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1)	Data	are	thermalized	
	
In	order	to	verify	whether	the	data	given	where	effectively	thermalized,	a	plot	of	the	values	(one	every	
75)	of	the	first	observable	𝑈"	has	been	made.	Indeed,	the	data	are	dispersed	within	a	certain	range	which	
is	the	same	for	the	first	and	the	last	values.	Consequently,	there	is	no	need	to	avoid	the	calculation	of	
average	quantities	for	low	values	of	Monte	Carlo	(MC)	time.	Below,	the	distribution	of	the	data	for	𝑈"	
(for	the	other	four	observables	something	similar	is	expected)	is	shown.	
	

	
Figure	1.1	-	Data	are	thermalized	

	
2)	Neglecting	correlations	
	
The	computation	of	the	averages	on	the	observables	neglecting	correlations	is	equivalent	to	assume	that	
the	data	we	are	treating	are	independent.	The	formula	used	to	compute	the	averages	 𝑈$ 	and	the	errors	
𝜎$ 	are	shown	in	the	following.	
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Here,	it	is	taken	into	account	that	the	estimate	of	the	variance	is	a	biased	estimator	of	the	variance	itself.	

Effectively,	 the	 correction	 only	 introduces	 the	 pre-factor	 *
*0"

	to	 the	 formula	 of	 the	 variance,	 leading	

basically	to	the	same	result	we	would	have	got	without	taking	it	into	account.	
The	results	are	summarized	in	Table	2.1.	
	

Table	2.1	–	Averages	and	errors	neglecting	correlations	

𝑼𝒊	 𝑼𝒊 	 𝝈𝒊	

𝑼𝟏	 3.897	 0.008	

𝑼𝟐	 6.808	 0.006	

𝑼𝟑	 2.029	 0.002	

𝑼𝟒	 1.256	 0.012	

𝑼𝟓	 -0.074	 0.005	

	
	
3)	Blocking	analysis	
	
The	blocking	analysis	is	a	method	that	allows	to	take	into	account	the	correlations	between	data.		
The	core	of	the	method	is	that	averages	between	pairs	of	data	are	computed	in	an	iterative	way:	while	
these	quantities	do	not	vary	during	the	analysis,	the	error	computed	on	them	depends	on	the	blocking	
of	the	data	and	particularly	it	increases	as	a	function	of	the	iterations	𝐾	(blocking	length)	performed,	
before	reaching	a	plateau.	This	behavior	 is	due	to	 the	 fact	 that	data,	at	 first,	are	still	correlated	each	
other,	but	then,	they	become	essentially	independent.	In	fact,	it	can	be	demonstrated	that	there	is	no	
correlation	when	

𝑉𝑎𝑟𝑈𝑖 ≈ 2𝑉𝑎𝑟𝑈$
(") ≈ ⋯ ≈ 2B𝑉𝑎𝑟𝑈$

(B) ≈ ⋯	
	
where	the	“almost	equal”	sign	has	to	be	replaced	by	a	“lower	than”	sign	when	data	are,	on	the	contrary,	
not	independent.	
Nevertheless,	after	a	certain	𝐾,	 the	error	starts	to	oscillate	or,	 in	some	cases,	to	decrease:	those	data	
cannot	be	considered	reliable	anymore	given	that	the	amount	of	blocked	data	is	too	small.		

Figure	3.1	reports,	 for	 the	 five	observables,	2+𝑉𝑎𝑟𝑈$
(+)	with	respect	 to	 the	blocking	 length.	Once	 the	

correct	value	of		𝐾		is	chosen,	the	error	can	be	directly	computed	using	
	

𝜎$ =
2B𝑉𝑎𝑟𝑈$

(B)

𝑁
	

	
In	Table	3.1,	the	errors	are	reported.		
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Table	3.1	–	Errors	from	blocking	analysis	

𝑼𝒊	 𝝈𝒊	

𝑼𝟏	 0.060	

𝑼𝟐	 0.041	

𝑼𝟑	 0.007	

𝑼𝟒	 0.046	

𝑼𝟓	 0.037	

	
	

	
Figure	3.1	-		These	graphs,	one	for	each	observable,	allow	to	determine	the	error.		

The	x-axes	reports	the	blocking	length.	
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Even	though	we	do	not	observe	a	plateau	for	all	the	five	observable,	the	value	corresponding	to	𝐾 = 10	
(the	highest	one)	is	the	one	considered	in	order	to	get	a	correct	estimate	of	the	error.	
	
