Due: June 10, 2019.

The purpose of this exercise is that of performing a simple Molecular Dynamics (MD) simulation.

Model. Consider a system of monoatomic molecules interacting via a potential

$$U(r) = V(r) - V(r_c) - (r - r_c)V'(r_c)$$
 for $r < r_c$

and U(r) = 0 for $r > r_c$, where

$$V(r) = \frac{A\sigma^2 e^{-r/\sigma}}{r^2} + Be^{-2r/\sigma},$$

B/A = 0.5. Fix $r_c = L/2$ in all cases. Consider N = 70 molecules in a cubic box of linear size L/σ and fix L/σ so that the density is $\rho\sigma^3 = 0.7$. Use reduced units. Length, $r^* = r/\sigma$; energy, $E^* = E/A$; time, $t^* = t/\sigma\sqrt{A/m}$; velocities, $v^* = v\sqrt{m/A}$; pressure, $p^* = p\sigma^3/A$; temperature $T^* = k_B T/A$.

Starting configuration. Generate a starting configuration such that: a) the molecules are randomly distributed in the box; b) the velocities are random, such that $\sum \mathbf{v}^* = 0$ and the kinetic energy per particle is equal to $K^*/N = K/(AN) = 1.0$. Perform a MD run using the velocity Verlet updating scheme with time step $\Delta t^* = 0.002$, stopping at $t^* = 1$. At the end rescale the velocities so that $K^*/N = K/(AN) = 1.0$ and save this final configuration on disk.

Perform MD runs using the velocity Verlet updating scheme. Start all runs from the **same** starting configuration (the one computed in the previous step). Use $\Delta t^* = 0.002$ (run 1), 0.006 (run 2), 0.018 (run 3), 0.054 (run 4), 0.162 (run 5), stopping the simulation at $t^* = 30$ in all cases. After each updating step measure the potential energy U(t), the instantaneous pressure P(t), the total energy E(t) = U + K, and the instantaneous temperature T(t) = 2K(t)/(3N). Indicate with $U^{(1)}(t)$ the potential energy computed in run 1 at time t, with $U^{(2)}(t)$ that computed in run 2, and so on. Use the same notation for all observables.

a) Identify the runs that give *stable* results. Do the following analysis only for the stable runs.

b) [Trajectory divergence.] Plot $E^{(i)}(t) - E^{(1)}(t)$, i = 2, 3, ..., as a function of time (be careful to select the same time for the different runs). Do the same plots for the pressure and the instantaneous temperature.

c) [Energy conservation.] From the plots of $E^{(k)}(t)$, k = 1, ... verify that the energy is approximately constant.

d) [Thermalization.] Plot $P^{(k)}(t)$ and $T^{(k)}$ versus time and estimate the time t_{eq}^* at which equilibrium is reached.

e) [Errors and correlations.] Estimate average potential energy, pressure, and temperature, averaging the data for $t > t_{eq}^*$. Estimate the autocorrelation times, expressed in physical units (not in time steps!), and the corresponding errors on the observables.