# The cell division cycle

Giulia Guarguaglini-Ist. Biologia e Patologia Molecolari- CNR giulia.guarguaglini@uniroma1.it

# **Today's lesson**

- The animal cell
- The cell division cycle
- Levels of control of the cell cycle
- Mitosis and its regulatory checkpoints
- Mitosis and cancer

Two methodological approaches for the analysis of mitotic division:

- mathematical models
- fluorescence microscopy

# The animal cell





### https://www.cellimagelibrary.org/

### Explore the Cell



actin cytoskeleton endoplasmic reticulum extracellular matrix intermediate filament cytoskeleton microtubule cytoskeleton microtubule organizing center nuclear envelope plasma membrane

#### The cell

# The animal cell (3D)



# The animal cell (3D): compartmentts and functions

#### The cell



#### The cell

# The flux of genetic information: from DNA to proteins



Cell division

Cell division: generate two daughter cells identical to the mother cell



### Two non equivalent divisions





Meiosis II: chromosome segregation without replication

Asymmetric division (stem cells): unequal distribution of cellular components

# Cell division in the whole organism: aims

#### ✓ Development and growth: from one single cell (fertilised egg or zygote) to the adult



✓ Tissue renewal, regeneration and repair: to replace cells that die due to aging or to accidental damage (variable frequence in the different cell types)

Gametogenesis: meiotic division to form oocytes and spermatozoa

### **Cell division alterations: pathogenesis**



### Loss of control of cell division is associated with tumorigenesis

Cell division

# Model systems to study cell division



Saccharomyces cerevisiae



Schizosaccharomyces pombe

**Genetic studies** 



Arbacia punctulata



#### Xenopus laevis

**Biochemical studies** 

Cell division

### Importance of cell cultures to study cell division



HeLa cells (from cervical cancer) were the first immortalised human cells (1951): able to divide in 24 hours in culture, to grow indefinitely, resistant to be sent all over the world, they revolutionised research on cell division and on consequences of its alterations.

La vita immortale di Henrietta Lacks (The immortal life of Henrietta Lacks), Rebecca Skloot, Adelphi

# HOW TO FAITHFULLY TRANSMIT THE GENETIC MATERIAL? Duplicate (without errors!) before dividing



# The cell division cycle: alternation of Synthesis and Mitosis

Cell cycle



#### Cell cycle

### The cell division cycle: heterogeneity of cell cultures







In an asynchronous culture we will find represented all phases of interphase and mitosis, corresponding to their duration

#### Cell cycle

#### Methods of cell cycle synchronisation



It is possible to arrest and "resume" cell cycle progression at specific points by making use of molecules with reversible action

• How to decide whether to enter in the division cycle?

 $\rightarrow$  Response to external signals

# Control of cell cycle entry: the restriction point

At the end of each division, daughter cells "decide" whether to enter a new division cycle or in a quiescent phase.

External signals (growth factors, pro-proliferative stimuli, presence of surrounding cells) are fundamental for the choice of dividing.



The restriction point identifies the moment after which the cell will continue dividing independent of external signals.

- How to decide whether to enter in the division cycle?
- $\rightarrow$  Response to external signals
- How to control the temporal unfolding of the division cycle?
- → Checkpoint mechanisms (internal signals)

### Cell cycle control: checkpoint mechanisms



Cell cycle checkpoints ensure the correct sequence of events and arrest cell cycle progression in the presence of errors, to enable the cell to complete the process and/or repair the damage. If this is not possible, a programmed cell death process will be activated.

