Capitolo 5

La misura di Lebesgue in R’

1 Introduzione. Plurintervalli in R"

Lo scopo di questo e del prossimo capitolo & di esporre le linee generali della teoria
della misura e dell’integrazione secondo Lebesgue.

Abbiamo gia studiato nel volume 1 (cap. 4) I'integrale di Riemann per le funzioni
di una variabile. Questa teoria, che ha il notevole pregio della semplicita, non & perd
del tutto soddisfacente, sia perché un largo gruppo di funzioni non sono integrabili
secondo Riemann, sia soprattutto per la scarsa flessibilita dell’integrale di Riemann
per quanto riguarda il passaggio al limite sotto il segno di integrale.

Al contrario, la teoria dell’integrazione secondo Lebesgue, che noi tratteremo nel
seguito, é completamente esente da queste carenze, pur conservando in gran parte le
caratteristiche di semplicita della teoria di Riemann.

In questo capitolo studieremo la teoria della misura in R”. La misura di un insieme
verra definita per gradi: per prima cosa si considereranno rettangoli e plurirettangoli
(unione di un numero finito direttangoli); quindi si definira la misura di insiemi aperti
approssimandoli dall’interno con plurirettangoli, e di insiemi compatti, mediante
un’approssimazione dall’esterno. Infine introdurremo la misura di insiemi generali,
approssimandoli contemporaneamente dall’interno con insiemi compatti e dall’esterno
con insiemi aperti.

Un intervallo n-dimensionale 1CR"™ (vedi fig. 5.1) & il prodotto cartesiano di n
intervalli unidimensionali J,,J,, ..., J,

I=Jl)(.12 X ...XJn.
In forma piu esplicita, se J, =[ay, b, ), J; =[a2, b2 ), ..., Jn =[ay, b, ], si avra

I={x€R" :a,<x,<b,,a, <x; <b,,...,a, <x, <b,}.
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La misura di un intervallo / & semplicemente il prodotto delle misure degli intervalli
Ji,J2, eIy

m(l)=(b,—a,) (b2 —ay)...(b, —ay).
La misura cosi definita é la naturale generalizzazione a R” della misura elementare di
un rettangolo.
Il secondo stadio & costituito dalla misura dei plurirettangoli. Su ogni asse coordi-

nato fissiamo un numero finito di punti; siano a(,l), agl),..., ag) quelli sull’asse
Xy, aﬂz), agz), a,(‘? quelli sull’asse x,, e cosi via (vedi fig. 5.2).

Consideriamo poi gli iperpiani di equazione

— (1 _ (1 (1
X1 _ag )) X1 _ag )$ ey X _a,(fl)

— (2 _ (2 — (2
X2 —0(1 ), X2 —ag )s ey X2 —al(c,)
_ (n _(n _ (n
xp=a{", x,=a, .. x, —a},n).

L’unione di questi k; +k, + - +k,, iperpiani si dird un reticolato in R".
Un reticolato 2 divide R” in un numero finito di intervalli chijusi, che chiame-
remo intervalli di 2, pit un certo numero di insiemi illimitati.

Definizione 1.1 Un insieme Y si chiama plurintervallo (o plurirettangolo) se esiste
un reticolato Ptale che Y sia l'unione di un numero finito di intervalli di P
Se I, 1, ..., Iy sono intervalli di un reticolato P e se

Y=LVULU.. Uly,
si pone
m(Y)=m(/,) +m(/,)+ - +m(y). [1.1]

Poiché uno stesso plurintervallo Y pud essere rappresentato in pit modi, a partire
da reticolati diversi, & necessario far vedere che la misura di Y data dalla [1.1] non di-
pende dalla scelta del reticolato 2.
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Chiameremo 2’ raffinamento di P se P' D P, cioé se in ' ci sono tutti gli iper-
piani che compaiono in 2 pil eventuali altri. E’ chiaro che la misura di Y non cambia
se si sostituisce a 2 il reticolato &' ottenuto aggiungendo a 2 un iperpiano. Per in-
duzione si vede che lamisuradi Y non cambia se si sostituisce a 2 un suo raffinamento.

Siano ora &, e %, due reticolati tali che Y si possa scrivere come unione di inter-
valli di &, e anche come unione di intervalli di % . Poiché Z, U %, ¢ un raffina-
mento sia di A che di %, la misura di Y, calcolata col reticolato 4, é uguale a
quella calcolata con il reticolato %, in quanto ambedue coincidono con la misura
calcolata con il reticolato Z, U %,. =

Con lo stesso ragionamento si conclude che due plurintervalli Y e Z si possono
sempre scrivere come unione di intervalli dello stesso reticolato. Ne segue che Y UZ ¢
un plurintervallo e che

m(YuZ)<m(Y)+m(Z). [1.2]
In particolare,se YNZ =@ siha
m(YUZ)=m(Y)+m(Z).

Esercizi

1.1 Siano / e J due intervalli. Dimostrare che se / e J hanno punti interni in co-
mune, allora /NJ é un intervallo.

1.2 Siano Y=I, U, U.. Uly e Z=J, UJ, U...UJy due plurintervalli. Suppo-
niamo che per ogni h=1, 2,..., Ne k=1, 2,..., M linsieme I}, NJ; sia o vuoto o un
intervallo. Si dimostri che Y N Z & un plurintervallo.
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1.3 Sia I un intervallo. Dimostrare che: (a) per ogni € >0 esiste un intervallo J
tale che IC J° (J° ¢ la parte interna di J: J° =J—9J) e che

m(J)<m([)+e.
1.4 Sia Y un plurintervallo. Si dimostri che per ogni €> 0 esiste un plurintervallo

Z con YCZ° e tale che m(Z)<m(Y)+¢€; (b) per ogni € > 0 esiste un plurintervallo
W con WCY? e tale che m(W)>m(Y)—e.

1.5 Dimostrare che se Y e Z sono due plurirettangoli, con Y C Z, allora m(Y)<
<m(2).

1.6 Dimostrare che se Y e Z sono due plurirettangoli, con Y O Z, allora la chiusura
di Y—Z é un plurirettangolo, e si ha
m(Y—Z)=m(Y)—-m(Z).

