Neutrons	Electrons
Hydrogen	4.7*10 ²⁷	0	4.7*10 ²⁷
Oxygen	1.4*10 ²⁸	1.4*10 ²⁸	1.4*10 ²⁸
Carbon	4.2*10 ²⁷	4.2*10 ²⁷	4.2*10 ²⁷
Total	2.3*10 ²⁸	1.8*10 ²⁸	2.3*10 ²⁸

Well, you'll have to agree that really is a whole bunch.

Acid-base conjugated couples