- How to decide whether to enter in the division cycle?
- $\rightarrow$  Response to external signals
- How to control the temporal sequence of the division cycle?
- → Checkpoint mechanisms (internal signals)
- How to ensure the correct progression through the different cell cycle phases?
- → Regulatory mechanisms (genes, proteins)

### **Progression through the cell cycle: regulatory levels**

✓ Gene expression: activation of specific genes in the moment of the cell cycle when the function of the corresponding protein product is required

✓ **Post-translational modifications** (e.g. **Phosphorylation**): modulation of protein activity in specific cell cycle phases

✓ **Protein degradation**: controlled elimination through proteolysis of specific proteins when their function is completed

# From genes to proteins: multiple levels of control



# Two important examples of protein activity control

#### **Phosphorylation**



- Conformational changes : activation
- Localization
- Binding to specific partners

#### **Proteolysis**



# cyclin/cdk complexes are the main "enigines" of the cell cycle



#### cyclin/cdk complexes: a milestone in the cell cycle field



#### Current Opinion in Cell Biology 25 Years

# Maturation promoting factor, cyclin and the control of M-phase

#### T. Hunt

Department of Biochemistry, University of Cambridge, Cambridge, UK

### **CYCLIN/CDK COMPLEXES: the regulatory mechanism**



CYCLIN-DEPENDENT KINASE (CDK)

# Integration of different levels of control of the cell cycle: the example of cyclin-cdks complexes

✓ cdks are active in complex with their regulatory subunit, cyclin

✓ fluctuations of cyclins levels are due to cell cycle-dependent trascriptional activation and regulated degradation

✓ Specific complexes cyclin/cdk characterize different cell cycle phases and trigger the transition from one phase to the subsequent by phosphorylating key downstream substrates



Nature Reviews | Molecular Cell Biology

# From external signals to transcriptional activation



During interphase, downstream of cyclin-cdks, waves of transcriptional activation are observed

# Integration of different levels of control of the cell cycle: the transcriptional repressor pRb downstream of cyclin/cdk complexes



### Mutations in the RB-1 gene, restriction point and tumorigenesis

The RB-1 gene, coding for the pRb protein, is mutated in retinoblastoma (child tumor of the retina) and also mutated or functionally inactive in 1/3 of human tumors: tumor suppressor gene



Cells with non functional pRb go through the restriction point even in the absence of the correct external signals.

### Altered pRb/E2F pathway and transformation: molecular mechanism





The example of oncoviruses: viral oncoproteins use the pRb/E2F pathway as a target

