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Kinematic analysis of over-determinate biomechanical systems

M.S. Andersena*, M. Damsgaardb and J. Rasmussena

aDepartment of Mechanical Engineering, Aalborg University, Aalborg, Denmark; bAnyBody Technology A/S, Aalborg, Denmark

(Received 9 November 2007; final version received 5 September 2008 )

In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic
constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the
over-determinate case. This is accomplished by introducing a constrained optimisation problem with the objective function
given as a function of the set of system equations that are allowed to be violated while the remaining equations define the
feasible set.

We show that exact velocity and acceleration analysis can also be performed by solving linear sets of equations,
originating from differentiation of the Karush–Kuhn–Tucker optimality conditions.

The method is applied to the analysis of an 18 degrees-of-freedom gait model where the kinematical drivers are prescribed
with data from a motion capture experiment.

The results show that significant differences are obtained between applying standard kinematic analysis or minimising the
least-square errors on the two fully equivalent 3D gait models with only the way the experimental data is processed being
different.

Keywords: kinematic analysis; over-determinate; motion capture

1. Introduction

Computer simulation models of the human musculoske-

letal system hold the potential of revolutionising the

design of equipment with a human interface, such as

chairs, car seats, workspaces, etc., for diagnosing a wide

range of musculoskeletal dysfunctions and to prescribe

surgical or rehabilitative treatments in the health care

industry.

Biomechanical modelling in general covers a large

variety of mechanical modelling disciplines and hereunder

numerical methods for dealing with the mathematical

models arising. The narrower field of musculoskeletal

modelling deals with modelling of the skeletal bones and

the connecting tissue, both passive and active, i.e. ligaments

and muscles. Typically, such models in the literature today

are rigid-body dynamics models (also referred to as

multibody dynamics models). Naturally, this implies a

number of assumptions and simplifications in order to

represent a musculoskeletal system such as the human body

as a multibody dynamics model. We shall not go into

details about these assumptions and simplifications, but the

method presented in this paper is aimed at producing

kinematical data for such musculoskeletal multibody

models based on experimentally recorded movements.

Two approaches can be taken when performing

simulations of the human musculoskeletal system, namely

forward dynamics (Anderson and Pandy 1999, 2001) and

inverse dynamics (Crowninshield 1978; Crowninshield

and Brand 1981; Dul et al. 1984a, 1984b; Rasmussen et al.

2001; Erdemir et al. 2007). In inverse dynamics, the

motion of each rigid segment (we use the term ‘segment’

instead of ‘rigid body’ to avoid confusion with the ‘human

body’) in the model is prescribed together with the

boundary conditions and the internal forces, i.e. the joint

reaction and muscle forces, are calculated. This is usually

accomplished by treating kinematic and kinetic analysis

separately. Kinematic analysis is performed to obtain

both the linear and rotational accelerations of each model

segment. The calculated accelerations together with the

boundary conditions can subsequently be used to form the

equations of motion only having unknown muscle and

reaction forces (Rasmussen et al. 2001). From this, the

required muscle and reaction forces to balance the external

loads are calculated by solving the so-called muscle

recruitment problem (Crowninshield 1978; Crowninshield

and Brand 1981; Dul et al. 1984a, 1984b; Rasmussen et al.

2001; Erdemir et al. 2007).

Despite the rapid development of musculoskeletal

simulation techniques, the control of the model movement

remains a difficult task. Since the movement is input to an

inverse dynamic simulation, accurate motion information

is important to obtain good analysis results. Especially, the

accelerations are important since they appear directly in

the equilibrium equations.
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The method we present in this paper is particularly

aimed at providing the kinematical data needed for inverse

dynamics analysis. Indeed, the method we present is for

performing kinematical analysis of a multibody model

with prescribed motion input, where the motion input can

come from a measurement. The prevailing technology for

providing such motion input for human motion is motion

capture technology, which typically determines trajec-

tories of markers (points) attached to the real system. This

is for instance done by tracking small reflective balls by

means of multiple synchronised video cameras and

reconstructing the motion of the points from the images.

We shall use such marker trajectory data as input, but the

method can handle more general data formats as well.

The main complications associated with creating the

link between measured marker trajectories and the

multibody model are as follows:

(1) Noise. As with all measurements, marker position

recording is susceptible to noise and deviations. The

main source of noise in marker-based motion capture

is soft tissue artefacts (STA), a phenomenon caused

by the fact that markers tend to slide with the skin

relative to the bones. Clinical assessment of the

nature of STA has been subject to a lot of research in

recent years (Cappozzo et al. 1996; Manal et al. 2000;

Tayler et al. 2005; Stagni et al. 2005; Benoit et al.

2006).

(2) Kinematic over-determinacy. Each motion-captured

segment typically has a minimum of three markers

attached. This creates nine measured degrees of

freedom (DOF), while a segment only has six

independent DOF. Joint constraints further increase

the over-determinacy.

(3) Kinematic under-determinacy. Although some parts

of the measured human are kinematically over-

determinate, the positions of others may be left under-

determinate by the motion capture data. This

primarily happens when the model contains ‘internal’

bones whose motion is not observable from the

motion capture markers such as the shoulder blades.

(4) Missing marker visibility. A common problem with

video-based motion capture is that markers can be

occluded for periods of time during the experiment.

