

Proprietà dei materiali Analisi dimensionale e unità di misura

S.I. Sistema Internazionale

S.I.B. Sistema Imperiale Britannico

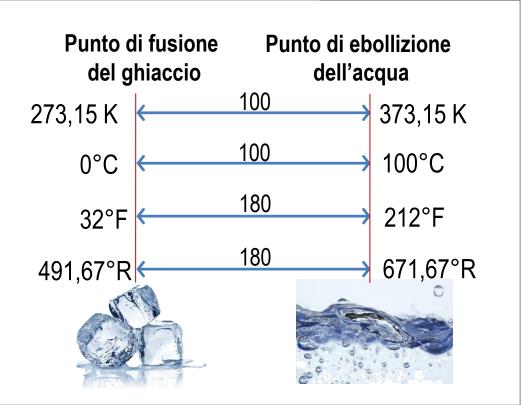
S.I. Sistema Internazionale

S.I.B. Sistema Imperiale Britannico

GRANDEZZE	SIMBOLO	SI	SIB
Massa	[M]	kg	lb, oz
Tempo	[t]	S	S
Lunghezza	[L]	m	ft, in
Temperatura	[T]	K	°C, °F
Quantità di materia	[n]	mol	mol
Intensità di corrente elettrica	[i]	Α	Α
Intensità di corrente luminosa	[lv]	cd	cd

Fattori di conversione SI ↔ SIB

MASSA


1 lb = 0,454 kg 1 oz = 0,0284 kg

LUNGHEZZA

1 ft = 0,03048 m 1 in = 0,0254 m

TEMPERATURA

°F =
$$K \cdot 1.8 - 459.67$$

Oppure
°F = °C · 1.8 + 32

Grandezze derivate

Velocità
$$\rightarrow v = \frac{[L]}{[t]} \rightarrow \frac{m}{s}$$

Accelerazione
$$\rightarrow a = \frac{[L]}{[t]^2} \rightarrow \frac{m}{s^2}$$

Superficie
$$\rightarrow S = [L]^2 \rightarrow m^2$$

Volume
$$\rightarrow V = [L]^3 \rightarrow m^3$$

Densità
$$\rightarrow \rho = \frac{[M]}{[L]^3} \rightarrow \frac{kg}{m^3}$$

Grandezze derivate

$$\rightarrow \mathbf{F} = \frac{[M][L]}{[t]^2}$$

$$\rightarrow \frac{kg \cdot m}{s^2} = N$$

$$\rightarrow p = \frac{[F]}{[L]^2}$$

$$\rightarrow \frac{N}{m^2} = Pa$$

$$\rightarrow E = [F] \cdot [L]$$

$$\rightarrow N \cdot m = J$$

$$\rightarrow P = \frac{[F] \cdot [L]}{[t]}$$

$$\rightarrow \frac{J}{s} = W$$

Multipli e sottomultipli

Nano-	n	10-9
Micro-	μ	10-6
Milli-	m	10 ⁻³
Centi-	С	10-2
Deci-	d	10-1
		1
Deca-	da	10 ¹
Etto-	h	10 ²
Chilo-	k	10 ³
Mega-	М	10 ⁶
Giga-	G	10 ⁹

MASSA

Tonnellata	Quintale	kg	hg	dag	g	dg	cg	mg	μg
10 ³	10 ²	1	10-1	10-2	10-3	10-4	10-5	10-6	10-9

$$1 lb = 0,454 kg$$

 $SIB \leftrightarrow SI$

•
$$32 \text{ kg} \rightarrow \text{lb}$$
?

Devo impostare una semplice proporzione

$$\frac{x lb}{32 kg} = \frac{1 lb}{0,454 kg}$$

$$x lb = \frac{32 kg}{0,454 kg} \cdot 1 lb = 70 lb$$

• 12 lb
$$\rightarrow$$
 kg?