Polager and Ginsberg, Nat Rev Cancer. 2009

### **Alterations in E2F genes in tumors**

Table 3

Genetic alterations of E2F family members in human cancers

| Gene (chromosome)       | Genetic alteration    | Human cancer                                                                                                                                                                                                                                                                                                   | Notes                                                                                                              |
|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <i>E2F1</i> (20q11.2)   | Amplification         | HCC <sup>96-98</sup> , oesophageal SCC <sup>175</sup> , NSCLC <sup>176</sup> and cancer <sup>177-179</sup>                                                                                                                                                                                                     | None                                                                                                               |
|                         | Increased expression  | NSCLC <sup>111,135,179,180</sup> , SCLC <sup>112,181</sup> , glioblastoma <sup>109</sup> ,<br>oesophageal SCC <sup>181,182</sup> , HCC <sup>183,184</sup> , pancreatic<br>ductal carcinoma <sup>185</sup> , and GI stromal <sup>186</sup> , breast <sup>187</sup><br>and ovarian cancer <sup>130,131,188</sup> | None                                                                                                               |
|                         | Decreased expression  | Gastric adenocarcinoma <sup>189</sup> , oral SCC <sup>190</sup> , and colon <sup>191</sup> and bladder cancer <sup>192</sup>                                                                                                                                                                                   | None                                                                                                               |
| <i>E2F2</i> (1p36)      | Amplification         | SCLC <sup>193</sup> , alveolar rhabdomyosarcoma <sup>194</sup> and osteosarcoma <sup>195</sup>                                                                                                                                                                                                                 | Detection of 1p32-1p36 amplicon in SCLC                                                                            |
|                         | Deletion              | Neuroblastoma <sup>196</sup> , pheochromocytoma <sup>197</sup> and breast cancer <sup>198</sup>                                                                                                                                                                                                                | None                                                                                                               |
|                         | Increased expression  | Ovarian cancer <sup>130,131</sup>                                                                                                                                                                                                                                                                              | None                                                                                                               |
| <i>E2F3</i> (6p22)      | Amplification         | Retinoblastoma <sup>105,306,133</sup> , uveal melanoma <sup>199</sup> , and breast <sup>200,201</sup> and bladder cancer <sup>103,104</sup>                                                                                                                                                                    | Detection of 6p212 amplicon in breast cancer;<br>complete <i>RB1</i> inactivation through LOH in<br>retinoblastoma |
|                         | Increased expression  | NSCLC <sup>111</sup> , SCLC <sup>111</sup> , and bladder <sup>103,104</sup> , breast <sup>118</sup> ,<br>ovarian <sup>188</sup> and prostate cancer <sup>202</sup>                                                                                                                                             | Decreased RB1 expression in breast cancer                                                                          |
| <i>E2F4</i> (16q21–q22) | Amplification         | Bladder cancer <sup>101</sup>                                                                                                                                                                                                                                                                                  | CGH analysis carried out on 12 transitional cell<br>carcinoma lines                                                |
|                         | Deletion              | HCC <sup>203</sup> and breast cancer <sup>117,204,205</sup>                                                                                                                                                                                                                                                    | None                                                                                                               |
|                         | Increased expression  | Breast117 and colon cancer206                                                                                                                                                                                                                                                                                  | None                                                                                                               |
|                         | Mutation (AGC repeat) | GI cancer <sup>207-209</sup>                                                                                                                                                                                                                                                                                   | Expanded or reduced polyserine stretch and<br>LOH frequently observed                                              |
| E2F5 (8q21.2)           | Amplification         | Osteosarcoma <sup>195</sup> , and bladder <sup>102</sup> , colon <sup>210</sup> and breast cancer <sup>128,200</sup> .                                                                                                                                                                                         | Minimal common region of 8q21.3–8q23 in<br>osteosarcoma; MOS and/or MYC amplification<br>in breast cancer          |
|                         | Increased expression  | Ovarian <sup>115,188</sup> and breast cancer <sup>200</sup>                                                                                                                                                                                                                                                    | None                                                                                                               |
| E2F6(2p25.1)            | Amplification         | Neuroblastoma $^{211}$ and ganglioneuroblastoma $^{212}$                                                                                                                                                                                                                                                       | Detection of 2p25 amplicon in ganglioneurob-<br>lastoma; MYCN amplification in neuroblastoma                       |
| E2F7(12q21.2)           | Increased expression  | Cutaneous SCC132                                                                                                                                                                                                                                                                                               | None                                                                                                               |
|                         | Decreased expression  | Ovarian cancer <sup>115</sup>                                                                                                                                                                                                                                                                                  | None                                                                                                               |
| E2F8(11p15.1)           | Deletion              | Medulloblastoma <sup>213</sup>                                                                                                                                                                                                                                                                                 | LOH of subchromosomal region 11p13-11p15.                                                                          |
|                         | Increased expression  | Ovarian cancer <sup>114</sup>                                                                                                                                                                                                                                                                                  | None                                                                                                               |

#### Cell division

# The cell division cycle: alternation of di Synthesis e Mitosis



- How to decide whether to enter in the division cycle?
- $\rightarrow$  Response to external signals
- How to control the temporal sequence of the division cycle?
- → Checkpoint mechanisms (internal signals)
- How to ensure the correct progression through the different cell cycle phases
- → Regulatory mechanisms (genes, proteins)
- How to distribute duplicated genetic material?
- $\rightarrow$  Mitosis
# **Mitotic entry: cellular changes**





#### Chromosome condensation

#### Cytoskeletal changes

#### Nuclear envelope breakdown

# **Mitotic division**



Metaphase

Anaphase

Telophase

#### Rieder and Khodjakov, 2003 Science 300: 91-96

# "Seing" division



Wellcome Trust Image Gallery "Cell division: mitosis and cytokinesis" <a href="http://bigpictureeducation.com/cell-division-images">http://bigpictureeducation.com/cell-division-images</a>

# Mitotic division: a dynamic view



# **Mitotic division: a schematization**



# **Control of mitosis**



#### **Regulation in space:**

- chromosome condensation (1)
- mitotic spindle organization (2)
- contact microtubules /chromosomes (3)
- chromosome alignment (4)
- separation of sister chromatids (5)
- cytoplam division in the central region (6)
- mitotic spindle orientation (7)