2 Insiemi misurabili: misura di un insieme

Come abbiamo detto, il secondo gradino consiste nel definire la misura per insiemi
aperti e per insiemi compatti.

Definizione 2.1 SiaA unapertodi R". Si definisce misura di A l'estremo superiore
delle misure dei plurirettangoli contenuti in A:

m(d)=sup {m(Y); Y plurintervallo, Y C A}.

Si noti che ¢ possibile che risulti m(4)=+o0; ad esempio m(R")=+0, Se perd A4 ¢
limitato, cio¢ 4 & contenuto in un rettangolo di R”, allora m(4 )<+ oo (vedi eserci-
zio 1.5).

Lemma 2.1 Siano A e B due aperti e sia K un compatto contenuto in A U B; esiste
un numero d >0 tale che, per ogni x €K, l'intorno I(x, d) é tutto contenuto in A o
in B.

Dimostrazione. Consideriamo le funzioni
f(x)=dist(x, R" -4) e g(x)=dist(x, R" —B).

Le funzioni f e g sono continue, e siha f (x) +g(x)>0inK.

Poiché K ¢ compatto, f(x) + g(x) avrd un minimo positivo in K.

Sia ¢ tale minimo e sia d =c/2. Per ogni x €X risultera f(x) +g(x)=>2d, e dunque
dovra essere f(x)=>d, oppure g(x)=>d.

Nel primo caso si ha I(x,d)C A ; nel secondo I(x,d)CB.m

Lemma 2.2 Siano A e B due aperti. Allora
m(4 UB)<m(A4)+m(B). [2.2]
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Dimostrazione. Sia W un plurintervallo contenuto in A UB. Poiché W & compatto,
si pudapplicare il lemma precedente con K = W. Siad come nel lemma 2.1; raffinando
eventualmente il reticolato si pud supporre che ogni intervallo di W abbia diametro
minore di d. Per il lemma 2.1 ogni intervallo di W é contenuto in 4 o in B.

Sia Y l'unione di tutti gli intervalli di W contenuti in A, e sia Z I'unione di quelli
contenuti in B. Per quanto detto sopra risulta W=Y UZ e dunque

m(W)<m(Y)+m(Z).
Poiché YCA e ZCB,siham(Y)<m(A4) e m(Z)<m(B), e quindi
m(W)<m(4)+m(B)
per ogni plurirettangolo W C 4 U B. Da questa segue immediatamente la [2.2]. @

Passiamo ora alla definizione della misura per insiemi compatti.
Definizione 2.2 Sia K un compatto di R". Si definisce misura di K l’estremo infe-
riore delle misure dei plurirettangoli che contengono K:

m(K)=inf {m(Z); Z plurintervallo, Z D K}. [2.3]

Osservazione 2.1. Ricordando I'esercizio 1.4 si vede facilmente che
m(K)=inf {m(Z); Z plurintervallo, Z° DK}, [2.4]

dove al solito indichiamo con Z° la parte interna di Z. =

Lemma 2.3 Siano K e L due compatti disgiunti (K NL = &). Allora
m(KUL)ZmK)+m(L). [2.5]
Dimostrazione. Se f(x)=dist(x, L) si ha f(x)>0 in K, e dunque f ha un minimo
positivo d in K. Sia W un plurirettangolo che contiene K U L. Raffinando eventual-
mente il reticolato si pud supporre che tutti gli intervalli di W abbiano diametro
minore did/2.

Se si indica con Y l'unione degli intervalli di W che hanno punti in comune con
K e con Z l'unione di quelli che hanno punti in comune con L, risulta

YUZCW, YNZ=g,
e inoltre
KCY, LCZ.

Allora
m(W)2m(YUZ)=m(Y)+m(Z)=2m(K)+m(L),

da cui segue immediatamente la [2.5]. ®



172 Capitolo quinto

Notiamo che il lemma 2.3 ci serve solo come risultato intermedio. In realta nella
[2.5] vale sempre il segno “=", come si vedra nel corollario 2.1.

Una volta definita la misura degli aperti e dei compatti si possono considerare in-
siemi di R" arbitrari.

Definizione 2.3 Sia E C R". Si chiama misura esterna di E l'estremo inferiore delle
misure degli aperti che contengono E:
m(E)=inf {m(4), A aperto, ADE}. [2.6]

Analogamente, si chiama misura interna di E l'estremo superiore delle misure dei
compatti contenuti in E:

m(E)=sup {m(K), K compatto, K CE}. [2.7]
Se E non ¢ limitato pud accadere che per ogni aperto 4 D E risulti m(4)=+<°. In

tal caso si porra m(E)=+ oo,

Osservazione 2.2. Si noti che si potrebbe usare solo la misura esterna e definire la
misura interna per mezzo di questa. Se E & un insieme limitato (ci si puo limitare a
considerare tali insiemi; vedi piu oltre, § 4) bastera prendere un intervallo / DF e
definire

m(E)=m()-m(-E).

Si pud dimostrare facilmente che la misura cosi ottenuta non dipende dalla scelta
dell'intervallo /.

Lemma 2.4 Se A é un aperto e K é un compatto contenuto in A, esiste un pluri-
rettangolo W tale che K C WC A.

La dimostrazione di questo lemma viene lasciata per esercizio. (Si proceda come
nelle dimostrazioni dei lemmi 2.1 e 2.3.) Da esso segue facilmente la

Proposizione 2.1 Per ogni insieme E C R" risulta

m(E)>m(E). (28]

Dimostrazione. Sia K un compatto e 4 un aperto con K CECA. Per il lemma
precedente esiste un plurintervallo W con K C W C A. Ricordando le definizioni 2.1 e
2.2, si conclude che

m(K)<m(4)

per ogni compatto K C E e per ogni aperto 4 D E, e quindi vale la [2.8]. =



Misura di Lebesgue in R" 173

Se A ¢ aperto, si ha evidentemente m(4)=m(4); d’altra parte i plurintervalli sono
compatti, e dunque

m(A4)=sup {m(Y), Y plurintervallo, Y CA4}<
<sup {m(K), K compatto, K CA}=m(A).

Ricordando la proposizione 2.1, si ha

m(4)=m(4)=m(4). [2.9]
In maniera analoga, tenendo conto dell’osservazione 2.1, si dimostra che

m(K)=mK)=m(K) [2.10]
per ogni compatto K C R”.