Devo impostare una semplice proporzione

$$\frac{x \ kg}{12 \ lb} = \frac{0,454 \ kg}{1 \ lb}$$
$$x \ kg = 5,44 \ kg$$

Lunghezza [L]

km	hm	dam	m	dm	cm	mm	μm	nm
10 ³	10 ²	10 ¹	1	10-1	10-2	10-3	10-6	10-9

Superficie $[S] = [L]^2$

km ²	hm²	dam ²	m ²	dm ²	cm ²	mm ²	μm ²	nm²
10 ⁶	10 ⁴	10 ²	1	10-2	10-4	10-6	10-12	10 ⁻¹⁸

Volume $[V] = [L]^3$

km³	hm³	dam ³	m³	dm ³	cm ³	mm ³	µm³	nm³
10 ⁹	10 ⁶	10 ³	1	10-3	10-6	10 ⁻⁹	10-18	10-27

Conversione tra multipli e sottomultipli

km	hm	dam	m	dm	cm	mm	μm	nm
10 ³	10 ²	10 ¹	1	10-1	10-2	10-3	10-6	10-9

124 cm
$$\rightarrow$$
 m? \Rightarrow 124 \cdot 10⁻² m = 1,24 m

7,2 km \rightarrow m?

3521 m
$$\rightarrow$$
 km ? \Rightarrow 3521 / $\frac{10^3}{10^3} = 3,521 \text{ km}$

 $3.7 \text{ m} \rightarrow \text{cm}$?

Conversione tra multipli e sottomultipli

km	hm	dam	m	dm	cm	mm	μm	nm
10 ³	10 ²	10 ¹	1	10-1	10-2	10-3	10-6	10-9

35700 cm
$$\rightarrow$$
 dam? \Rightarrow 37500 \cdot 10⁻³ dam = 37,5 dam

$$0.02 \text{ dam} \rightarrow \text{cm} ? \Rightarrow 0.02 \cdot 10^3 \text{ cm} = 20 \text{ cm}$$

SUPERFICIE

Conversione tra multipli e sottomultipli

km ²	hm²	dam ²	m ²	dm ²	cm ²	mm ²	µm²	nm²
10 ⁶	10 ⁴	10 ²	1	10-2	10-4	10-6	10-12	10 ⁻¹⁸

7200 cm²
$$\rightarrow$$
 m² ? \Rightarrow 7200 · 10⁻⁴ m² = 0,72 m²

$$0.5 \text{ m}^2 \longrightarrow \text{cm}^2 ? \Longrightarrow 0.5 / 10^{-4} \text{ cm}^2 = 5000 \text{ cm}^2$$

 $16420 \text{ mm}^2 \rightarrow \text{cm}^2$?

 $0.03 \text{ dam}^2 \rightarrow \text{dm}^2$?

VOLUME

Conversione tra multipli e sottomultipli

km ³	hm ³	dam ³	m³	dm ³	cm ³	mm ³	µm³	nm³
10 ⁹	10 ⁶	10 ³	1	10 ⁻³	10-6	10-9	10-18	10 ⁻²⁷

57320 m³
$$\rightarrow$$
 dam³ ? \Rightarrow 57320 / 10³ dam³ = 57,32 dam³

12000 cm³
$$\rightarrow$$
 m³?

$$1.5 \cdot 10^{-17} \, dam^3 \rightarrow mm^3$$
?

$$SIB \leftrightarrow SI$$

35 cm \rightarrow in ?