This primarily happens when a body part or an

obstacle is blocking a marker from being recorded by

enough video cameras to reconstruct the 3D marker

position from the 2D camera images.

The state-of-the-art motion reconstruction methods

from markers mounted on the skin (called skin markers)

split into two groups: (1) a group of methods that consider

each body segment individually (Veldpaus et al. 1988;

Söderkvist and Wedin 1993; Cheze et al. 1995; Cappozzo

et al. 1997). For this to be possible, these methods require

that at least three or more markers are placed on each

motion-captured segment; (2) a group of methods that

assume an underlying model and use an optimisation

algorithm or some sort of Kalman filter to find the motion

of the model (Jung and Wohn 1997; Lu and O’Connor

1999; Cerveri et al. 2003, 2005; Zakotnok et al., 2004;

Wang et al. 2005; Ausejo et al. 2006).

The inclusion of kinematical models has been shown

to reduce STA significantly but also restricts the recovered

motion to the assumed DOF of the model (Lu and

O’Connor 1999, Cerveri et al. 2005). Except the recently

developed methods described by Wang et al. (2005) and

Ausejo et al. (2006), which were designed to handle

models described using natural coordinates (Garcia de

Jalon et al. 1986), the methods in the second group are all

based on formulating a model using a minimal set of

generalised coordinates. All these methods are designed

for position analysis only and do not provide a

computational framework to obtain velocities and accel-

erations except by simple finite differences. Such

approximations introduce an unavoidable discrepancy

between calculated positions, velocities and accelerations

even in the cases where the system equations are

analytically known.

The reason why standard kinematical analysis methods

for kinematically determinate systems, such as described

in Nikravesh (1988) and reviewed in Section 2 for

completeness, cannot be applied is that the kinematical

constraints together with the measured marker trajectories

result in an over-determinate set of equations. When the

kinematical constraint equations are over-determinate

(due to the number of measured points on the mechanism)

and a non-minimal set of coordinates is desired, no general

kinematical analysis method for performing position,

velocity and acceleration analysis currently exists, and this

is what the present work addresses.

The general formulation given in the following enables

analysis of any determinate or over-determinate system

subject to holonomic constraints formulated in any

suitable choice of coordinates, whether it is a minimal or

non-minimal set. Notice also that the position analysis

given here reduces to those of Lu and O’Connor (1999)

and Ausejo et al. (2006) when generalised coordinates and

natural coordinates are used together with a least-square

objective function, respectively. Holonomic constraints

include the typical joint constraints such as spherical

joints, revolute joints, etc. but in general they are simply

nonlinear functions of the system coordinates and time.

2. Motivation and terminology

The first step in inverse dynamics is always to perform

kinematic analysis to find the positions, velocities and

accelerations of the time-dependent system coordinates,

q(t) [ Q (defined on some appropriate manifold), i.e.

given some system description, we wish to find q(t), _qðtÞ,

M.S. Andersen et al.372

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
a
l
b
o
r
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
0
:
5
0
 
3
 
A
u
g
u
s
t
 
2
0
0
9



and €qðtÞ. We shall define the dimension of q(t) as n. In the

rest of the paper, we shall only write q and leave it

understood that it is a time-dependent variable.

For systems subject to holonomic constraints, position

analysis can be formulated as solving a set of m equations

(Nikravesh 1988):

G ; Gðq; tÞ ¼ 0: ð1Þ

These independent constraint equations are usually

composed of constraints describing joints between

segments and constraints that describe the motion (also

known as kinematical drivers). We shall assume that these

equations are sufficiently differentiable. Explicit depen-

dency of time, t, is only the case for kinematical drivers

whereas constraints that simply connect two or more

segments, such as joint constraints, are only functions of q.

Whereas, kinematical driver functions can have any

dependence of q and t, they typically have the following

form (Nikravesh 1988):

PðqÞ2VðtÞ ¼ 0; ð2Þ

where P(q) is a function of the system coordinates only

and V(t) is a vector function that only depends on time.

This type of constraint equation has the property that it will

force the P(q) function to attain the value prescribed by

the function V(t).

If there are as many constraint equations, m, as

unknowns, n, Equation (1) can be solved numerically

using, e.g. the Newton–Raphson method (Nikravesh

1988). Additionally, the velocity and acceleration

equations can be derived using the chain rule on Equation

(1), resulting in linear sets of equations. This linear set of

equations for velocity analysis is (Nikravesh 1988):

Gq _qþ Gt ¼ 0; ð3Þ

where the subscript q denotes the partial derivative with

respect to q and the subscript t denotes the partial

derivative with respect to time.

Differentiation of the velocity equations one more time

gives the acceleration equations (Nikravesh 1988):

Gq €qþ ðGq _qÞq _qþ 2Gqt _qþ Gtt ¼ 0: ð4Þ

As with the velocity analysis, if the positions and

velocities are known, these are linear equations in the

unknown accelerations. This method for kinematical

analysis has been extensively used in many flavours in

multi body dynamics, and here we shall refer to it as the

standard method for kinematic analysis of kinematically

determinate systems.

