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ESERCIZIO 1. Calcolare l’integrale
$

B

[
x2

1 + x2
2
]

dx1dx2dx3 dove B = B(O,R) = {x2
1 + x2

2 + x2
3 ≤ R2}.

ESERCIZIO 2. Calcolare le coordinate del baricento del solido T = {[2− (x2
1 + x2

2)1/2]2 + x2
3 ≤ 1} con densità di massa

δ(x) = δ0 ∈�.

ESERCIZIO 3. Si calcoli il volume del cono di raggio di base R e altezza H (e del relativo tronco di cono) sia utilizzando
le coordinate cartesiane che le coordinate clindriche.

ESERCIZIO 4. Calcolare
∫

E
(x1 + x2)dx1dx2, dove E =

{
x ∈�

2 : 0≤ x1 ≤ x2 ≤
√

1− x2
1 , x1 ≤

√
2/2

}
.

ESERCIZIO 5. Assegnate le funzioni

f(x1, x2) = x1x2 g(x1, x2) = x2
1 x2 h(x1, x2) = x1x2

2 k(x1, x2) = x2
1 x2

2

se ne calcoli l’integrale sui domini {0≤ x1 ≤ p,0≤ x2 ≤ q} e Br = {x2
1 + x2

2 ≤ r2} al variare di p, r,q ∈ (0,+∞).

ESERCIZIO 6. Sia Q il quadrilatero di vertici (1,0), (0, 1/2), (−1,0) e (0,−1/2). Calcolare∫
Q
|x2

1 −4x2
2|e

(x1+2x2)2 dx1dx2

ESERCIZIO 7. Si dimostri la formula del volume di un tronco di piramide retta a base quadrata.

ESERCIZIO 8. Si calcoli l’integrale$
E

x3dx1dx2dx3

dove E⊆ �
3 è la porzione del solido C = {|x1|, |x2| ≤ 1} contenuta nell’ottante {x1, x2, x3 ≥ 0}, delimitata dai piani

{x3 = 0} e {x1 + x2 + 2x3 = 3}

ESERCIZIO 9. Si calcoli l’integrale$
C

x2
1 dx1dx2dx3

dove C⊆�
3 è la corona sferica C = B(O,R) \B(O, r), con 0< r< R.

1
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SVOLGIMENTI

ESERCIZIO 1. Calcolare l’integrale
$

B

[
x2

1 + x2
2
]

dx1dx2dx3 dove B = B(O,R) = {x2
1 + x2

2 + x2
3 ≤ R2}.

DISCUSSIONE. Per il calcolo dell’integrale ricorriamo alle coordinate sferiche, visto che il dominio di integra-
zione B ossiede una evidente simmetria sferica e, quasi sempre, il cambio di variabile che più semplifica il
calcolo degli integrali multipli è suggerito dalla geometria del dominio di integrazione più che dall’espressione
della funzione integranda. Allora ricordando che

x1 = rcos(θ) sin(φ)
x2 = rsin(θ) sin(φ)
x3 = rcos(φ)

(r,φ,θ) ∈ K = [0,+∞)× [0,π]× [0,2π]

otteniamo$
B

[
x2

1 + x2
2
]

dx1dx2dx3 =
$

B̃
r2 sin2(φ) · r2 sin(φ)drdφdθ = 2π

∫ π
0

sin3(φ)dφ
∫ R

0
r4dr

= 2πR5

5

∫ π
0

sin(φ)(1− cos2(φ))dφ = 8
15πR5

e l’esercizio è portato a compimento.

ESERCIZIO 2. Calcolare le coordinate del baricento del solido T = {[2− (x2
1 + x2

2)1/2]2 + x2
3 ≤ 1} con densità di massa

δ(x) = δ0 ∈�.