- Da cm a m \rightarrow 35 cm \Rightarrow 35 · 10⁻² m = 0,35 m
- Imposto la proporzione per passare da m a in

$$\frac{x \ in}{0,35 \ m} = \frac{1 \ in}{0,025 \ m}$$

$$x \ in = \frac{0,35 \ m}{0,025 \ m} \cdot 1 \ in = 14 \ in$$

DENSITÀ

$$\rho = \frac{[M]}{[L]^3} \to \frac{kg}{m^3}$$

Spesso espressa in g/cm³

$$1 \frac{kg}{m^3} = \frac{1000 g}{1000000 cm^3} = \frac{10^3}{10^6} \frac{g}{cm^3} = 10^{-3} \frac{g}{cm^3}$$

$$1 \frac{kg}{m^3} = 10^{-3} \frac{g}{cm^3}$$

DENSITÀ

ESERCIZIO 1

Calcolare la densità in kg/m^3 e g/cm^3 di una sbarretta di materiale metallico di dimensioni 1 m x 10 cm x 30 cm e peso m = 81,3 kg

Risposta: 2710 kg/m³, 2,71 g/cm³

ESERCIZIO 2

Calcolare il peso in kg di un cubetto di acciaio ($\rho = 7800 \text{ kg/m}^3$) con lato 3,2 cm.

Risposta: 0,256 kg

RIGIDITÀ

E (GPa)

RESISTENZA

σ (MPa)

DEFORMAZIONE

ε (---, %)

$$E = \frac{\sigma}{\varepsilon}$$

σ (MPa)

$$\sigma \to p = \frac{[F]}{[S]} (Pa)$$

ε è una DEFORMAZIONE ed è un rapporto tra lunghezze, perciò è una quantità adimensionale che può essere espressa anche in percentuale.

$$\varepsilon = \frac{\Delta l}{l_0} = \frac{l - l_0}{l_0}$$

$$\varepsilon = 0,003 \rightarrow \varepsilon_{\%} = \varepsilon \cdot 100 = 0,3\%$$

ESERCIZIO 1

Una lega di titanio ha le seguenti proprietà meccaniche:

 σ_R = 999 MPa σ_S = 896 MPa ϵ_R = 10% E = 99 GPa

Calcolare la deformazione di snervamento ε_s in valore assoluto e percentuale.

Risposta: $\varepsilon_s = 0.9\%$

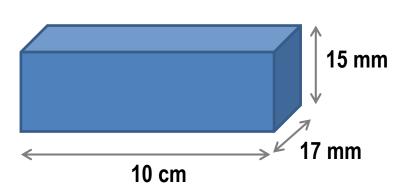
ESERCIZIO 2

Una lega di alluminio (2024-T3) ha le seguenti proprietà meccaniche:

 $\sigma_{R} = 483 \text{ MPa}$ $\sigma_{S} = 345 \text{ MPa}$ $\rho = 2780 \text{ kg/m}^{3}$ E = 73 GPa

- Calcolare il peso di una sbarretta 50 cm x 7 cm x 3 mm;
- Calcolare la deformazione a snervamento in valore assoluto e percentuale.

Risposta: m= 0,29 kg; ε_s =0,47%

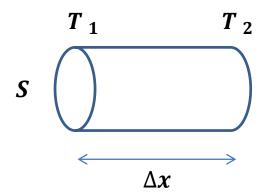

ESERCIZIO 3

Una lega di acciaio ha le seguenti proprietà meccaniche:

$$\sigma_R$$
 = 1200 MPa σ_S = 800 MPa ρ = 8 g/cm³ E = 200 GPa

Una sbarretta di questo materiale di dimensioni 10 cm x 17 mm x 15 mm, viene messa in trazione lungo il lato maggiore.

In seguito ad un allungamento $\Delta I = 2$ mm, il comportamento è ancora elastico lineare?



Risposta: $\varepsilon = 2\% > \varepsilon_s = 0.4\%$

$$q = \lambda \cdot \Delta T$$

$$dove: q = \frac{Q}{S} \cdot \Delta x$$

Q = flusso di calore
$$\rightarrow$$
 J/s = W

$$S = superficie \longrightarrow m^2$$

$$\Delta x = lunghezza \rightarrow m$$

$$\Delta T$$
 = temperatura \rightarrow K

$$\lambda = \text{conducibilità termica} \rightarrow \frac{W}{mK}$$

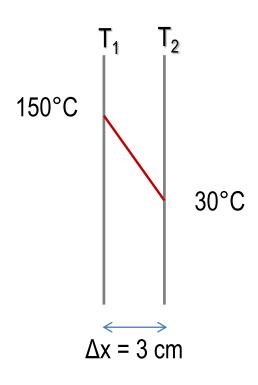
La conducibilità termica può essere espressa anche come $\frac{kcal}{h \ m \ ^{\circ}C}$