4)	Autocorrelation	analysis	
	
The	aim	of	this	method	is	essentially	the	same	of	the	previous	one.	
Starting	from	the	usual	definition	of	the	error,	it	can	be	demonstrated	that	
	

𝜎$1 =
𝑉𝑎𝑟𝑈𝑖
𝑁

1 + 2
𝐶$(𝑛)
𝑉𝑎𝑟𝑈𝑖

+

G,"

	

where		

𝐶$ 𝑛 =
1

𝑁 − 𝑛
𝑈𝑖 𝑘 − 𝑈$

*0G

+,"

(𝑈𝑖 𝑘 + 𝑛 − 𝑈$ ) 	

	
and	𝐶$ 0 = 	𝑉𝑎𝑟𝑈𝑖.	
The	so	called	autocorrelation	function	𝐶$ 𝑛 	(with	𝑛	that	goes	from	0	to	𝑁 − 1)	takes	into	account	the	
correlation	 between	 data.	 In	 particular,	 the	 formula	 above	 is	 derived	 for	 translationally	 invariant	
system,	where	the	correlation	depends	only	on	the	difference	in	time.	It	is	worth	to	note	that	in	case	the	
autocorrelation	function	is	null,	the	error	is	determined	as	if	data	were	independent.	Another	way	to	
see	it,	is	by	re-writing	𝜎$1	as		
	

𝜎$1 = 2𝜎$,$GIJKJGIJGL1 𝑡$,$GL	

where		

𝑡$,$GL(𝑘) =
1
2
+

𝐶$(𝑛)
𝑉𝑎𝑟𝑈𝑖

+

G,"

	

	
with	𝑡$GL	integrated	autocorrelation	time.	Whenever	𝑡$,$GL	is	greater	than	1,	the	error	for	correlated	data	
is	increased	with	respect	to	the	one	in	which	data	are	independent.	
It	is	correct	to	expect	that	the	autocorrelation	function	goes	to	0	with	increasing	values	of	𝑛,	indicating	
that	data	are	no	longer	dependent.	However,	while	it	is	decreasing	to	0,	the	function	starts	to	oscillate	
due	 to	 the	 fact	 that	 the	 amount	 of	 terms	 included	 in	 the	 summation	 over	 𝑘	 in	 𝐶$ 𝑛 	 is	 lowering.	
Consequently,	 in	 order	 to	 get	 a	 good	 estimate	 of	 the	 error	 it	 is	 important	 to	 understand	where	 to	

truncate	 the	 term	 NO(G)
PQR𝑈𝑖

+
G," .	 	 In	practice,	 this	 is	 done	by	 calculating	 the	 autocorrelation	 time	which	

represents	(except	for	the	0.5	factor)	the	area	underlying	the	autocorrelation	function.	The	former	is	a	
function	that	increases	and	reach	an	approximately	stable	value	at	which	we	decide	the	summation	has	
to	be	truncated.	In	this	way	the	error	in	the	estimate	of	𝜎$ ,	obtained	using,	
	

𝜎$ =
𝑉𝑎𝑟𝑈$
𝑁

2𝑡$,$GL(𝑘)	
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is	not	greater	than	the	10%.	
The	figure	below	reproduces	on	the	left	hand	side	the	autocorrelation	function,	and	on	the	right	hand	
side	the	integrated	autocorrelation	time.	The	final	errors	calculated	using	the	autocorrelation	analysis	
are	reported	in	Table	4.1.	
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Figure	4.1	-		On	the	left	hand	side	the	autocorrelation	function	as	a	function	of	n.		
On	the	right	hand	side	the	integrated	autocorrelation	time	as	a	function	of	k.	

	
Table	4.1	–	Averages	and	errors	from	autocorrelation	analysis	

𝑼𝒊	 𝒕𝒊,𝒊𝒏𝒕	 𝝈𝒊	

𝑼𝟏	 22.2	 0.056	

𝑼𝟐	 21.3	 0.038	

𝑼𝟑	 8.3	 0.007	

𝑼𝟒	 7.8	 0.046	

𝑼𝟓	 21.8	 0.035	

	
It	can	be	noticed	that	the	errors	computed	in	this	way	are	comparable	to	the	once	calculated	using	the	
blocking	method.	Instead,	they	are	different	from	the	values	obtained	in	2),	and,	as	expected,	they	have	
higher	values.		
	
