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ESERCIZIO 3. Assegnato il seguente vincolo

2
S= {(X1,X2,X3) : [x12+x% +x§] =4x§} CR3

i si provi che S é chiuso e limitato,

ii. si trovino tutti i punti critici, vincolati su S, della funzione f(x) = f(xq, x5, X3) = X3,

iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita da S intorno ai punti critici
trovatiin ii.
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ESERCIZIO 5. Data la funzione

x(uq,up) = (u; cos(uq), up sin(uy), uy) conu=(uj,up) €K= [0, 277

si verifichi che

i. (x,K) & una superficie regolare,

ii. &1x(uy, u) € sempre ortogonale a d;x(uy, uy).
Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {¢(s) = (s,ug 7) : s € [0,27]} e {¥(s) = (ug4,5) : s € [0, 27]}.
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ESERCIZIO 4. Si consideri la superficie

x(u,w) = (u - %u3 suw?, —w+ %w3 —ulw,u? - w2)
con (u,w) € K =B(O,2). Si verifichi che
i. (x,K) é una superficie regolare,
ii. 91x(u, w) & sempre ortogonale a 8,x(u,w),
iii. Ax;(u,w) = O peri=1,2,3.
Infine si scriva il versore normale alla superficie.
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