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ESERCIZIO 70. Si spieghi perché i seguenti sottoinsiemi di IR sono misurabili secondo Lebesgue

11 1 2K+ 11
) o) ket o
kzLJO 2k+1" 2k IQ) 2k+1" 2k U 32k+1" 32k U

k>0 k>1
e se ne calcoli la misura.
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ESERCIZIO 6. Data lapplicazione

x(u) = (uq,up,auq + buy) conu € K=[0,7]?

si provi che

i. (x,K) & una superficie regolare,

ii. Im(x) é un piano affine in R3.

Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {¢(s) = (s,s) : s € [0, 7]}.
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ESERCIZIO 3. Si provi che i seguenti insiemi dello spazio R3
H={x=0} 52={x12+x%+x§ =} De{dexg<ix3=0] C={xf+xy=1,0<x3<1}
sono misurabili e calcoli la misura.
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