#### **Regulation in time:**

This series of events must occur in a Coordinated manner and in a precise temporal sequence

# The mitotic spindle



# How to move from an interphase cytoskeleton to the mitotic spindle? The regulators









# Phosphorylation and proteolysis control mitotic progression



### The mitotic checkpoint :

# chromatids separation only when all chromosomes are aligned!



presence of unattached chromosomes

all chromosomes attached to the spindle

Chromosome segregation

### Loss of control of mitosis: neoplastic transformation

# The Unstable Path To Cancer

www.sciencemag.org SCIENCE VOL 297 26 JULY 2002



- cancer is caused by alterations in cell division
- the mitotic spindle is the apparatus that ensures balanced chromosome segregation
- centrosomes are the major organizers of the mitotic spindle in somatic cells

## Tumor cells are strongly aneuploid (loss or gain of chromosomes)



### Normal cell

**Tumor cell** 

### Centrosome abnormalities and tumorigenesis (I): tumor tissues display abnormal centrosome number and activity



colon epithelium

Normal tissue

Tumor tissue

### **Centrosome abnormalities and tumorigenesis (II)**

-Centrosomal defects can yield abnormal mitoses and chromosome mis-segregation...



... and thus contribute to generation of aneuploid cells

Mitosis and cancer

# Mitotic spindle defects and mis-segregation



anaphase with lagging chromosome

(Lia Asteriti)

An abnormal number of spindle poles is not sensed by the mitotic checkpoint and can induce defective chromosome segregation

# Mitosis as a therapeutic target

✓ mitosis is a selective target since tumor cells are dividing cells

✓ anti-microtubule compounds are used in chemotherapies

✓ mitotic regulators are expressed only in dividing cells and are often deregulated in cancer: development of specific inhibitors



#### **Modeling mitosis**

# **Matematical models of mitotic processes**

(Modeling mitosis, Mogilner et al., 2006)



- Microtubule dynamics
- Mitotic spindle elongation
- Metaphase spindle length
- Spindle positioning
- Interaction microtubules/kinetochores
- Mitotic spindle checkpoint

# Interaction chromosomes/microtubules: matematical model of search and capture



Modeling: if the process is random times are far too long repsect to those observed in living cells (20-30 minutes)

Hypothesis: a "bias" near chromosomes facilitates the process. Simulation under these conditions is consistent with times observed in cells.

Wollman et al., 2005

### Modeling mitosis

### Introduction of the gradient concept in spatial organization of the mitotic spindle



Bastiaens et al., 2006 - Gradients in the self-organization of the mitotic spindle

### The "bias" in the search-and-capture model: the RanGTP gradient



Mogilner et al., 2006 - Modeling mitosis

# Matematical model of the mitotic checkpoint



#### Physical constants (S. cerevisiae)

| lize of the nuclear radius     | R     | 1µm      |
|--------------------------------|-------|----------|
| Size of the kinetochore radius | ρ     | 0.01µm   |
| ntracellular diffusion         | D     | 1µm2 s-1 |
| ime between final attachmen    | t and |          |
| eginning of the anaphase       |       |          |
|                                | Tb    | 3 min    |

da Doncic et al., 2005

#### Modeling mitosis



da Doncic et al., 2005

### "Microscopic marvels"



June, 2009

#### **Milestones timeline**

| 1595 | invention of the microscope           |
|------|---------------------------------------|
| 1858 | first histological stain              |
| 1871 | synthesis of fluorescein              |
| 1873 | diffraction limit theory              |
| 1911 | first fluorescent microscopy          |
| 1929 | first epifluorescent microscope       |
| 1935 | phase contrast microscopy             |
| 1939 | polarisation microscopy               |
| 1942 | immunofluorescence                    |
| 1955 | differential interference contrast    |
| 1961 | concept of confocal microscopy        |
| 1967 | the dichroic mirror                   |
| 1972 | fluorescence correlation spettroscopy |
| 1976 | FRET<br>FRAP                          |
| 1980 | calcium probes                        |