ESERCIZIO 1

Convertire le unità di misura $\frac{W}{mK} \leftrightarrow \frac{kcal}{h\ m\ ^{\circ}C}$ sapendo che 1 cal = 4,184 J per i seguenti materiali:

1. Acciaio (20% di cr):
$$\lambda = 22 \frac{W}{mK}$$

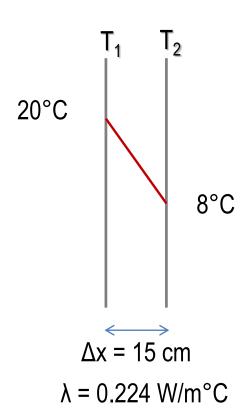
2. Piombo:
$$\lambda = 30 \frac{kcal}{h \, m \, {}^{\circ}C}$$


3. Alluminio:
$$\lambda = 175 \frac{kcal}{h \, m \, {}^{\circ}C}$$

Risposta1:
$$\lambda = 18,93 \frac{kcal}{h \ m^{\circ}C}$$

Risposta2:
$$\lambda = 34,87 \frac{W}{mK}$$

Risposta3:
$$\lambda = 203,4 \frac{W}{mK}$$


ESERCIZIO 2

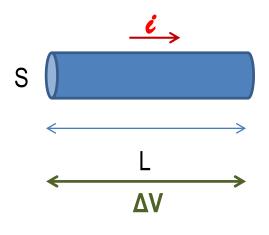
La temperatura sulla superficie calda di una parete isolante di area 1 m² e spessore 3 cm è di 150°C. In condizioni stazionarie se Q = 200 W/m², quale sarà la conducibilità termica massima del materiale utilizzato se la superficie fredda non deve superare i 30°C?

$$\frac{Q}{S} \cdot \Delta x = \lambda \cdot \Delta T$$

$$\lambda = \frac{Q}{S} \cdot \frac{\Delta x}{\Delta T} = 0.05 \frac{W}{mK}$$

ESERCIZIO 3

Una parete, di spessore 15 cm e superficie di dimensioni 3,5 x 5 m, presenta rispettivamente le temperature superficiali di 8 °C e 20 °C. La conducibilità termica dello strato è pari a λ = 0.224 W/m°C. Determinare il flusso termico scambiato tra le due superfici della parete.


Risposta: W = 313,6 W

CONDUCIBILITÀ ELETTRICA

$$\sigma = \frac{J}{E}$$

 $\sigma = \frac{J}{F}$ J = densità di corrente elettrica (A/m²) E = intensità di campo elettrico(N/C o V/m)

Prima legge di Ohm

$$R = \frac{V}{i}$$

V → potenziale elettrico (V)

¿ → intensità di corrente elettrica (A)

L → lunghezza (m)

 $S \rightarrow \text{superficie } (m^2)$

 $R \rightarrow resistenza \rightarrow V/A = \Omega$

$$R = \frac{L}{\sigma S}$$

$$\sigma = \frac{L}{RS}$$

$$\sigma o (\Omega m)^{-1}$$

CONDUCIBILITÀ ELETTRICA

ESERCIZIO

Si consideri una striscia di metallo in un circuito integrato, con dimensioni L = 2.8 mm , area della sezione A = $4 \mu m^2$.Ai capi del conduttore metallico viene applicata una tensione pari a 0.1 V. La corrente che scorre nel conduttore è : $5 \cdot 10^{-3}$ A. Determinare la conducibilità

Risposta: $\sigma = 3.5 \cdot 10^7 \, (\Omega \, \text{m})^{-1}$