DISCUSSIONE. Abbiamo già ricordato la definizione del baricentro (o centro di massa) b di un solido avente
densità di massa δ(x), quindi scriviamo subito le espressioni degli integrali da calcolare nel caso in oggetto. La
massa di T è, per definizione, l’integrale sul solido della funzione densità (di volume) di massa, quindi

m =
$

T
δ(x)dx1dx2dx3 = 2πδ0

∫
{(r−2)2+t2≤1}

rdrdt

= 2πδ0
∫ 2π

0

∫ 1

0
[2 + ρcos(φ)]ρdρdφ = 4π2δ0 = δ0m3(T)

dove abbiamo impiegato, nella risoluzione degli integrali, prima il cambio di variabili cilindriche
x1 = rcos(θ)
x2 = rsin(θ)
x3 = t

con determinante jacobiano |det(J)| = r

e successivamente il cambio di variabili polari{
r = ρcos(φ)
t = ρsin(φ) con determinante jacobiano |det(J)| = ρ

questo perché possiamo pensare il toro T come un solido ottenuto ruotando un cerchio, quindi il primo cambio
di variabili contiene l’angolo di rotazione θ. Siccome l’asse di rotazione è l’asse x3, cioè la retta di equazioni
{x1 = x2 = 0} le funzioni trigonometriche agiscono solo sulle variabili x1 e x2. Il cerchio di partenza ha equazione
{(x1 − 2)2 + x2

3 ≤ 1} nel piano {x2 = 0}, questo giustifica il secondo cambio di variabili. In generale i cambi di
variabili devono sempre essere ispirati dalle simmetrie del dominio di integrazione, purtroppo non c’è una
regola meccanica da poter seguire... Invece gli integrali per il calcolo delle coordinate di b valgono

bk = δ0m

$
T

xkdx1dx2dx3 = 0 per k = 1,2,3

in quanto la funzione integranda è sempre dispari rispetto ad uno dei piani di riferimento, mentre T è simme-
trico, quindi ricaviamo che b = O.

ESERCIZIO 3. Si calcoli il volume del cono di raggio di base R e altezza H (e del relativo tronco di cono) sia utilizzando
le coordinate cartesiane che le coordinate clindriche.



�� 3

DISCUSSIONE. Seguendo le richieste dell’esercizio calcoliamo il volume del cono usando prima le coordinate
cartesiano e poi le coordinate cilindriche. Cominciamo scrivendo il solido come dominio normale

C =
{
x ∈�

3 : 0≤ x3 ≤ H,0≤ x2
1 + x2

2 ≤ x2
1 + x2

2 ≤ R2} con R,H> 0

e integriamo per sezioni, cioè sfruttando la relazione

m3(C) =
$

C
dx1dx2dx3 =

∫ H

0
m2(S(t))dt dove S(h) = C∩{x3 = t}

Allora segue che

m3(C) =
∫ H

0
π

R2

H2 [H− t]2 dt = π R2

3H2

[
(t−H)3]H

0 = π R2

3H2 H3 = 1
3πHR2

concludiamo questo primo calcolo osservando che l’integrazione per fili, almeno in questo caso, è un po’ più
impegnativa, come vedremo nel calcolo del volume del tronco di cono. Ricorrendo alle coordinate cilindriche
il calcolo diventa è ugualmente agevole, come è lecito aspettarsi dalle simmetrie del dominio, infatti abbiamo

m3(C) =
$

C̃
rdrdθdt = 2π

∫ H

0

∫ R(H−t)/H)

0
rdr

dt = π
∫ H

0

[
r2]R(H−t)/H)

0 dt

= π
∫ H

0

R2

H2 (H− t)2dt = π
[

R2

3H2 (H− t)3
]H

0
= 1

3πHR2

Lo studio del tronco di cono è un po’ più difficoltoso a partire dalla descrizione del solido che possiamo formu-
lare come segue

T =
{

0≤ x3 ≤ h,x2
1 + x2

2 ≤
R2

H2 (H− x3)2
}

=
{

0≤ x3 ≤min
{

h,H− H
R

[
x2

1 + x2
2
]1/2

}
, x2

1 + x2
2 ≤ R2

}
dove R > 0 è il raggio di base e 0 < h < H è l’altezza del taglio. Utilizzare la seconda scrittura di T come
dominio normale significa procedere integrando per fili e, introducendo la quantità R∗ = R(1− h/H), cioè il
raggio del cerchio superiore del tronco, troviamo

m3(T) =
"

B(O,R)

∫ S(w)

0
dx3

dx1dx2

=
"

B(O,R∗)

∫ h

0
dx3

dx1dx2 +
"

B(O,R)\B(O,R∗)


∫ H

R
(
R−

√
x2

1 +x2
2

)
0

dx3

dx1dx2

=
"

