Neurotroxic vs neuroprotective Glia functions

Neurotoxic Glia

Types of neurotoxicity

Microglia neurotoxic cytokine release
 ROS

Astrocytes astrogliosys, Glu uptake reduction
 Glu, tumorigenesis

Astrocytes

- Regulate neuronal migration during CNS development (radial glia)
- Regulate synaptogenesis and the maintenance of synapses
- Structural function through the creation of cellular domains
- Together with the endothelial cells they form the BBB
- Regulate cerebral microcirculation (functional hyperemia)

Homeostatic functions of astrocytes

- Homeostasis of electrolytes :
 - K+
 - CI-
 - Ca2+
 - H+
 - Glutamate homeostasis
 - Homeostasis volume

Astrocytes

Each astrocyte establishes its territory or domain

Glutamate homeostasis

Postsynaptic terminal

Glutamate-Glutamine Cycle

Glu=glutamate; Gln=glutamine; EAAT= Excitatory Amino Acid Transporter; SNAT= sodium-coupled neutral amino acid transporter; mGLUR=
metabotropic glutamate receptors; AMPA= α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA= N-methyl-D-aspartate
receptor; Kainate=kainate receptor; GS=glutamine synthetase; GA=glutaminase;

Excitatory Amino Acid Transporters

Extracellular Media

Glia-mediated neurotoxicity in SODdependent ALS

- Patients with ALS develop neuroinflammation (astro- and micro-gliosis)
- microglia^{mut} produces ROS (NADPH oxidase)
- astrocytes^{mut} express lower levels of GLT-1
- astrocytes^{mut} express high levels of chromogranin A, which induces release of SOD^{mut} which activates microglia

No motor neuron

degeneration

induced

No motor neuron

degeneration

induced

No motor neuron

degeneration

induced

Glial neurotoxicity in SCA7

polyQ expansion in the antaxin7 gene

Bergmann glia expresses less GLAST

Mutant ataxin-7 only in neurons (Pdgfb promoter)

b Mutant ataxin-7 in neurons and glia (but not in Purkinje cells: *Prnp* promoter)

C Mutant ataxin-7 in astrocytes (including Bergmann glia: Gfa2 promoter)

Glial neurotoxicity in PD

 The MPTP toxicity is due to its conversion to MPP+ by monoamine oxidase B. MPP+ is uptaken by neurons expressing specific transporters

Microglia determines neurotoxicity producing NO

Glial in Hungtinton Disease

 Indirect evidence of microglial involvement using minocycline

Mutated <u>protein Huntingtin</u> (HTT)
 accumulates in the nucleus of the astrocytic
 cells, reducing the expression of GLT-1

Cerebral ischemia

 GLOBAL: astrocytes are relatively resistant to ischemia and become activated

 FOCAL: in the "core" area the astrocytes also die, in the "penumbra" it happens more slowly and following the acidification of the LEC and formation of the ROS

Astrocytic role in Cerebral Ischemia

- propagate the "dead zone" from the core to the penumbra through Ca2 + waves and the "spreading depression" waves
- the latter are induced at a frequency (1 every 15 min) are induced by the high [K +] in the area around the core and are related to cell death in the ischemic zone

Three mechanisms: 1 lactic acidosis

 Astrocytes have important glycogen stores: lactic acidosis prevails during ischemia

 The lowering of the pH induces an activation of the Na + / H + exchanger and the Na + input leads to the Na + / Ca2 + transport inversion with Ca2 + overload in the astrocytes

Three mechanisms: 2 Glutamate release

- The increase of Ca2 + in astrocytes induces release of ATP and Glu. ATP stimulates P2Y and generates waves of Ca2 +, P2X and increases the release of Glu to which they are permeable (as well as Ca2 +) [ATP adenosine]
- Glu vesicular release
- The reduction of the value of Vm (-20mV) causes an inversion of the Glu transporters that pump it outside the cell
- Astrocytic swelling activates volume-activated channels (VRAC) that are permeable to anions
- Vesicular release of d-ser following Ca2 + increases induced by AMPAR activation

Three mechanisms: 3 modulation of gap junctions and hemanal

The gap junctions are closed (partially)

The emichals open (pass Glu, glutathione)