5)	Jackknife,	independent-error	and	worst	error	formula	
	
The	last	task	of	the	homework	was	to	calculate	ratios	of	the	form	
	

𝑅$ =
𝑈𝑖
𝑈1

	

	
given	that	𝑖 = 2,3,4,5	and	starting	from	a	set	of	blocked	variables	with	blocks	of	length	2500	(that	can	
consequently	be	considered	as	independent).	
In	 this	 case	 the	 quantities	 𝑅$	 are	 computed	 via	 the	 Jackknife	 algorithm,	 which	 is	 a	 method	 that	
intrinsically	 take	 into	 account	 correlations	 between	 numerator	 and	 denominator.	 In	 particular,	 the	
calculation	of	the	errors	is	easier	as	we	don’t	have	to	calculate	co-variances	between	data.	
The	final	formula	that	allows	the	application	of	this	algorithm	is	
	

𝑅$ ≡ 𝐽𝑖,𝑒𝑠𝑡,𝑓𝑖𝑛𝑎𝑙
𝐽𝐾 = 𝑁𝐽𝑖,𝑒𝑠𝑡 − 𝑁 − 1 𝐽𝑖,𝑒𝑠𝑡

𝐽𝐾 	

	
where	𝐽J_L	corresponds	to	the	ratio	of	the	averages	obtained	in	the	standard	way	
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	𝐽$,J_L =
1
𝑁 𝑈$(𝑘)*

+,"

1
𝑁 𝑈"(𝑘)*

+,"

	

	
and	
	

𝐽$,J_L
`B =

1
𝑁

𝐽a
`B

*

a,"

=
1
𝑁

𝑈$,a
`B

𝑈",a
`B =

*

a,"

1
𝑁

1
𝑁 − 1 𝑈$,a(𝑘)*

+,",+ba

1
𝑁 − 1 𝑈",a(𝑘)*

+,",+ba

*

a,"

	

	
The	error	is	instead	computed	using	

𝜎$ = (𝑁 − 1)𝑉𝑎𝑟𝑅𝑖	
with	

𝑉𝑎𝑟𝑅𝑖 =
1
𝑁

(𝐽a
`B − 	𝐽$,J_L,c$GQd

`B )1
*

a,"

	

	
The	error	obtained	with	the	JK	method	can	be	compared	with	two	other	ways	of	computing	errors	of	
ratios	that	rely	on	the	independent-error	formula	and	the	worst-error	formula:	
	

𝜎$ef =
𝑈$ 1

𝑈" 1
𝜎gO

1

𝑈$ 1
+
𝜎gh

1

𝑈" 1

"/1

	

	

𝜎$jf =
𝑈$
𝑈"

𝜎gO
𝑈$

+
𝜎gh
𝑈"

	

	
The	independent	error	formula	is	built	in	such	a	way	that,	with	respect	to	the	correct	formula	to	compute	
the	 error	 for	 ratio	 of	 averages	 (in	 our	 case	 estimated	 with	 JK	 method),	 there	 is	 no	 co-variance.	
Consequently,	depending	on	whether	this	quantity	was	positive	or	negative,	the	computed	error	can	be	
higher	or	lower:	this	is	indeed	what	is	found	throughout	the	values	reported	in	Table	5.1.		
The	worst-error	formula,	as	recalled	by	its	name,	allows	to	predict	the	“worst”	possible	error	and	it	is	
obtained	maximizing	the	terms	of	the	correct	estimate	of	the	error;	for	all	the	quantities	𝑅$ ,	the	error	
computed	in	this	way	is	the	highest.	
	

Table	5.1	–	Values	of	𝑹𝒊	computed	with	standard	averages	and	with	the	JK.	Errors	are	calculated	using	JK,	IE,	WE.	

𝑹𝒊	 𝑹𝒊,𝒂𝒗𝒆𝒓𝒂𝒈𝒆	 𝑹𝒊,𝑱𝑲	 𝝈𝒊,𝑱𝑲	 𝝈𝒊,𝑰𝑬	 𝝈𝒊,𝑾𝑬	

𝑹𝟐	 1.747	 1.746	 0.034	 0.027	 0.035	

𝑹𝟑	 0.521	 0.521	 0.008	 0.008	 0.009	

𝑹𝟒	 0.323	 0.322	 0.010	 0.013	 0.017	

𝑹𝟓	 -0.019	 -0.019	 0.009	 0.009	 0.009	

	