Possiamo ora dare la definizione di insieme misurabile, e di misura di un insieme.

Definizione 2.4 Un insieme E CR" si dice misurabile (secondo Lebesgue) se la
misura esterna e la misura interna di E sono uguali e finite. In tal caso il numero

m(E)=m(E)=m(&)

si chiama misura di Lebesgue n-dimensionale (o piti brevemente misura)di E .

A volte pud essere opportuno, per evitare confusioni, scrivere m,(E’), e anche
m,(E) e m,(F), indicando cosi esplicitamente la dimensione dello spazio in cui si
esegue la misura.

Dalla discussione precedente segue che gli insiemi aperti limitati e gli insiemi com-
patti di R" sono misurabili. Comunque la classe degli insiemi misurabili ¢ molto piu
vasta: gli esempi di insiemi limitati non misurabili sono ottenuti tutti in maniera indi-
retta e non costruttiva (vedi esempio 3.4).

Osservazione 2.3. Nella teoria della misura dovuta a Peano e Jordan (precedente a
quella di Lebesgue) la misura esterna e la misura interna di un insieme £ vengono de-
finite mediante plurirettangoli:

H(E)=inf {m(Y), Y plurirettangolo, Y DE’}
U(E)=sup {m(Z), Z plurirettangolo, Z CE'}

e si dice misurabile (secondo Peano-Jordan) un insieme E per il quale le due misure
coincidono (e sono finite).

Tenendo presente 1’osservazione 2.1, si vede facilmente che un insieme misurabile
secondo Peano-Jordan lo ¢ anche secondo Lebesgue, e le misure coincidono. Il vice-
versa perd non é vero; ad esempio esistono aperti limitati che non sono misurabili
secondo Peano-Jordan.

La ragione per cui la misura di Peano-Jordan ¢ meno raffinata di quella di Lebesgue
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risiede, a ben vedere, nella proprieta (b) dei plurintervalli stabilita nell’esercizio 1.4,
in virtu della quale si pud dimostrare facilmente che

p(E)=sup {m(Z), Z plurirettangolo, ZC E°},
e dunque
H(E)=p(E®).

Analogamente si dimostra che g(E)=u(E), e dunque un insieme E & misurabile se-
condo Peano-Jordan se e solo se lo sono anche il suo interno e la sua chiusura, e le
misure di tutti questi insiemi coincidono; in altre parole se e solo se la sua frontiera
o F ha misura nulla.

A ben vedere, la misura di Peano-Jordan consiste nell’approssimare E dall’interno
con aperti e dall’esterno con compatti. Ora & chiaro che in tal modo la frontiera di E
entrera sempre nel calcolo della misura esterna e mai in quella della misura interna.
Al contrario, approssimando dall’interno con compatti e dall’esterno con aperti si
possono prendere in ogni caso quelle parti di d £ che appartengono a E ed escludere
le altre. Di qui la maggior duttilita della misura di Lebesgue. ®

Segue immediatamente dalla definizione la seguente

Proposizione 2.2 Un insieme E é misurabile se e solo se per ogni €> 0 esistono un
aperto A e un compatto K, con K CE CA tali che

m(4)-mK)<e.

Analogo ai lemmi 2.2 e 2.3 ¢ il seguente

Lemma 2.5 Siano E e F due insiemi di R"; risulta

mMEVF)<mE)+mF). [2.11]
Inoltre, se ENF=Q si ha

mEVF)Zm(E) +m(F). [2.12]
Dimostrazione. Se m(E')+m(F)=+00,la[2.11]¢éevidente.Si puo allora supporre

che le misureesterne di £ e di F siano ambedue finite. Per €¢> 0 siano 4 e B due aperti,
con £ CA e FCB e tali che

mA)<m(E)+e, mB)<m(F)+e.
Ricordando il lemma 2.2,

MEVUF)<m(A UB)<m(4)+m(B),
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e quindi
mEVF)<mE)+m(F)+2e.
Poiché quest’ultima relazione vale per ogni € >0 si ricava la [2.11].

In maniera analoga, usando il lemma 2.3, si dimostra la [2.12]. =

Se gli insiemi £ e F sono misurabili e disgiunti (cioé £ NF =), combinando le
[2.11] e [2.12] si ottiene immediatamente la relazione

mEUF)=m(E)+m(F). [2.13]

In particolare se A € unaperto e K un compatto contenuto in 4, 4 —K é un aperto
(dunque ¢ misurabile) e dalla [2.13] con E=K e F=A4 —K si ottiene

m(4-K)=m(4)—m(X).
Con un semplice ragionamento per induzione si dimostrano le analoghe delle [2.11] e
[2.12] per un numero finito di insiemi, e di qui il seguente
Corollario 2.1 Sia dato un numero finito diinsiemi misurabili a due a due disgiunti
E\,E,,...,Ey; in tal caso la loro unione é misurabile e si ha
m(E, VE, U...UEN)=m(E) +m(E;)+ - +m(Ey). [2.14]

Teorema 2.1 Dati due insiemi misurabili FE ed F, anche EUF,ENF e E—F sono
misurabili .

Dimostrazione. Cominciamo col dimostrare che £—F & misurabile. Sia €>0 e
siano 4, A’ due aperti e K, K' due compatti, con
KCECA, K'CFCA,
e tali che
m(4 —K)<%, m(4'-K')< % .
Se si pone
B=A-K' e L=K-4
B ¢ un aperto, L & un compatto e inoltre
LCE-FCB.
D’altra parte B—L ¢ aperto, e
B-LC(A-K)U'-K"),
cosicché, per il lemma 2.2,

mB-L)<SmA-K)+m@' —K"')<e.
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In definitiva per ogni €>0 abbiamo trovato un aperto B e un compatto L con
LCE-FCB, e m(B)-m(L)=m(B—-L)<e. Per la proposizione 2.2 I'insieme £—F
risulta dunque misurabile.