{
x2

1 +x2
2<R2

∗
}
)
hdx1dx2 +

"
{
R2
∗<x2

1 +x2
2<R2

} H
R

(
R−

√
x2

1 + x2
2

)
dx1dx2

=
∫ 2π

0

[∫ R∗

0
hρdρ

]
dθ +

∫ 2π

0

[∫ R

R∗

H
R (R− ρ)ρdρ

]
dθ

= 2π
[

h
2ρ

2
]R∗

0
+ 2πH

[
1
2ρ

2−
1

3Rρ
3
]R

R∗
= πhR2

∗ + π3 HR2−πHR2
∗ + 2πR∗

3 ·
H
R R2
∗

= πhR2
∗ + π3

Rh
R−R∗

R2−π
Rh

R−R∗
R2
∗ + 2π R∗

3R
Rh

R−R∗
R2
∗

= π3 h
[
3R2
∗ + R2− 3RR2

∗ + 2R3
∗

R−R∗

]
= π3 h

[
3R2
∗(R−R∗) + R2− 3RR2

∗ + 2R3
∗

R−R∗

]
= π3 h

[
R3−R3

∗
R−R∗

]
= π3 h

[
R2 + RR∗ + R2

∗
]

si osservi che se R∗ −→ 0+, e conseguentemente h −→ H+, le espressioni ottenute (e i calcoli svolti) per il
tronco di cono forniscono la formula del volume del cono tramite integrazione per fili.
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ESERCIZIO 4. Calcolare∫
E

(x1 + x2)dx1dx2

con E =
{

x ∈�
2 : 0≤ x1 ≤ x2 ≤

√
1− x2

1 , x1 ≤
√

2/2
}

.

DISCUSSIONE. Osserviamo subito che E è un insieme normale rispetto all’asse x1, infatti vale

E =
{

(x1, x2) ∈�
2 : x1 ≤ x2 ≤

√
1− x2

1 ,0≤ x1 ≤
√

2/2
}

per le formule di riduzione possiamo scrivere

∫
E

(x1 + x2)dx1dx2 =
∫ √2/2

0


∫ √

1−x2
1

x1

(x1 + x2
)dx2

dx1 =
∫ √2/2

0

x1x2 +
x2

2
2


√

1−x2
1

x1

dx1

=
∫ √2/2

0

(
x1

√
1− x2

1 + 1
2 − 2x2

1

)
dx1 = 1

2

∫ 1

1/2

√
tdt +

√
2

12 = 1
3

L’insieme E si può scrivere, in modo equivalente, nella forma

E = {x ∈�
2 : 0≤ x1 ≤ x2, x2

1 + x2
2 ≤ 1}

e rappresenta la parte di cerchio, di centro O e raggio 1, contenuta nel primo quadrante e delimitato dalla
bisettrice x2 = x1 e l’asse delle ordinate. Introducendo il sistema di coordinate polari{

x = ρcos(θ)
y = ρsin(θ) con (ρ,θ) ∈ [0,+∞)× [0,2π]

E si trasforma nell’insieme F =
{

(ρ,θ) : 0≤ ρ≤ 1, π4 ≤ θ ≤
π

2

}
e vale det[J(ρ,θ)] = ρ, quindi si ha∫

E
(x1 + x2)dx1dx2 =

∫
F

(cos(θ) + sin(θ))ρ2dρdθ =
∫ 1

0
ρ2dρ

∫ π/2

π/4
(cos(θ) + sin(θ))dθ = 1

3

Naturalmente il risultato non dipende dal metodo risolutivo scelto!

ESERCIZIO 5. Assegnate le funzioni

f(x1, x2) = x1x2 g(x1, x2) = x2
1 x2 h(x1, x2) = x1x2

2 k(x1, x2) = x2
1 x2

2

se ne calcoli l’integrale sui domini {0≤ x1 ≤ p,0≤ x2 ≤ q} e Br = {x2
1 + x2

2 ≤ r2} al variare di p, r,q ∈ (0,+∞).