2.1 Motivation example – slider–crank mechanism

To motivate the idea behind the present work, we shall

start with a simple 2D example, where the standard

analysis method as described above cannot be applied

directly. We shall look at a slider–crank mechanism as

illustrated in Figure 1. The mechanism is composed of

three rigid segments, connected by three revolute joints

and one translational joint. This creates a mechanism with

only one DOF. We assume that measurements of the

motion of two points in the mechanism are available,

i.e. trajectories of the points

s1 ¼ ð s1x s1y ÞT;

and

s2 ¼ ð s1x s1y ÞT;

in global coordinates, which we shall denote

ms1
¼ ðms1x

ms1y ÞT;

and

ms2
¼ ðms2x

ms2y ÞT:

To model the system, we shall use a non-minimal set of

coordinates:

q ¼

q0

q1

q2

0
BB@

1
CCA ¼

u1

u2

x

0
BB@

1
CCA: ð5Þ

The system equations can then be derived as follows:

G ¼

l1 cos ðq0Þ þ l2 cos ðq1Þ2 q2

l1 sin ðq0Þ2 l2 sin ðq1Þ

f ðq; tÞ

0
BB@

1
CCA ¼ 0; ð6Þ

Figure 1. The slider-crank mechanism. u1, u2 and x specify the
system coordinates, and l1 and l2 denote the length of the crank
and coupler, respectively. s1 and s2 denote the local coordinates of
two measured points.
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where f(q, t) specifies the kinematical driver function. The

question is now how this function should be specified. We

know that there are four measurements available (two for

each point in the model) but only one model DOF. This

means that only one driver equation can be specified in

order to apply Equations (1), (3) and (4) for position,

velocity and acceleration analysis. Additionally, since only

one measurement equation can be used, this choice may

result in singularities in the formulation. Suppose the

following driver function is chosen:

f ðq; tÞ ¼ s1x cosðq0Þ2 ms1x
ðtÞ: ð7Þ

Such a choice has several undesired implications: (1) three

measured coordinates have been omitted, i.e. measurement

data are being neglected. (2) Even if this loss of data is

accepted, we have no guarantee that the best data were

selected, implying that accuracy may have been sacrificed.

(3) Worst of all, a singularity has been introduced when u1

is close to zero (i.e. the Jacobian matrix of Equation (6)

will be close to singular). With the specified driver

equation, which drives the mechanism along the x-axis, it

is impossible to determine whether the mechanism reached

this configuration during a clockwise or counter-clockwise

rotation and it is therefore also impossible to determine

how the motion will continue from here on. If more than

one driver equation is provided, the system is over-

determinate, and noise in the measured trajectories of the

two points may cause the equations to not have a solution.

3. Kinematic analysis – an optimisation-based

approach

In the following, we shall provide a framework for

performing position, velocity and acceleration analysis of

any over-determinate mechanical system subject to

holonomic constraints.

The idea behind the method is to allow all system

equations to be specified in Equation (1), which generally

may result in an over-determinate system, i.e. m $ n, as

illustrated by the slider–crank example, where m ¼ 6 and

n ¼ 3, if all four marker driver equations are included. The

solution to the problem is then obtained by re-formulating

the equations into a constrained optimisation problem.

To accommodate this over-determinacy, we shall

presume that it is possible to split Equation (1) into two

sets:

Gðq; tÞ ¼
Cðq; tÞ

Fðq; tÞ

 !
; ð8Þ

where C ; C(q, t) is a set of equations that only has to be

solved ‘as well as possible’ in some sense and the

remaining F ; F(q, t) equations have to be fulfilled

exactly. We shall define the dimension of C and F as nC
and nF, respectively. For instance when driving a

musculoskeletal model from motion capture data, an

obvious choice of these sets would be that the

experimental data belongs to C and joint constraints and

additional driver equations to F. Other choices are of

course also valid as long as the solution set of F(q, t) ¼ 0

is non-empty. This idea can be cast as the following

constrained optimisation problem:

min
q

GðCðq; tÞÞ

s·t Fðq; tÞ ¼ 0;
ð9Þ

where we have introduced the scalar objective function

G ; G(C(q, t)) as a function of the constraint equations

that are allowed to be violated. This is necessary since we

are faced with a multi objective optimisation problem.

This optimisation problem is in general nonlinear and

non-convex, which implies that for large-scale systems,

such as a full human body model, only local minimisation

is feasible. However, with a proper starting guess on q, it

is possible to iterate towards the desired solution. Notice

that this optimisation problem reduces to the global

optimisation with joint constraints method of Lu and

O’Connor (1999) when the system is specified using

generalised coordinates and the kinematic constraints are

given in C(q, t).

The question is now how this objective function could

be chosen. One objective function that has previously been

used is a weighted least-square with a time-varying weight

matrix:

GðCðq; tÞÞ ¼
1

2
Cðq; tÞTWðtÞCðq; tÞ; ð10Þ

where W(t) is a differentiable, time-dependent weight

matrix. Ausejo et al. (2006) used a diagonal time-varying

weight matrix while Lu and O’Connor (1999) used a

constant diagonal weight matrix. The time-dependency in

the weight matrix can be used to vary the weights on the

measurements differently along the motion, e.g. when a

measurement cannot be trusted within a period of the

motion, its weight can be reduced, or if a measurement is

invalid for a period of time, it can be assigned weight zero.