Per quanto riguarda £'N F si osservi che

ENF=E-(E-F),

cosicché, in virtl di quanto appena dimostrato, 'insieme £ N F sara misurabile non
appena losiano E' e F.
Infine si ha

EUF=EU(F-E) [2.15]
e i due insiemi a secondo membro sono misurabili e disgiunti. Per il corollario 2.1 la
loro unione ¢ misurabile, e il teorema ¢ completamente dimostrato. ®
Osservazione 2.4. Dalle [2.13] e [2.15] segue
m(EUF)=m(E) +m(F-E).
D’altra parte si ha F=(F—E) U (F N E), e dunque:
m(F)=m(F-E)+m(FNE).
Confrontando, si ottiene la relazione
mE)+mEF)=mEUF)+m(ENF), [2.16]

valida per ogni coppia di insiemi £ e F misurabili. =

Esercizi

2.1 Dimostrare che se E, F e G sono misurabili, allora

mEVFUG)=m(E)+m(F)+m(G)—m(ENF)-m(ENG)-m(FNG)+
+m(ENFNG).

2.2 Dimostrare la proposizione 2.2.

2.3 Sia S C R? il segmento
S={(x,»)ER?:y=0,0<x<1}.

Dimostrare che S € misurabile, e che m,(S)=0.

2.4 Si dimostri che la misura del triangolo T di vertici (0, 0), (0, a) e (b, 0) & uguale
all’area elementare definita

m(T)=az—b.
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2.5 Sia f(x) una funzione continua e positiva nell'intervallo [0, 1]; I'insieme
F={(x,y)ER?:0<x<1, 0<y<f(x)}

¢ compatto e dunque misurabile. Si dimostri che
1

m(F)=Jf(x) dx.
0

2.6 Dimostrare che I'insieme costituito da un solo punto é misurabile e ha misura
nulla.
*2.7 Sia E un insieme misurabile di R" e sia > 0; si ponga
tE={xER" : x/tEE}.
Si dimostri che ¢ E ¢ misurabile, e che
m(tE)=t"m(E).

(Si dia la dimostrazione per gli intervalli, poi per i plurintervalli ecc.)

2.8 Sia E un insieme misurabile e sia vE R”. Si dimostri che ’insieme
7.E={xER" :x—VvEE}
€ misurabile e si ha

m(ryE)=m(E).

2.9 Si dimostri che, se E C F, allora
m(E)<m(F),
m(E)<m(F).

*2.10 Dimostrare che se A € un aperto limitato di R? , esiste una successione di

plurintervalli Y, CY, C... con UY;=4. (Si metta 4 in un quadrato, e si suddivida
i=1

prima in quattro quadrati uguali, poi ognuno di questi in quattro quadratini uguali

ecc. Alla k-esima suddivisione si denoti con Y I'unione di tutti i quadratini contenuti

in A4, ...) Generalizzare a R".

2.11 Generalizzare il risultato precedente ad aperti non limitati.
2.12 Dimostrare che, se K & un compatto, esiste una successione Z; D Z, D ... di

plurintervalli, con NZ; =K.
i=1

3 Additivita e subadditivitd numerabile della misura

Lo scopo di questo paragrafo é di estendere a una infinitd numerabile di insiemi i
risultati del paragrafo precedente, relativi alla misura dell’unione di due o di un nu-
mero finito di insiemi.
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Lemma 3.1 Sia data una famiglia numerabile di insiemi aperti, A,, A, ,..., € sia

Cs

A=

1

A,';

1

allora
m(A)<k5 m(4y). [3.1]
=1

Sepoisiha Ay CA, CA;C... risulta
m(4)= lim m(Ag). [3.2]
k=0

Dimostrazione. Sia Y un plurintervallo contenuto in 4. Poiché Y é compatto e la
famiglia {4;}; cn ¢ un ricoprimento di Y, esistera una sottofamiglia finita che ricopre
Y (vedi cap. 1, teorema 6.1). Esiste dunque un intero j tale che

YCA,UA, V...UM, [3.3]

Per il lemma 2.2 si avra allora
Jj o
m(Y)< 2 m(4,)< T m(4y).
k=1 k=1

Poiché questa disuguaglianza sussiste per ogni plurintervallo Y C A, si ha immedia-
tamente la [3.1].
Sepoid, CA4, C... segue dalla [3.3] che
YCa4;,
e quindi

m(Y)<m(4;) < sup m(4;).
jEN
D’altra parte la successione m(4;) & crescente, per cui
m(Y)< sup m(4;) = lim m(4;),
JEN joree
e infine

m(4)< lim m(4;).
P

Per dimostrare la disuguaglianza opposta, osserviamo che A4;CA, e dunque
m(A4;)<m(A4) per ognij€EN; quindi

m(4)= lim m(4;),
jreo

che, confrontata con la precedente, da la [3.2]. ®
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Passiamo ora a considerare le misure esterna e interna.
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Proposizione 3.1 Sia E,, E,, ... una famiglia numerabile di insiemi di R", e sia

E=UE,.
i=1
Si ha
mE)< T mE).
i=1

Inoltre, se gli insiemi E; sono a due a due disgiunti, risulta

m(E)>  m(E).
i=1

[3.4]

[3.5]

Dimostrazione. Cominciamo dalla[3.4].Seil secondo membro é + o non c’¢ nulla
da dimostrare. Si potra supporre dunque che tutte le misure esterne degli E; siano

finite.
Sia €> 0, e per ogni i €N sia A; un aperto che contiene E; e tale che

m(4;,)<m(E;) +e2".
Se si pone

"

"
[

A= A,',

risulta E C A4 e quindi m(E)<m(A). Per il lemma 3.1,
mE)< Z mU)< Z mE)+e T 271,
i=1 i=1 i=1
e quindi

mE)< Z mE) +e.
i=1

Poiché questa disuguaglianza é vera per ogni €> 0, la [3.4] & dimostrata.

Per quanto riguarda la [3.5], si osservi che, per ogni intero &,
k
ED VE,,

i=1

e dunque, ricordando il lemma 2.5,
k k

mE)2m(Y £)= Z m(E)),
i=1 i=1

da cui segue la [3.5] passando al limite per k >+ =
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Nel caso in cui gli insiemi E; formino una successione crescente (cioé¢ verifichino
la relazione £, CE, C...), vale la seguente:

Proposizione 3.2 Sia {E;};cn una famiglia numerabile di insiemi di R", con
E,CE,C..esia

E= oEi;
i=1
in tal caso

E(E)=‘1Hxl m(E)). [3.6]

Dimostrazione. Come nella dimostrazione precedente, sia €>0 e per ogni i sia
A; un aperto contenente E; e tale che

m(4;)<m(E;)+e2"".