Neurotoxic action of glia in glioma

 Glioma cells express a Glu-cystine exchanger which increases the[Glu]_e

The infiltrating microglia produces TGF-β which promotes tumor growth

glioblastoma multiforme (WHO, IV grade)

- grows in a space confined by cranium
- does not disseminate through blood stream
- diffuse invasiveness into brain parenchyma

 migrate into the CNS along nerve fibers and blood vessels

glioma migration and ion channels

Ion channels involved in glioma migration

K⁺ channels (Ca²⁺ activated: BK, IK)

• Cl⁻ channels (voltage-activated: ClC2, ClC-3)

Ca²⁺-permeable AMPA receptors

Ion channels involved in glioma migration

Glioma glutamate release

Neuroprotective action of the glia

The good and bad of glial activation

The microglia "resting" is continuously in activity with its processes

MICROGLIA

Microglial branch movement in normal and injured brain.

microglia

ON and OFF signals control microglia

Microglia "activation"

Loss of tonic neuronal inhibition

Microglia phenotypes

Microglia phenotypes

ischemia

- Microgliosis reactive :
 - Local microglia activation

Expansion and migration of local microglia

 Infiltration from the bone marrow of precursors that differentiate into microglia

Healthy tissue Small local damage Large insult

Fagocitosi microgliale

- Rimozione di tessuto danneggiato o non funzionante
 - Importante nello sviluppo
 - In patologie acute del SNC
 - Nella SM

Damage pattern of the entorhinal cortex

- Axonal damageMicroglial migration (3 d)
- Dendritic degeneration (8 d)
- MHC I-dependent process

J Neuroscience (2004) 24:8500–8509

CXCR3-Dependent Microglial Recruitment Is Essential for Dendrite Loss after Brain Lesion

A Rappert, I Bechmann, T Pivneva, J Mahlo, K Biber, C Nolte, A D. Kovac, C Gerard, HWGM Boddeke, R Nitsch, and H Kettenmann

Receptors involved in µglia phagocytosis

Phagocytosis with inflammation

Phagocytosis without inflammation

Microglia

Multiple sclerosis

- Phagocytic cells in the perivascular zones of active inflammatory lesion
- Microglia phagocyte actively detritus of myelin
- EAE improved by the addition of TREM2 + cells (triggering receptor expressed on myeloid cells)

Multiple sclerosis

Α White matter pathology (e.g. multiple sclerosis) Inhibitory activity of myelin debris Inhibition of oligodendrocyte Inhibition of axonal regeneration precursor cell differentiation Myelin debris Axonal injury Demyelination Oligodendrocyte Neuron precursor cell В Extracellular plaque (e.g. Alzheimer disease) Neurotoxic activity of amyloid plaques Synaptic damage Activated microglia producing neurotoxic mediators by amyloid-B Plaque Synaptic Neuron damage Myelin Axonal Microglia

injury

Microglia in Alzheimer's disease

- Proliferation and activation of microglia in the brain, concentrated around amyloid plaques, is a prominent feature of Alzheimer's disease (AD).
- Human genetics data point to a key role for microglia in the pathogenesis of AD. The majority of risk genes for AD are highly expressed (and many are selectively expressed) by microglia in the brain.
- There is mounting evidence that microglia protect against the incidence of AD, as impaired microglial activities and altered microglial responses to β-amyloid are associated with increased AD risk.
- On the other hand, there is also abundant evidence that activated microglia can be harmful to neurons. Microglia can mediate synapse loss by engulfment of synapses, likely via a complement-dependent mechanism; they can also exacerbate tau pathology and secrete inflammatory factors that can injure neurons directly or via activation of neurotoxic astrocytes.
- Gene expression profiles indicate multiple states of microglial activation in neurodegenerative disease settings, which might explain the disparate roles of microglia in the development and progression of AD pathology.

Microglia in Alzheimer's disease

Microglia in Alzheimer's disease

Microglia in Brain Tumors

- Glioblastoma is the most common and most malignant primary adult human brain tumour.
- Treatment resistance and tumour recurrence are the result of both cancer cell proliferation and their interaction with the tumour microenvironment.
- A large proportion of the tumour microenvironment consists of an inflammatory infiltrate predominated by microglia and macrophages, which are thought to be subverted by glioblastoma cells for tumour growth.
- Thus, glioblastoma-associated microglia and macrophages are logical therapeutic targets..

Microglia in Brain Tumors