However, in order to derive equations for velocity and

acceleration analysis, we have to require that the objective

function is differentiable sufficiently many times, imply-

ing that the weight matrix must be designed with care.

For the rest of this section, we shall not presume any

specific form of the objective function G when the velocity

and acceleration equations are derived.

When the optimisation problem in Equation (9) has

been solved, the system coordinates, q, will be known for

the discrete time steps where the optimisation problem is

solved. However, velocities and accelerations still remain

M.S. Andersen et al.374
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to be found. Although an approximation of the velocities

and accelerations could be found by finite differences, it is

indeed possible to derive exact equations for these as we

shall show in the following.

From local optimisation theory, it is known that the

Karush–Kuhn–Tucker (KKT) conditions are the necess-

ary conditions for optimality (Boyd and Vandenberghe

2004):

GT
q þFT

ql ¼ 0

F ¼ 0;
ð11Þ

where l is a vector of so-called Lagrange multipliers. It is

important to remember that this equation will hold for any

time step in which the optimisation problem is solved.

As all involved functions are assumed to be

differentiable, the velocity equations can be derived by

differentiation of Equation (11) with respect to time using

the chain rule and re-writing to matrix form:

GT
qq þ FT

ql
� �

q
FT

q

Fq 0

0
B@

1
CA _q

_l

 !
¼

2GT
qt 2FT

qtl

2Ft

 !
:

ð12Þ

Similarly, the acceleration equations can be derived by

differentiation once again with respect to time:

GT
qq þ FT

ql
� �

q
FT

q

Fq 0

0
B@

1
CA €q

€l

 !
¼

g1

g2

 !
; ð13Þ

where:

g1 ¼ 22 FT
q
_l

� �
q
_q2 2FT

qt
_l2 GT

qq _q
� �

q
_q2 2GT

qqt _q2 GT
qtt

2 2 FT
qtl

� �
q
_q2FT

qttl2 FT
ql

� �
q
_q

� �
q

_q;

g2 ¼ 2 Fq _q
� �

q
_q2 2Fqt _q2Ftt: ð14Þ

Hereby, the required equations are obtained. These

equations are valid for any differentiable objective

function. One should notice that the main difference in

these equations compared to the equations for analysis of

determinate systems is that the triple partial derivatives are

now required.

In the following, we shall take a closer look at the case

with a diagonally weighted least-squares objective

function.

4. Elements for a general implementation

A general implementation of the method presented in the

previous section requires derivation of the specific terms in

the equations for any choice of objective function. Here,

we restrict the treatise to a least-square objective function

with a constant diagonal weight matrix. As shall be clear,

by knowledge about the C and F functions and a

particular set of their partial derivatives, it is possible

construct the terms involving the subject-to constraints

and the objective function.

By inspection of Equations (11)–(14), the required

functions and partial derivatives can be found. In Table 1,

the necessary function information is specified, where we

have used the function name L to indicate that this

information must be available for both the C and F

functions. Notice in the table that some of the derivatives

result in tensor structures. For instance, Lqqq means a

structure containing the triple partial derivatives with

respect to q of the vector function L.

First, we shall take a closer look at the required terms

originating from the subject-to constraints. We shall use

the notation [A ]ij to denote the ijth element of the matrix A.

Additionally, by the notation Fkqi
, we specify the partial

derivative of Fk with respect to the ith coordinate, qi:

FT
ql

� �
q

� �
ij

¼
XnF
k¼1

Fkqiqj
lk

FT
q
_l

� �
q

� �
ij

¼
XnF
k¼1

Fkqiqj
_lk

Fq _q
� �

q

h i
hj
¼
XnF
k¼1

Fhqkqj
_qk

FT
ql

� �
q
_q

� �
q

" #
ij

¼
Xn
l¼1

XnF
k¼1

Fkqiqlqj
lk _ql

FT
qtl

� �
q

� �
ij

¼
XnF
k¼1

Fkqiqj t
lk;

ð15Þ

for i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , n and h ¼ 1, 2, . . . , nF.

From these equations, it should be clear that all the

terms only involve sums of products between the different

partial derivatives of the constraint equations and either

the Lagrange multipliers or the system coordinates

(or derivatives hereof). This enables all the expressions

to be calculated by a simple loop over all the non-zero

elements of the different tensors in Table 1.

Similar expressions can also be derived for the terms

originating from the objective function. Here, we shall

only show this in the case of a least-square objective

function with a constant diagonal weight matrix,

Table 1. List of required functions and derivatives where L
denote both C and F.

L Lq Lqq

Lqqq Lt Ltt

Lqt Lqtt Lqqt
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D ¼ diag ðW1;W2; . . . ;WnFÞ. Additionally, we shall use

the following index notation Di ¼ Wi:

G ¼
1

2
CTDC;

GT
q ¼ CT

qDC;

GT
qt ¼ CT

qtDCþCT
qDCt;

GT
qtt ¼ CT

qttDCþCT
qDCt þCT

qtDCt þCT
qDCtt;

GT
qq _q

� �
q

� �
ij

¼
Xn
l¼1

XnC
k¼1

Ckqiqlqj
DkCk þCkqiql

DkCkqj

�

þCkqiqj
DkCkql

þCkqi
DkCkqlqj

�
_ql;

GT
qq

h i
ij
¼
XnC
k¼1

Ckqiqj
DkCk þCkqi

DkCkqj

� �
;

GT
qqt

h i
ij
¼
XnC
k¼1

Ckqiqj t
DkCk þCkqiqj

DkCkt

�

þCkqi t
DkCkqj

þCkqi
DkCkqj t

�
; ð16Þ

for i ¼ 1, 2, . . . , n and j ¼ 1, 2, . . . , n. In this case, all terms

involve products between the constraint functions C,

various partial derivatives of these, and the diagonal weight

matrix. This means that special attention must be paid to

how the data is stored such that the sparsity of the various

terms can be utilised, while still allowing fast indexing.