Gli insiemi 4; non sono in generale contenuti 'uno nel successivo, € quindi non si
puo applicare la [3.2]. Per ovviare a questo inconveniente poniamo

By =A1 U4, U .UA,
e facciamo vedere che si ha
k .
m(Bx)<m(Ex)te T 27", [3.7]
i=1
La [3.7] & vera per k=1, supponiamola vera per k e dimostriamola per k + 1. Poi-
ché By ) =By UAy,,, siha
m(By41)=m(By)+ m(Ag.1)~mBx NAg+1).

Osserviamo ora che Ex CBy NAy,,, e dunque m(Ex)<m(Bx NAk4,). Dalla
[3.7] per k segue allora

k
mBy ) <MEx)+e X 27 +M(Exy ) +2" % e—m(Ey),
i=1

e quindi la [3.7] per k +1.
In questo modo la [3.7] é dimostrata; da essa segue immediatamente

m(B)<m(Ey) +e.
Se ora si pone

B= DBk
k=1

risulterd B D E; ricordando la [3.2],

T(E)<m(B)= lim m(By)< lim W(Ex) +¢,
k —e kK —>oo
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e per Iarbitrarieta di € si trova

M(E)< lim m(Ey).
kK oo
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D’altra parte, EDE) e dunque m(E)=>m(Ey); passando al limite per k >oo, si

ottiene

M(E)> im m(Ey),
K oo

che, confrontata con la precedente, da la tesi. ®

Nel caso che gli insiemi considerati siano misurabili, si hanno i seguenti importanti

risultati.

Teorema 3.1 (additivita numerabile della misura) Sia E,, E,,.. un'infinita

numerabile di insiemi misurabili, a due a due disgiunti. Sia

E= OE,',

i=1

e si supponga che m(E)<+ . Allora E ¢ misurabile e si ha

m(E)=Z m(E,).
i=1

Dimostrazione. Per la proposizione 3.1,

T(E)< I m(E)=Z m(E)
i=1 i=1

m(E)> = m(E)=Z m(Ey),
i=1 i=1
da cui si ottiene
m(E)=m(E)= Z m(E)).»
i=1
Teorema 3.2 (subadditivita numerabile della misura) Siz E,, E,,

numerabile di insiemi misurabili, e sia

E=GE,'.

i=1

Se m(E)< + o, allora E é misurabile, e

mE)< T m(E)).
i=1

[3.8]

... una famiglia

[3.9]
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SepoiE, CE, C...,si ha

m(E)= lim m(E;). [3.10)

Dimostrazione. Si ponga
Fl =E1, F2 =E2 —Eh Fk=Ek-_(E1 UE;U...UEk_l).

Gli insiemi F; sono misurabili e a due a due disgiunti; inoltre, per ogni i €N, si ha
F; CE;, e quindi m(F;) <m(E}), cosicché

% mF)< Z m(E). [3.11]
i=1 i=1

D’altra parte £ é I'unione degli F;, cosicché per il teorema precedente £ & misura-
bile e m(E)= 2 m(F;).
i=1

La [3.9] ¢ allora conseguenza della [3.11].
Infine se £, CE, C..., la [3.10] segue immediatamente dalla proposizione 3.2.®

Esempio 3.1

Se E,, F,, ... & un’infinitd numerabile di insiemi di misura nulla, la loro unione &
misurabile, e ha misura nulla (teorema 3.2). In particolare, siccome un punto ha
misura nulla, ogni insieme numerabile ha misura nulla. Cosi I'insieme Q dei numeri
razionali compresi tra zero e uno, essendo numerabile, ha misura unidimensionale
nulla.

Questo fatto puo essere dimostrato direttamente nel modo seguente.

I numeri razionali compresi tra 0 e 1 possono essere posti in una successione
{r1,ra2,...}. Per €>0, I'insieme aperto

A= 0I@;, €27
i=1
contiene Q. Per il teorema 3.2, risulta
mA)<Z m(I(r;, e27"1)=2 e2-i=¢.
i=l i=l

Ma allora m(Q)=0 e dunque m(Q)=0.®

Esempio 3.2
L'insieme Q' dei numeri irrazionali compresi tra zero e uno ha misura 1. Infatti

0'=[0,1]-0Q
e per il teorema 2.1 Q' & misurabile. Inoltre, poiché Q e Q' sono disgiunti si ha

1=m([0, 1)) =m(Q) +m(Q")=m(Q). =
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Esempio 3.3. Un insieme compatto, non numerabile e di misura nulla: l'insieme

di Cantor

Questo notevole insieme si costruisce nel modo seguente. Si parte dall’intervallo
[0, 1], che si divide in tre parti uguali togliendo I’intervallo aperto centrale (1/3, 2/3);
resta cosi I'insieme chiuso K ;, composto dei due intervalli [0, 1/3] e [1/3, 1], ognuno
di ampiezza 1/3. Si continua ora dividendo ognuno degli intervalli chiusi che com-
pongono K, in tre parti uguali, e togliendo I'intervallo centrale aperto; restera un
insieme chiuso K, composto di quattro intervalli chiusi, ognuno di ampiezza 1/9. Si
prosegue sempre allo stesso modo; dopo m passi si otterra un insieme compatto

Km =I]UIzU"'U12m

composto di 2™ intervalli chiusi, ognuno di ampiezza 3™, e dunque di misura totale:

ko= (3]

Risulta evidentemente K, DK, D - DK, D-; posto allora

K ¢ un insieme compatto, con (vedi esercizio 3.4)

m(K)=lim m(X;)=0.
j—> o0
L’insieme K si dice insieme di Cantor. E’ chiaro che K non contiene alcun intervallo;
inoltre K ha la potenza del continuo (cioé pud essere messo in corrispondenza biuni-
voca con un intervallo, vedi esercizio 3.2) e dunque non ¢ numerabile. ®

Esempio 3.4. La funzione di Cantor

Strettamente legata all’insieme di Cantor ¢ una funzione un po’ patologica, detta
funzione o anche scala di Cantor.