DISCUSSIONE. Anche per questo secondo esercizio procediamo senza troppi commenti concentrandoci sul
calcolo degli integrali. Gli integrali sul rettangolo Qp,q non presentano difficoltà: basta tener presente le formule
di riduzione degli integrali multipli e osservare che le funzioni sono tutte prodotti di funzioni di una sola variabile,
in modo da ottenere∫

Qp,q
f(x1, x2)dx1dx2 =

∫ p

0
x1dx1

∫ q

0
x2dx2 = 1

4 p2q2

∫
Qp,q

g(x1, x2)dx1dx2 =
∫ p

0
x2

1 dx1

∫ q

0
x2dx2 = 1

6 p3q2

∫
Qp,q

h(x1, x2)dx1dx2 =
∫ p

0
x1dx1

∫ q

0
x2

2dx2 = 1
6 p2q3

∫
Qp,q

k(x1, x2)dx1dx2 =
∫ p

0
x2

1 dx1

∫ q

0
x2

2dx2 = 1
9 p3q3
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Per gli altri integrali ricorriamo alle coordinate polari nel piano (si veda anche l’esercizio precedente) e proce-
diamo come sopra∫

Br
f(x1, x2)dx1dx2 =

∫ r

0
ρ3dρ

∫ 2π

0
sin(θ)cos(θ)dθ = 0∫

Br
g(x1, x2)dx1dx2 =

∫ r

0
ρ4dρ

∫ 2π

0
sin(θ)cos2(θ)dθ = 0∫

Br
h(x1, x2)dx1dx2 =

∫ r

0
ρ3dρ

∫ 2π

0
sin2(θ)cos(θ)dθ = 0∫

Br
k(x1, x2)dx1dx2 =

∫ r

0
ρ5dρ

∫ 2π

0
sin2(θ)cos2(θ)dθ = r6

6 ·
π

4 = π24 r6

dove bisogna stare attenti a non dimenticare il valore assoluto del determinante della matrice jacobiana (in
questo caso ρ).

ESERCIZIO 6. Sia Q il quadrilatero di vertici (1,0), (0, 1/2), (−1,0) e (0,−1/2). Calcolare∫
Q
|x2

1 −4x2
2|e

(x1+2x2)2 dx1dx2

DISCUSSIONE. Il quadrilatero di vertici P1(1,0),P2(0, 1/2),P3(−1,0),P4(0,−1/2) è il rombo in figura ?? e può
essere descritto algebricamente nel seguente modo

Q =
{
(x1, x2) ∈�

2 :−1≤ x1− 2x2 ≤ 1,−1≤ x1 + 2x2 ≤ 1
}

P3 P1

P2

P4

x1 + 2x2 = 1

x1− 2x2 = 1

x1− 2x2 =−1

x1 + 2x2 =−1

FIGURA 1. Insieme Q dell’esercizio 4.

Con il cambio di variabili

u1 = x1− 2x2 u2 = x1 + 2x2

Q si trasforma nel quadrato

F = {(u1,u2) ∈�
2 :−1≤ u1 ≤ 1,−1≤ u2 ≤ 1}

e la trasformazione inversa è data dalle relazioni

x1 = 1
2 (u1 + u2) x2 = 1

4 (u2− u1)

La matrice jacobiana della trasformazione è la seguente

J(u,v) =
(

1/2 1/2
−1/4 1/4

)
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e il valore assoluto del determinante è |det J(u,v)| = 1/4> 0, quindi l’integrale richiesto è dato da

1
4

∫
F
|u1u2|eu2

2 du1du2 = 1
4

∫ 1

−1
|u1|du1

∫ 1

−1
|u2|eu2

2 du2 =
∫ 1

0
u1du1

∫ 1

0
u2eu2

2 du2 = e− 1
4

ESERCIZIO 7. Si dimostri la formula del volume di un tronco di piramide retta a base quadrata.

DISCUSSIONE. Detto P il tronco di piramide, il volume di P è il risultato dell’integrale

m3(P) =
∫

P
1dx =

∫
�

3
χP(x)dx

da un punto di vista pratico il problema risiede nel descrivere più comodamente possibile il solido, in modo da
rendere il calcolo più semplice. In questo caso è possibile procedere integrando ”per sezioni” cioè sfruttando il
teorema di Fubini per scrivere

m3(P) =
∫
�

m2(Ps)ds dove Ps = P∩{x3 = s}

Osserviamo che la sezione Ps = P ∩ {x3 = s} è un quadrato, quindi calcolando il lato della figura potremo
ricavare facilmente la misura della sezione. Detto ρ(s) la lunghezza del lato di Ps abbiamo che ρ(0) = L, dove L
è il lato del quadrato di base, mentre ρ(H) = l, dove l è il lato del quadrato più piccolo del tronco e H l’altezza del
solido, inoltre la funzione ρ(s) deve essere affine, altrimenti P non sarebbe un tronco di piramide. Le precedenti
osservazioni ci permettono di ricavare che