Hereby, all the required information is established, and

the analysis can be performed. Similarly to the analysis of

kinematically determinate systems, for each time step,

position analysis has to be performed first, then velocity

analysis and finally acceleration analysis using Equations

(9), (12) and (13), respectively. The optimisation problem

in (9) can be solved by any standard algorithm for

nonlinear programming with equality constraints. We

apply a standard Newton algorithm (Boyd and Vanden-

berghe 2004) to find a local minimiser from a given

starting guess. For each timestep, we use the previous

solution as the starting guess. The linear equations for

velocity and acceleration analysis are solved by LU

factorising the matrix on the left hand side and forward

backward substituting the vector on the right hand side.

Notice that it is the same matrix that appears on the left

hand side of the velocity and acceleration equations, so it

is only necessary to LU factorise it once per time step.

5. Example and results

The core problem associated with driving a kinematical

model with measured marker trajectories is that it will lead

to an over-determinate system of equations with no

solution. Therefore, some compromise has to be made on

the equations. However, it is not immediately clear whether

the better compromise is to combine a number of the

equations in an objective function as done in Equation (9)

and effectively end up not satisfying any of these

equations, or if it is better, or if it even makes a difference,

to exclude just enough equations from consideration, such

that all equations can be satisfied as done in Equation (1).

In order to analyse this, both methods have been

applied to an 18 DOF lower extremity gait model

comprised of seven segments: pelvis, left thigh, left shank,

left foot, right thigh, right shank, and right foot. The hip

joints are modelled as spherical joints, the knees as

revolute joints and the ankles as universal joints as

outlined in Table 2.

The kinematical drivers are taken from a motion

capture experiment. This is accomplished by treating the

differences between the measured marker trajectories and

the segment-fixed markers as kinematical driver con-

straints. We use the ‘Man’ marker set from Vaughan et al.

(1992), where the markers have been placed on bony

landmarks in accordance with the Vaughan marker set

definition (Vaughan et al. 1992). The placement of

the markers and the corresponding labels are shown in

Figure 2. The Vaughan marker set also specifies markers

on the left and right trochanter major, but these have been

excluded in this model. This is because the best

combination of kinematical drivers in the standard

kinematic analysis approach we could come up with did

not include the trochanter major markers and these were

therefore also left out in the optimisation-based approach

in the interest of a fair comparison. As the objective

function, we use a weighted least-square with the matrix

equal to the identity matrix for all times (Equation (16)).

For comparison, standard kinematic analysis is also

applied to the gait model by using Equations (1), (3) and

(4). In order to do this, some of the measured marker

coordinates are excluded from consideration as discussed

earlier. The included coordinates are listed in Table 3.

The two gait models are illustrated in Figure 3.

5.1 Gait model using a full set of Cartesian coordinates

Both models are formulated using a full Cartesian

formulation: the coordinate vector q is composed of the

translational and rotational coordinates for each segment,

q ¼ ð q1 q2 . . . q7 ÞT;

Table 2. Definition of joints.

Joint Type

Left hip Spherical joint
Left knee Revolute joint
Left ankle Universal joint
Right hip Spherical joint
Right knee Revolute joint
Right ankle Universal joint

M.S. Andersen et al.376
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where

qi ¼ ð ri pi ÞT;

with

ri ¼ ð xi yi zi ÞT;

being the global position and

pi ¼ ð e0i e1i e2i e3i ÞT;

the Euler parameters for the segments. Additionally, we

shall use the notation

AðpiÞ ¼ ð a1i a2i a3i Þ;

to denote the rotation matrix associated with the Euler

parameters pi, where a1i , a2i and a3i denote the first, second

and third column of the matrix, respectively. The joint

constraints are created in the standard manner as outlined

below.

Let s 0i and s 0j denote the local coordinates of the joint in

the ith and jth segments’ coordinate systems, respectively.

The constraints used as subject-to constraints are as

follows. These are also used in the gait model solved using

standard kinematic analysis.

The spherical joint constraints can be written as:

ri þ AðpiÞs
0
i 2 ðrj þ AðpjÞs

0
jÞ ¼ 0: ð17Þ

For the revolute joints, when the rotation axis is around the

z-axis in both coordinate systems, the equations can be

written as:

ri þ AðpiÞs
0
i 2 ðrj þ AðpjÞs

0
jÞ ¼ 0;

aT3i a1j ¼ 0;

aT3i a2j ¼ 0:

ð18Þ

For the universal joints, where the rotation axes are the

z-axis and y-axis in the jth coordinate system, the equations

Figure 2. Illustration of the marker placement and their labels.
Notice that the postfix ‘L’ and ‘R’ means left and right, respectively.