| 981 | Video-enhancement diff. interf. contrast   |  |  |  |  |
|-----|--------------------------------------------|--|--|--|--|
|     | TIRF microscopy                            |  |  |  |  |
| 983 | deconvolution microscopy                   |  |  |  |  |
| 987 | Realization of confocal microscopy         |  |  |  |  |
| 990 | Two-photon microscopy                      |  |  |  |  |
| 993 | Light-sheet microscopy                     |  |  |  |  |
|     | Single molecule microscopy                 |  |  |  |  |
| 994 | GFP                                        |  |  |  |  |
| 997 | Fluorescent protein-based biosensors       |  |  |  |  |
| 999 | Red fluorescent proteins                   |  |  |  |  |
| 000 | Breaking the diffraction limit: STED       |  |  |  |  |
| 002 | Photoactivatable fluorescent proteins      |  |  |  |  |
| 006 | Breaking the diffraction limit: PALM/STORM |  |  |  |  |
|     |                                            |  |  |  |  |

November, 2009

#### NATURE MILESTONES | LIGHT MICROSCOPY

OCTOBER 2009 S5

# **Microscopy methods for studying mitosis**

|              | Phase contrast                              | Fluorescence                                     |  |  |
|--------------|---------------------------------------------|--------------------------------------------------|--|--|
| Light source | visible                                     | particularly rich in UV e blue<br>(mercury lamp) |  |  |
| Sample       | transparent                                 | Labelled with fluorochromes                      |  |  |
| Image        | Dense and contrasted<br>regions appear dark | High resolution signal of labelled structure     |  |  |

Exemple: metaphase in amphibian cells



Mitotic\_ spindle

DNA



### Fluorescence microscopy

### Fluorophores absorb light of a specific wavelength and emit light at higher wavelengths



| Absorbed light | Emitted light |
|----------------|---------------|
| Invisible (UV) | BLUE          |
| BLUE           | GREEN         |
| GREEN          | RED           |

#### COMMONLY USED FLUOROPHORES



# Microscopy



Filters = barriers: only specific wavelengths pass through

# Microscopy

### Visualisation of the mitotic spindle and associated structures in a highly defined manner



Images elaborated with different mathematicial algorithms to obtain the best definition

(Valeria de Turris)

### We can collect information along the z-axis and reconstruct a 3D image



✓ methodological developments have transformed microscopy from a descriptive approach to a **quantitative**, high-content experimental tool

✓ This is accompanied by the increase in computer power and the development of sophisticated imaging softwares that have introduced the **high-throughput level** in microscopy.

✓ The discovery of fluorescent proteins, first of all the green fluorescent protein (GFP) which was recognised with the Nobel Prize in 2008, has boosted important developments for live imaging

#### Microscopy



# Green Fluorescent Protein GFP (Nobel Prize for Chemistry in 2008)



√ Produced by the Aequorea jellyfish; fluoresces in green

✓ The gene has been cloned and is used to produce fluorescent versions of proteins of interest (fusion proteins)

✓ Different GFP variants have been produced, with emission at distinct wavelenghts, for multicolor imaging: BFP (blu), CFP (ciano), YFP (giallo); new fluorescent proteins have also been isolated (e.g. Red Fluorescent protein RFP)

Live cell imaging now allows to combine the molecular level (by looking at single proteins, structures or interactions) with a temporal and spatial resolution that cannot be obtained with other approaches.



Microscopy

### Live cell imaging is performed at the single cell-level



(Lindon and Pines, 2004)

This makes it possible to attribute specific molecular events to the cell under investigation and hence to directly correlate molecular events with changes occurring at the cellular level.

## Measuring the mobility of a specific molecule within the cell

### Tecnique: FRAP (Fluorescence Recovery After Photobleaching)

Photobleaching (laser)







#### Non-mobile molecules



#### No fluorescence recovery

#### Mobile molecules



#### Fluorescence recovery

# Fluorescence microscopy

### FRAP: an example



### Technique: FRET (Fluorescence Resonance Energy Transfer)



Energy transfer between two fluorescent molecules with different exitation spectra. The emission spectrum of the donor must overlap with the exitation one of the acceptor.

