	ANALISI	MATEMA	ΓICA I -	Ing.	Aerospazial	e
--	---------	--------	----------	------	-------------	---

PROVA PRATICA	\Diamond ((16)	/6	/2010
---------------	--------------	------	----	-------

Cognome e nome	. N. matricola (facoltativo)	
Se ammesso, desidererei sostenere la prova teorica:	○ 30 giugno–2 luglio;	○ 5–10 luglio
Note		

ISTRUZIONI

- 1. Compilare la parte soprastante.
- 2. Svolgere i seguenti esercizi attenendosi alle domande in essi formulate, e motivando le risposte in modo chiaro ed esauriente. Nel caso di dubbi sul testo, chiedere chiarimenti al docente. Non è consentito l'uso di calcolatrici, personal computer, appunti. E' consentito l'uso di libri di testo e formulari.
- 3. Al termine del tempo disponibile, riconsegnare l'elaborato scritto in modo chiaro e leggibile insieme a questo foglio. Scrivere nome e cognome su ogni foglio che si consegna.
- 1. Studiare la funzione

$$f(x) = \frac{e^x - 3}{e^x - 2} - |x|,$$

e in particolare: dominio, eventuali simmetrie, insiemi di continuità e di derivabilità, limiti significativi, asintoti, crescenza e decrescenza, estremi relativi e assoluti, classificazione degli eventuali punti di non derivabilità, intervalli di concavità e convessità, flessi. Disegnarne un grafico qualitativo. (9 punti)

- **2.** Trovare la primitiva g(x) della funzione f(x) (definita nel precedente esercizio) che verifica g(0) = 0. (7 punti)
- 3. Ordinare le seguenti funzioni per ordine crescente di infinitesimo, per $x \to +\infty$:

$$f(x) = \frac{1}{x^{3/2} + x \ln x}$$
, $g(x) = \operatorname{arctg}(e^x) \operatorname{sen} \frac{1}{x^3}$, $h(x) = \sqrt{1 - \frac{1}{x}} - \cos \frac{1}{\sqrt{x}}$.

(7 punti)

4. Al variare dei parametri α e β , studiare la convergenza di ognuna delle serie

$$\sum_{n=1}^{+\infty} \left(\alpha - \cos \frac{\pi}{n+3} \right), \qquad \sum_{n=1}^{+\infty} \frac{n^2}{\sqrt[3]{n!}} \left(\ln(\beta - 1) \right)^n.$$

(7 punti)

5. Trovare tutte le soluzioni complesse di ciascuna delle equazioni

$$z^{6} + 2z^{3} + 4 = 0, \qquad (w + \overline{w})(w - \overline{w}) = -4i.$$

(7 punti)

ANALISI	MATEMATICA	I - Ing	Aerospaziale
TITITITITI		1 - 1112.	TUTOSDAZIAIC

Cognome e nome	N. matricola (facoltativo)	
Se ammesso, desidererei sostenere la prova teorica:	○ 30 giugno–2 luglio;	○ 5–10 luglio
Note		• • • • • • • • • • • • • • • • • • • •

ISTRUZIONI

- 1. Compilare la parte soprastante.
- 2. Svolgere i seguenti esercizi attenendosi alle domande in essi formulate, e motivando le risposte in modo chiaro ed esauriente. Nel caso di dubbi sul testo, chiedere chiarimenti al docente. Non è consentito l'uso di calcolatrici, personal computer, appunti. E' consentito l'uso di libri di testo e formulari.
- 3. Al termine del tempo disponibile, riconsegnare l'elaborato scritto in modo chiaro e leggibile insieme a questo foglio. Scrivere nome e cognome su ogni foglio che si consegna.
- 1. Studiare la funzione

$$f(x) = |x| - \frac{e^x - 7}{e^x - 3}$$

e in particolare: dominio, eventuali simmetrie, insiemi di continuità e di derivabilità, limiti significativi, asintoti, crescenza e decrescenza, estremi relativi e assoluti, classificazione degli eventuali punti di non derivabilità, intervalli di concavità e convessità, flessi. Disegnarne un grafico qualitativo. (9 punti)

- **2.** Trovare la primitiva g(x) della funzione f(x) (definita nel precedente esercizio) che verifica g(0) = 0. (7 punti)
- 3. Ordinare le seguenti funzioni per ordine crescente di infinitesimo, per $x \to +\infty$:

$$f(x) = \frac{3}{x + \sqrt{x} \ln x}$$
, $g(x) = \cos \frac{1}{x} \ln \left(1 + \frac{1}{x^3} \right)$, $h(x) = \sqrt{1 + \frac{1}{x}} - \cosh \frac{1}{\sqrt{x}}$.

(7 punti)

4. Al variare dei parametri α e β , studiare la convergenza di ognuna delle serie

$$\sum_{n=1}^{+\infty} \ln\left(\alpha + \frac{3}{n^2 + 2\sqrt{n}}\right), \qquad \sum_{n=1}^{+\infty} \frac{n^2}{\sqrt{(2n)!}} \left(\ln(1+\beta)\right)^n.$$

(7 punti)

5. Trovare tutte le soluzioni complesse di ciascuna delle equazioni

$$z^6-2z^3+2=0\,,\qquad \qquad (w+\overline{w})\,(w-\overline{w})=8i\,.$$

(7 punti)