Figure 3. Illustration of the two gait models. Blue trajectories
show the motion of the points in the model and the red
trajectories are measured by motion capture. (a) Shows the result
using standard kinematic analysis, where some of the measured
marker coordinates are neglected. (b) Shows the result with the
optimisation-based approach.

Table 3. Definition of kinematical drivers for the gait model
using standard kinematic analysis.

Marker Driver

SACRUM y
ASISL x
ASISR x
KNEEL x
KNEER x
MALLEOLUSL y
MALLEOLUSR y
METATARSALL x and z
METATARSALR x and z
HEELL x, y and z
HEELR x, y and z

ASISL, ASISR and SACRUM
z coordinates combined in a

sum

The directions refer to which coordinates in the calculation of the differences in the
segment-fixed markers and the measured marker trajectories, calculated in segment-
fixed coordinate system, that are used as kinematical drivers (see Equation (22)).
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can be written as:

ri þ AðpiÞs
0
i 2 ðrj þ AðpjÞs

0
jÞ ¼ 0;

aT3i a2j ¼ 0:
ð19Þ

The constraint on the Euler parameters:

pTi pi 2 1 ¼ 0: ð20Þ

The constraint equations, C, used in the objective function

are all based on the difference between the segment-fixed

marker positions in the model and the measured marker

trajectories in global coordinates. Let s
0

imj
denote the local

coordinates of the jth marker on the ith segment and let zimj
denote the corresponding measurement of the marker:

ri þ AðpiÞs
0

imj
2 zimj ¼ 0: ð21Þ

In the model using standard kinematic analysis, the errors

between segment-fixed markers and the measured marker

trajectories are calculated in local coordinates:

AðpiÞ
Tðri 2 zimj Þ þ s

0

imj
¼ 0: ð22Þ

Since not all the measured differences can be fulfilled in

standard kinematic analysis, only the directions specified

in Table 3 are included. It should be noted that this choice

of driver directions is not a random choice, but indeed an

attempt to do as well as possible with the limited number

of driver equations. It has taken many manual trials and

errors to find a solution as good as the one in Figure 3(b).

Indeed, the differences between the measured points and

the points in model could have been calculated in global

coordinates, but local coordinates, as in Equation (22),

made it much easier to select a constant usable driver set.

The specific definition of the local joint and local

marker coordinates are given in Table 4 and Table 5. As we

saw earlier, the derivative of the marker trajectories with

respect to time is required to perform velocity and

acceleration analysis. These are obtained by interpolating

the sampled points with a 4th order B-spline and the

derivatives found as the first and second derivative of the

B-spline evaluated in the sampled points.

The computed trajectories of the segment-fixed

markers and the measured marker trajectories are shown

together with the gait models in Figure 3. Additionally, a

close-up of the trajectories of the markers on pelvis can be

seen in Figure 4. As is already visually clear from these

pictures, the two analysis results are not the same, and

particularly the results for the pelvis segment appear to be

substantially different. Moreover, it appears that the

optimisation-based approach is following the measured

trajectories closer than the standard kinematic analysis

approach.

A comparison between the calculated linear and

angular accelerations for all the segments for the two

methods is shown in Figure 5. The graphs are calculated

by taking the magnitude (i.e. two-norm) of the vector

differences between the results for the two methods.

As seen in this figure, particularly around the start of the

motion and around 0.9 s, the two methods produce

significantly different results with a maximum difference

of 7.8 m s22 (left thigh) and 60.1 rad s22 (the left foot).

An interesting observation is that the differences in the

estimations are largest during the beginning of both swing

phases of the gait cycle where the accelerations are

largest.

Table 4. Definition of local joint coordinates.

Segment Name Coordinates (m)

Pelvis Left hip (0.0328, 20.1094, 20.0875)
Pelvis Right hip (0.0328, 20.1094, 0.0875)
Left thigh Left hip (0, 0.1909, 0.03682)
Left thigh Left knee (20.0242, 20.2500, 0.02713)
Left shank Left knee (0, 0.1918, 0)
Left shank Left ankle (0, 20.2511, 0)
Left foot Left ankle (0.0648, 0.0648, 0)
Right thigh Right hip (0, 0.1909, 20.03682)
Right thigh Right knee (20.0242, 20.2500, 20.02713)
Right shank Right knee (0, 0.1918, 0)
Right shank Right ankle (0, 20.2511, 0)
Right foot Right ankle (0.0648, 0.0648, 0)

Table 5. Definition of local marker coordinates.