## Fluorescence microscopy

а 430 nm max. 430 nm max. excitation excitation ž 490 nm max. emission 530 nm max. emission Donor Donor FRET (CFP) (CFP) Acceptor Acceptor (YFP) (YFP) b 490 nm 530 nm Emission intensity High FART Emission wavelength

da van Roessel and Brand 2001

FRET occurs only when the 2 molecules are at 60 A or less, indicative of a direct or indirect interaction

# FRET to demonstrate high local concentration of RanGTP within the cell



### The "bias" in the search-and-capture model: the RanGTP gradient



#### Mogilner et al., 2006 - Modeling mitosis

# Towards future application.....

A recent example of sinergy between biology and phisics: "from micro to nano"

News Feature - Nature Methods 6, 15 - 18 (2009) Super-resolution microscopy: breaking the limits

Imaging techniques to overcome the limit of optical resolution! Observation of single molecules.



#### Super-resolution microscopy: overcoming the physical diffraction limit

Abbe Resolution x,y =  $\lambda/2NA$  Abbe Resolution z =  $2\lambda/NA2$ 

Es. Green light : 550 nm. 100 X Obj. NA: 1,4 Resolution limit xy= 550/2x1,4= 200 nm

Resolution limit z= 1100/1,96= 550 nm

2 objects closer than 200/250 nm cannot be separated

| Table I. Super-resolution light microscopy methods |                                      |                                 |                               |                            |                                           |                         |                                                             |                                                                           |
|----------------------------------------------------|--------------------------------------|---------------------------------|-------------------------------|----------------------------|-------------------------------------------|-------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                    | Near-field                           |                                 |                               | Far-field                  |                                           |                         |                                                             |                                                                           |
| Principle                                          | Small aperture<br>scanning (no lens) | Evanescent wave<br>illumination | Wide-field +<br>deconvolution | Confocal laser<br>scanning | Moiré effect with structured illumination |                         | PSF shaping with saturated<br>emission depletion            | Photoswitching and localiza-<br>tion of single molecules<br>(pointillism) |
| Acronym                                            | SNOM/NSOM                            | TIRFM                           |                               | CLSM                       | SIM (HELM, PEM)<br>3D-SIM                 | SSIM (SPEM)             | STED/CW-STED                                                | PALM/FPALM/STORM/<br>dstorm/palmira                                       |
| Illumination-emission<br>dependence                | Linear                               | Linear                          | Linear                        | Linear                     | Linear                                    | Non-linear              | Non-linear                                                  | Linear                                                                    |
| Detector                                           | Scanning PMT/APD                     | Wide-field CCD/<br>CMOS         | Wide-field CCD/<br>CMOS       | Scanning PMT/<br>APD       | Wide-field CCD/<br>CMOS                   | Wide-field CCD/<br>CMOS | Scanning PMT/APD                                            | Wide-field CCD/CMOS                                                       |
| XY-resolution                                      | 20-120 nm                            | 200-300 nm                      | 180-250 nm                    | 180-250 nm                 | 100-130 nm                                | 50 nm                   | 20-100 nm                                                   | 20–50 nm                                                                  |
| Z-resolution                                       | 10 nm<br>(near-field range)          | 100 nm<br>(near-field range)    | 500-700 nm                    | 500-700 nm                 | 250–350 nm                                | N.D.                    | 560 nm (CW-STED)<br>to 700 nm (100 nm<br>with z-phase mask) | 100 nm (TIRF)<br>20–30 nm (3D-STORM, TIRF)<br>75 nm (BP-FPALM, in plane)  |

(A guide to super-resolution fluorescent microscopy. Schermelleh et al. JCB, 2010 Localisation microscopy coming of age: from concepts to biological impact. Sauer, JCS, 2013)

### Super-resolution microscopy: overcoming the physical diffraction limit



Photoswitchable fluorescent proteins