Per introdurla, descriviamo in primo luogo un’operazione sulle funzioni lineari de-
finite in un intervallo. Sia f(x) una funzione lineare nell’intervallo [a, b], che assume i
valori a e § ai due estremi a e b. Dividiamo I'intervallo [a, b] in tre parti uguali; la
funzione trasformata f(x) sara definita ponendo f(x)=(a+ B)/2 nell’intervallo cen-
trale e raccordando i valori linearmente negli intervalli laterali (vedi fig. 5.3). Notiamo
che f ha la stessa immagine di f, e dunque

If - fll-<IB-al,

mentre I'immagine (tramite ) di ognuno degli intervalli laterali haampiezza |8 —a/|/2.

Cio premesso, partiamo dalla funzione fo(x)=x nell’intervallo [0, 1] e operiamo
nel modo detto; otterremo una funzione f;(x) che sara costante nell’intervallo (1/3,
2/3) e lineare negli altri due. In ognuno di questi intervalli operiamo di nuovo come
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a+p

Figura 5.3

sopra, e cosi via. Dopo h passi otterremo una funzione f, che sara lineare in ognuno
degli intervalli /,, 15, ..., I,, che compongono K, mentre sara costante in ognuno
degli intervalli che formano [0, 1]—K},. Non ¢ difficile vedere che 'immagine f, (/)
di un qualsiasi intervallo I; ha ampiezza 2% (8 —«a).

Se ora m & un intero positivo, la funzione f},, ,, sara uguale alla f;, fuori di K},,
mentre in ognuno degli intervalli di K}, avra la stessa immagine di f},. Ne deriva

llfh+m —fh ”wgz—h_

La successione {fj} ¢ dunque una successione di Cauchy; essa converge uniforme-
mente a una funzione continua f(x), detta funzione di Cantor.

La funzione di Cantor é una funzione crescente, dato che ¢ limite di funzioni cre-
scenti. Essa ha inoltre derivata nulla in ogni punto di [0, 1]—K. Infatti se xo €K dovra
risultare x, € K;, per qualche # € N. Ma allora f(x) = f,(x)=costante in un intorno di
Xo, € dunque f'(x0)=0. Poiché K ha misura nulla, la funzione di Cantor ha derivata
nulla in quasi tutti i punti di [a, b] (e cioé in tutti i punti tranne al pid in un insieme
di misura nulla), e verifica f(@)=a e f(b)=0.®

Esempio 3.5. Un insieme non misurabile

Nell’intervallo [0, 1] due punti si diranno equivalenti se la loro differenza ¢ un
numero razionale. Si &/ l'insieme quoziente di [0, 1] rispetto a questa relazione di
equivalenza. Ogni elemento a €. & costituito da un punto di [0, 1] e da tutti i punti
ad esso equivalenti, e cioé che differiscono da questo per un numero razionale. Per
ogni a€.4 si scelga un numero reale x, Ea, e sia E I’insieme costituito da tutti
questi punti:

E={x,:a€}.
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Dimostreremo, ragionando per assurdo, che £ non & misurabile.
Supponiamo che E sia misurabile, e per ogni numero razionale r€[—1, 1] sia
nE={x€ER:x-r€E}={x+r:x€E}

I'insieme ottenuto traslando di r tutti i punti di £. L’insieme 7, £ & misurabile, e si ha
m(7, E)=m(E) (vedi esercizio 2.8).

Non ¢ difficile vedere che se r#s si ha 7,E N 7, E=0. Infatti altrimenti esistereb-
bero due punti x, e x, di £ tali che x, +r=71,x, =7,x, =x, +s, e dunque x;, —x, =
=s—r sarebbe un numero razionale diverso da zero, mentre per definizione in £ non
ci sono punti equivalenti. Inoltre, dato che in E ¢’¢ un rappresentante di ogni classe
di equivalenza, per ogni punto w di [0, 1] esiste un punto di £ che differisce da w per
un numero razionale compreso tra —1 e 1. Ne segue

&= U . ED[0, 1].

reQn[-1,1]

Inoltre tutti gli insiemi 7, E, e dunque anche &, sono contenuti in [—1, 2].
Siha allora

1=m([0, 1)<m(&)<m([-1,2])=3
e poiché gli insiemi 7, E sono a due a due disgiunti:

m(&)= z m(7, E)= z m(E).

reQn[-1,1] reQ@nf-1,1]

Queste relazioni sono contraddittorie. Infatti se m(£)=0 si deve avere anche
m(& )=0, e dunque non pud essere m(& ) =>1, mentre se m(E)>0siaviam(&§ )=+ oo,
e non potra essere m(& )<3.m

Esercizi

3.1 Sia E, il cerchio I(0, 1) in R?, e per k>0 sia x; =(1 —4"‘, O)e
Ep =I(xi, 47%°1);
sia inoltre
E=Eo —(El UE) U...)=Eo -V Ek.
k=1
Si trovi la misura di £,

3.2 (A) Dimostrare che ogni x € [0, 1] si puo scrivere nella forma
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(B) Se x é scritto nella forma (A), I’espressione
x=0,aya,a54a4 ...
¢ la rappresentazione di x in base 3; ad esempio
2 - 0,02000...= 0,020,

9

Verificare che si ha anche
2 -
9 0,012.

(C) In caso di non unicita della rappresentazione preferiremno quella che contiene
meno numeri 1; ad esempio, alla rappresentazione

16 -

27 =0,1210,
preferiremo

16 _0,1202.

27 ’

In tal modo, ogni numero ha rappresentazione unica.,

Cio premesso, si dimostri che un numero reale x € [0, 1] appartiene all’insieme di
Cantor X se e solo se la sua rappresentazione in base 3 non contiene la cifra 1. (Ad
esempio 1/3=0,02 €K ; mentre 16/27=0,1202€¢K.)

(D) Siconsideri I'applicazione f: K = [0, 1], che associa al puntox=0,a; a; a3 ...€
€K il punto

fx)=Z a2,
i=1
Si dimostri che f é un’applicazione surgettiva, cosicché K non é numerabue.