Segment Name Coordinates (m)

Pelvis SACRUM (20.045, 0.0, 0.0)
Pelvis ASISR (0.1245, 20.0991, 0.1307)
Pelvis ASISL (0.1430, 20.1055, 20.1144)
Left thigh KNEEL (20.0110, 20.2499, 20.0140)
Left shank MALLEOLUSL (20.0036, 20.2578, 20.0556)
Left foot METATARSALL (0.0126, 20.0502, 20.0580)
Left foot HEELL (0.0248, 0.1292, 0.0)
Right thigh KNEER (20.0189, 20.2591, 0.0166)
Right shank MALLEOLUSR (0.0020, 20.2615, 0.0462)
Right foot METATARSALR (0.01265, 20.0502, 0.0527)
Right foot HEELR (0.0248, 0.1292, 0.0)
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In order to investigate these differences, we focus on the

results for the pelvis segment and a direct comparison

between the two analysis results can be seen in Figures 6–8,

which show the results for the translational coordinate, the

linear and angular velocities, and the linear and angular

accelerations, respectively. In these figures, particularly the

large differences in the calculated velocities and accelera-

tions should be noticed. As seen in the figures,

differentiation of the data amplifies the differences between

the two analysis results. Considering how large differences

there are in the calculated velocities and accelerations, one

might ask which of the two results are best to use as input to

inverse dynamics. One observation is that the calculated

velocities and accelerations are indeed smaller using the

optimisation-based approach, but which of the two results

are more correct cannot be answered from these

calculations.

To give a more concrete measure of how well the

methods are at not only estimating the measured

trajectories but also the derivatives of these, the magnitude

(i.e. two-norm) of the differences between the positions,

velocities and accelerations of all the measured trajectories

and the corresponding points in the model have been

calculated. The results using the optimisation-based

approach can be seen in Figure 9 and the results using

standard kinematic analysis in Figure 10. As seen in the

figures, the optimisation-based approach appears to

estimate the accelerations of the marker trajectories

best with a peak error of 2.8 m s22, while the standard

kinematic analysis method has a peak error of 8.7 m s22.

The root-mean-square of the estimated acceleration errors

for all marker coordinates and all samples are 0.36 m s22

for the optimisation-based approach and 0.86 m s22 for the

standard kinematic analysis approach.

6. Discussion and conclusion

In this paper, we presented a general and natural extension

of the standard kinematic analysis for determinate systems

to the over-determinate case. This was accomplished by

re-writing the over-determinate kinematical equations into

a constrained optimisation problem. The given formu-

lation was made such that theoretically any desired choice

of system coordinates and differentiable objective function

can be used.

By applying the chain rule to the KKT optimality

conditions, we showed how it is possible to also perform

exact velocity and acceleration analysis by solving linear

sets of equations.

We then presented how the various required terms

appearing in the optimisation problem, velocity, and

acceleration analysis can be calculated from knowledge of

the constraint equations and their partial derivatives. This

we only showed in the case of a least-square objective

function with constant diagonal weight matrix. However,

Figure 4. Close-up of the gait models’ trajectories. In both
models, the blue trajectories illustrate the motion of the points in
the model and the red trajectories the measured trajectories. (a)
Shows the result using standard kinematic analysis where some
of the measured marker trajectories are neglected. (b) Shows a
close-up on the results with the optimisation-based approach.

Figure 5. Magnitude of the differences between the estimated
linear and angular accelerations of the segments using the
optimisation-based approach and standard kinematic analysis.
The figure to the left shows the result for the linear accelerations
and the figure to the right, for the angular accelerations. Each
curve in the figure represents the results for a single segment.
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the derivation of the terms for another objective function is

not difficult.

As briefly mentioned earlier, the optimisation problem

given in Equation (9) will generally be non-linear and non-

convex due to the kinematical equations that it is

composed of. This means that there may exist multiple

local minima in the problem. In case local minimisation is

performed, a good starting guess is therefore required in

order to find the desired solution. The other option is

global minimisation, which unfortunately is very compu-

tationally demanding. With that said, it should be noted

that no problems with local minima were encountered with

the gait model as presented here and local minimisation

appears to be adequately robust in practice.

In order to perform velocity and acceleration analysis,

a number of partial derivatives are required for both the

sets of equations used in the objective function, the

objective function itself, and the subject-to constraints.

These derivatives are listed in Table 1. When all

kinematical equations are analytically known, Equations

(9), (12) and (13) will ensure that the calculated best-fit

positions, velocities and accelerations are consistent.

However, obtaining these partial derivatives is not a trivial

matter. In the example shown in this paper, these

derivatives were obtained using a homemade automatic

differentiation package. For details about automatic

differentiation see Bischof et al. (1995).

Although it is possible to hard-code models using the

equations directly, this is a difficult task. Instead, a

general-purpose modelling system should be designed and

implemented such that users do not need to worry about

getting all the functions and derivatives right. Precisely for

this reason, the examples used in this paper were derived

using a full Cartesian formulation. The key reason for

using this formulation is the generality and ease of use in

general-purpose software, especially when closed-loop

mechanical systems are considered. Although it is

theoretically always possible to find a set of generalised

coordinates, in practice it might be difficult to find a set of

generalised coordinates that is valid over the whole

time-period of interest for a complicated close-loop

mechanical system. Therefore, it might be necessary to

change coordinates during the simulation. This makes

generalised coordinates difficult to use in general-purpose

software. The use of a full Cartesian formulation

eliminates this concern, as the coordinates are always

valid. The drawback of a full Cartesian formulation is that

there will be more coordinates and equations than strictly

needed.

Another issue is whether it is better to approximate the

velocities and accelerations of the marker trajectories and

use these derivatives in the velocity and acceleration

analysis in Equations (12) and (13), as opposed to only

solving the position analysis optimisation problem in

Equation (9) and subsequently approximate the velocities

and accelerations of the system coordinates instead. When

the model is formulated using generalised coordinates and

the optimisation problem is consequently unconstrained,

the differences in the calculated velocities and accelera-

tions are probably going to be minor. On the other hand,

when a non-minimal set of coordinates is used, it is a

completely different story. In this case, it is important that

the subject-to constraints, F, are satisfied not only on

position level, but also on velocity and acceleration level.