ρ(s) =

 L−
[

L− l
H

]
s s ∈ [0,H]

0 altrimenti
da cui m2(Ps) =


[
L−

(
L− l

H

)
s
]2

s ∈ [0,H]

0 altrimenti

Allora abbiamo che

m3(P) =
∫
�

m2(Ps)ds =
∫

[0,H]

[
L−

(
L− l

H

)
s
]2

ds =
∫ H

0

[
L2− 2L L− l

H s + (L− l)2

H2 s2
]

ds

=
[
L2s− L L− l

H s2 + (L− l)2

3H2 s3
]H

0
= L2H− L(L− l)H + 1

3 (L− l)2H = 1
3 (L2 + l2 + Ll)H

trovando l’espressione che compare sulla quarta di copertina di molti quaderni e quadernoni dei tempi che
furono...

ESERCIZIO 8. Si calcoli l’integrale$
E

x3dx1dx2dx3

dove E⊆ �
3 è la porzione del solido C = {|x1|, |x2| ≤ 1} contenuta nell’ottante {x1, x2, x3 ≥ 0}, delimitata dai piani

{x3 = 0} e {x1 + x2 + 2x3 = 3}

DISCUSSIONE. Cominciamo osservando che la chiave dello svolgimento risiede nello scrivere ”meglio” il do-
minio E, infatti possiamo osservare che

E =
{

x : 0≤ x1 ≤ 1,0≤ x2 ≤ 1,0≤ x3 ≤
1
2 [2− x1− x2]

}
⊆�

3
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quindi possiamo scrivere che$
E

x3dx1dx2dx3 =
∫ 1

0

∫ 1

0

∫ (2−x1−x2)/3

0
x3dx3

dx2

dx1 =
∫ 1

0

∫ 1

0

[
1
2 x2

3

](2−x1−x2)/3

0
dx2

dx1

= 1
18

∫ 1

0

[∫ 1

0

[
4 + x2

1 + x2
2−4x1−4x2 + 2x1x2

]
dx2

]
dx1

= 1
18

∫ 1

0

[
4 + x2

1 + 1
3 −4x1− 2 + x1

]
dx1 = 1

18

∫ 1

0

[
7
3 − 3x1 + x2

1

]
dx1 = 1

18

[
7
3 − 1 + 1

3

]
= 5

54
e l’esercizio è terminato.

ESERCIZIO 9. Si calcoli l’integrale$
C

x2
1 dx1dx2dx3

dove C⊆�
3 è la corona sferica C = B(O,R) \B(O, r), con 0< r< R.

DISCUSSIONE. Il dominio di integrazione C è una corona sferica (cioè la differenza insiemistica di due pal-
le concentriche nello spazio), questa considerazione suggerisce l’uso delle coordinate sferiche per il calcolo
dell’integrale, in modo da approfittare della simmetria di C, quindi ricordiamo che

x1 = ρcos(θ) sin(φ)
x2 = ρsin(θ) sin(φ)
x3 = ρcos(φ)

con (ρ,θ,φ) ∈ [0,+∞)× [0,2π]× [0,π] e det[J] = ρ2 sin(φ)

A questo punto possiamo scrivere che$
C

x2
1 dx1dx2dx3 =

∫
C̃
ρ2 cos2(θ) sin2(φ)ρ2 sin(φ)dρdφdθ =

∫ 2π

0
cos2(θ)

[∫ π
0

sin3(φ)
[∫ R

r
ρ4dρ

]
dφ

]
dθ

= 1
5 [R5− r5]

[∫ 2π

0
cos2(θ)dθ

][∫ π
0

sin3(φ)dφ
]

= π5 [R5− r5]
[∫ π

0
sin(φ)(1− cos2(φ))dφ

]
= π5 [R5− r5]

[
2− 2

3

]
= 4π

15 [R5− r5]

dove abbiamo sfruttato che C in coordinate sferiche è il parallelepipedo C̃ = [r,R]× [0,2π]× [0,π].