3.3 Dimostrare che se m(£)=0e FCE, allora anche m(F)=0,

3.4 Sia K, DK, D una successione di insiemi compatti, ognuno contenuto nel
precedente, e sia

Si provi che m(K)= .lim m(K;). (Si prenda un aperto 4 DK, e si considerino gli in-
siemi 4,=4—-K;.) '~

3.5 Siano Q e Q' gli insiemi dei numeri razionali e dei numeri irrazionali dell’inter-
vallo [0, 1] (vedi esempi 3.1 e 3.2). Si dimostri che 1(Q)=u(Q')=1, mentre u(Q)=
=u(Q")=0.

4 Insiemi di misura infinita

Nel paragrafo 2 abbiamo definito misurabili quegli insiemi le cui misure interna ed
esterna sono uguali e finite. Talvolta perd puo essere comodo avere una definizione di
misurabilita anche per insiemi di misura infinita.
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Definizione 4.1 Un insieme E C R" si dice misurabile se per ogni r >0 [l’insieme
E NI, (intersezione di E con la palla di centro O e raggio r) é misurabile, cioé se per
ognir

m(ENL)=mENI,).

E’ evidente dal teorema 2.1 che se un insieme £ & misurabile nel senso della defini-
zione 2.4, cioé se m(E)=m(£) <+ oo, lo sara anche secondo la definizione precedente.
Non sara perd vero il viceversa; ad esempio, un qualsiasi aperto di misura infinita (in
particolare tutto R™) sara misurabile ai sensi della definizione 4.1, ma non avendo mi-

sura finita non ricadra sotto la definizione 2.4. Nel seguito quando parleremo di in-
siemi misurabili intenderemo sempre riferirci alla definizione 4.1.

Proposizione 4,1 Se E é misurabile, si ha

m(E)=m(£)= lim m(ENI,). [4.1]

y—>oo

Dimostrazione. Si indichi con L il limite a destra della [4.1]; tale limite esiste perché
m(E'N1,) é una funzione crescente dir. Per ogni r >0, esiste un compatto K, CENJ,
tale che

m(K,)>mENLY-1/r.
Poiché K, CE, risultera
m(E)>m(ENL)-1/r
e, passando al limite per r > +oo,

m(E)>L. [4.2]
D’altra parte

E= U ENI,
reN

e, per la proposizione 3.2,

m(E)=L,
che confrontata con la [4.2] da la tesi. ®

Il teorema 2.1 continua chiaramente a valere per insiemi misurabili secondo la

nuova definizione 4.1: si ha infatti

(EVF)NL=(ENI)V(FNI)

(ENF)NL=(ENL)N(FNI,)

(E-F)NI,=(ENI)—-(FNI,),
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e quindi, se £ e F sono misurabili, 1o saranno anche E UF, ENF e E—F In particolare,
siccome R” & misurabile (in quanto aperto), il complementare di ogni insieme misura-
bile é misurabile, e dunque gli insiemi chiusi sono misurabili.

Osservazione 4.1. Si potrebbe essere tentati di definire semplicemente gli insiemi
misurabili come quegli insiemi per cui m(E)=m(E), eliminando cosi le lungaggini
della doppia definizione 2.4 e 4.1. In questo modo si avrebbero perd dei seri incon-
venienti con gli insiemi di misura infinita; in particolare, il teorema 2.1 non sarebbe
valido in generale,

Sia infatti F un insieme non misurabile, contenuto in /,, e sia

E=FU(R"-1,).

Si ha evidentemente E(E )=m(£)=+00 e dunque E risulterebbe misurabile, men-
tre ENI, =Fnonloé.

Queste difficolta scompaiono adottando la definizione 4.1; infatti I’insieme E non
¢ misurabile, dato che per 'appunto nonlo é F=EN/,. =

I risultati del paragrafo precedente restano validi anche per insiemi misurabili
qualsiasi.

Teorema 4.1 Sia E,, E,, E4, ... una famiglia numerabile di insiemi misurabili, e sia

i=1

linsieme E é misurabile e si ha

m(E)<i§lm(E,~), [4.3]
Se poi gli E; sono a due a due disgiunti, risulta

m(E) =i§1m(E,-). [4.4]
Infine, se siha Ey CE, CE3 C...,allora

m(E)=ilirrl m(E)). [4.5]
Dimostrazione. L’insieme E & misurabile: infatti per ogni r abbiamo

EnL=UEND),

e dunque £ N/, & misurabile essendo unione numerabile di insiemi misurabili, e verifi-
cando la condizione m(£'N/J,)<m(/,) <+oo,
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Per la proposizione 4.1 risultera m(E£)=m(E), e le [4.3] e [4.4] seguono dalla pro-

posizione 3.1.
Infine la [4.5] segue immediatamente dalla proposizione 3.2. =

Esercizi

4.1 Sidimostri che se E e F sono insiemi misurabili, FC E, e m(F ) <+oo, allora

m(E-F)=m(E)—m(F).

4.2 Si provi che se Fy, F,,... sono insiemi misurabili, allora

s

F=

1

F;

1

¢ misurabile.

4.3 Sia F,, F,, F,,... una successione di insiemi misurabili, con F, DF, D ... e
conm(F,)<+oo, esia

Si dimostri che se m(F,) <+ oo allora

m(F )= lim m(F;)

[—> o

(si considerino gli insiemi E;=F, — F;).

5 La misura nei prodotti cartesiani

I risultati di questo paragrafo non sono molto importanti di per sé (e anzi il prin-
cipale risultato, il teorema 5.1, & un caso particolare del teorema di Fubini, che verra
dimostrato nel prossimo capitolo), ma rappresentano un mezzo tecnico che sara utile
per lo sviluppo della teoria dell’integrazione.