If the optimisation problem is only solved on position

level, and the velocities and accelerations are only

Figure 6. Position analysis results for the pelvis segment. The black lines show the results from solution of Equation (9) with a
diagonally weighted least-square objective function. The grey lines show the results when standard kinematic analysis is performed.
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approximated, the found velocities and accelerations of the

system coordinates will end up not satisfying the subject-

to constraints on velocity and acceleration level. This

poses a serious issue when kinetic analysis is performed

since it is assumed in the equations of motion that these

equations are satisfied for positions, velocities, and

accelerations. If marker-based motion capture systems

also provided accurate measurements of velocities and

accelerations of the marker trajectories, using e.g.

accelerometers, these measurements could be used

directly in the velocity and acceleration equations and

would improve the accuracy of the estimates.

A number of existing methods described in the

literature are special cases of the optimisation problem

given in Equation (9) and therefore Equations (12) and

(13) extend these methods with the capability

of performing velocity and acceleration analysis. It was

already mentioned that the methods described by Lu and

O’Connor (1999) and Ausejo et al. (2006) are special

cases. However, a number of methods that reconstruct the

motion of each model segment without considering joint

constraints can also be considered special cases, e.g.

Veldpaus et al. (1988), Söderkvist and Wedin (1993) and

Cheze et al. (1995).

Although the method we presented in this paper was

specially designed to obtain accurate and consistent

positions, velocities and accelerations required for inverse

dynamic analysis, forward dynamic simulations that rely

on tracking both the measured kinematical data as well

measured reaction forces can also benefit from this method

such as Thelen and Andersen (2006), Fregly et al. (2007)

and Seth and Pandy (2007). These methods rely on having

Figure 7. Velocity analysis results for the pelvis segment. The black lines show the results from solution of Equation (9) with a
diagonally weighted least-square objective function. The grey lines show the results when standard kinematic analysis is performed.
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computed positions, velocities and accelerations of the

system coordinates available for the forward dynamics

tracking algorithm and these can be obtained using

Equations (9), (12) and (13).

As we saw in the 3D gait example, significant

differences were obtained between excluding some of the

measured marker trajectories and applying standard

kinematic analysis compared to including them all and

minimising the least-square errors. This indicates that the

assumption of a rigid-body motion is not completely

fulfilled (e.g. due to STA), or that the chosen model does not

capture all the motion patterns of the bones, completely.

However, since the method we presented allows the system

equations to be described by any sufficiently differentiable

nonlinear functions of the coordinates and time, more

complicated models can be handled. For instance for gait

analysis, this could be more complicated knee or ankle

models, or even models of STA. Another cause of the

differences is the precise placement of the markers on the

model and the local joint coordinates compared to the test

subject. For the example shown here, these were

approximated to the best of our ability by solving another

optimisation problem, which is a generalisation of the

optimisation problem in Equation (9) extended to allow one

to find constant model parameters optimally over the whole

sampling period in addition to the time-dependent system

coordinates. The method, recently developed by the authors,

is presented in Andersen et al. (2007) together with some

preliminary results. A similar idea can also be found in

(Reinbolt et al. 2005), which uses a two-level optimisation

Figure 8. Acceleration analysis results for the pelvis segment. The black lines show the results from solution of Equation (9) with a
diagonally weighted least-square objective function. The grey lines show the results when standard kinematic analysis is performed.
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strategy in order to partition the large-scale optimisation

problem, but is limited to unconstrained optimisation.

Even though we demonstrated that the optimisation-

based approach does provide a better solution than a

standard kinematic approach, it remains unknown whether

the results are good enough to be used as input to inverse

dynamics to calculate joint reaction forces and muscle

forces. As the results showed, the optimisation-based

approach produced a peak acceleration error of 2.8 ms22

compared to the estimated accelerations of the marker

trajectories (i.e. almost 1/3 g). In order to answer this

question, measurements of the true bone motions are

required. This can be accomplished in an invasive

experiment involving bone-mounted markers or by

advanced radiographic methods, both of which require

ethical approval.

Since the main source of measurement error in marker-

based motion capture is STA, and it has been shown that

STA is highly correlated with the motion performed

(Benoit et al. 2006; Stagni et al. 2005; Tayler et al. 2005),

the choice of a least-square objective function is not

justifiable because it assumes that the measurement errors

are randomly distributed around the true solution.

Derivation of methods to take STA into account

Figure 9. Magnitude of the differences between the marker positions, velocities, and accelerations from the measurement and estimated
derivatives by b-splines, and the segment-fixed markers in the gait model solved using the optimisation-based approach. Each curve
represents the result for a single marker.

Figure 10. Magnitude of the differences between the marker positions, velocities, and accelerations from the measurement and
estimated derivatives by b-splines, and the segment-fixed markers in the gait model solved using standard kinematic analysis. Each curve
represents the result for a single marker.
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in computer simulation models is an important

future research task. Notice that the presented method

allows this.
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