Teorema 5.1 Siano ECR" e FCR¥ due insiemi misurabili. Allora l'insieme
EX FCR"* ¢ misurabile e si ha

m,x (EX F)=m,(E)mg (F). [5.1]

Dimostrazione. Verra fatta in vari stadi. Si comincia dapprima con I’osservare che
la [5.1] & ovvia se E e F sono intervalli, ed é semplice se £ e F sono plurintervalli.
Il passo successivo consiste nel dimostrare la [5.1] per insiemi aperti. Siano 4 C R"
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e BCR* due aperti. Sia {P;} una successione di plurintervalli, con P, CP, CPy C...e
con

UP;=A (vediesercizi 2.10 e 2.11).
j=1

Si ha, ricordando il teorema 3.2,
m,, (4) = lim m,, (7).
j—» @

Analogamente, sia {Q;}una successione di plurintervalli con le stesse caratteristiche
della precedente, relativa all’aperto B. Se sipone R; =P; X Q;,siha R, CR, CR3; C...e

UR;=AXB,

j=1
cosicché
My k(A X B)= lim mp, x (R;)= lim m,, (F}) mg (Qj) =my (4) my (B),
e joeo
e la[5.1] é dimostrata per insiemi aperti.
Con una dimostrazione analoga, utilizzando I’esercizio 2.12, e I'esercizio 4.3 al
posto del teorema 3.2, si prova la [5.1] per insiemi compatti.

Siano infine E e F due insiemi misurabili; siano {4;} e {B;} due successioni di
aperti,con4; DE, B;DF, e tali che

my, (4;)~>m, (E); my(B;)~>my (F).
Siha EX FCA; X B;, e dunque
My ok (EX F)<Smy i (4; X By) =my, (4;) m (By),
da cui, passando al limite per i —~>oo,
Ty ok (B X F)<m, (E) my (F). [5.2]

Con lo stesso ragionamento, approssimando E e F dall’interno con insiemi com-
patti, si ottiene la disuguaglianza

Dk (EX F)>m, () my (F), (53]
che confrontata conla[5.2]dala[5.1]. =

Osservazione 5,1. Si vede facilmente (il ragionamento & lo stesso), che se E e F
sono insiemi arbitrari, invece delle [5.2], [5.3] si ottengono le disuguaglianze

My (EX F)<m, (E)my (F), [5:4]
My x (EXF)2m, (E) my (F). (5.5]
In realta la [5.5] si pud migliorare; si ha infatti

My, (EX F)=m, (E) my (F). (5.6]
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Si consideri, per verificare tale relazione, un compatto Z contenuto in £ X F, e sia
H=proj,(2)={x€R" :3yeR¥ (x,y)€Z}

la proiezione di Z su R”. Indichiamo poi con X la proiezione di Z su R¥.
I due insiemi H e K sono compatti e risulta H CF e K CF. Poiché X CH X K, si ha

My, 4 (2) <My (HX K)=m,, (H) my (K)<m, (£) my (F)
e, per l’arbitrarieta di Z,
mrnk(Ex F)<£1n (E)r_nk(F)y
che insieme alla [5.5] da la [5.6]. =
Anche nella [5.4] si ha I'uguaglianza, ma la dimostrazione é notevolmente piu
complicata. Per il seguito sard comunque sufficiente la seguente
Proposizione 5.1 Siano ECR" e FCR¥. Siha
My, (E) My (F)<SMpak (EXF). [5.7]

Dimostrazione. Si pud ovviamente supporre che M, ,x(EX F)<+ oo,
Sia C un compatto contenuto in F (vedi fig. 5.4), e per e>0 sia 4 un aperto

X b

Figura 5.4
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contenente £ X F tale che
My 4k (A) <M, (EXF)+e.
Si ponga
B={x€R": {x}XCCA}.

Poiché {x}X C ¢ un compatto contenuto nell’aperto A4, esiste un intorno V di x
tale che ¥ X CC A. Ne segue che

BDE; BXCCA.
Allora
My 4k (4) >y i (BX C)=m,, (B) my (C)> Ty (E) my (C)
(nell’'uguaglianza centrale si € usato il teorema 5.1). Si ha dunque
My . EXF)>0, (E)my (C) ¢,
e, per |’arbitrarieta di e,
My, (EX F)=m, (E)mg ().
Quest’ultima disuguaglianza é valida per ogni compatto C C F, e dunque

My,  (EXF)=m, (E)my (F).®

) -
7/ Vs
’ > ’
7/ 7/
s 7/
/ /
Ly ——
b
E,
[ ) SR S, R
/A e Vi
/ 4 /
V 7
// //
P I S SR, 7/

!

Figura 5.5
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Osservazione 5.2. E’ evidente che oltre alla [5.7] si avra anche
mn(E)n_jk(F)g-rﬁn-fk(EXF)- [5.8]

Confrontando le [5.6], [5.7] con le [5.4], [5.5] si conclude che se uno degli insiemi
E, F (ad esempio F) ¢ misurabile, allora

My (EX F)=m, (E) my (F). [59]

Un caso che sard usato nel seguito si presenta quando F=(a, b), oppure F=[a, b]
(vedi fig. 5.5). Se si pone

EL=EX(a,b), E®=EX][a,b],

si ottiene
sy (B3) =M1 (ED)=(b—a) W, (E), (5.10]
My 41 (B9) =My (Eg)=(b~a)m, (E). ® [5.11]



Capitolo 6

L’integrale di Lebesgue in R”

1 L’integrale di Lebesgue

La definizione dell’integrale secondo Lebesgue di una funzione & concettualmente
identica a quella dell’integrale di Riemann (vedi vol. 1, cap. 4, §§ 2 e 3). L’unica dif-
ferenza consiste nella definizione delle funzioni semplici.

Definizione 1.1 Si dice funzione semplice in R" una combinazione lineare di fun-
zioni caratteristiche di insiemi misurabili e limitati di R", a due a due disgiunti,

N
#(9=Z Nigg,(x). [1.1]
i=
Se ¢ é la funzione semplice [1.1] si definisce integrale di ¢ il numero
N
Z Nm(E)Y). [1.2]
i=1

L’integrale di o si indica con i simboli

-

(@), e dx, [ o0 dx,dx, ...dx,.
R"
Una funzione semplice y si puo scrivere in pii modi come combinazione lineare di
funzioni caratteristiche; come nel capitolo 4 (vol. 1), si dimostra che ’integrale non
dipende dalla rappresentazione. Infatti, se oltrealla [1.1] si ha anche

M
0= Z MW yp,
k=1

con gli F, misurabili, limitati e a due a due disgiunti, si avra

z ¥ >
P N, T2 Ry [1.3]
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Draltra parte

N N M

ZNmE)=Z T Nm(E;NFy). (1.4]
i=1 i=1 k=1

M N M

Z mmFr)=2 T wem(E;NFy). [1.5]
k=1 i=1 k=1

Poiché dalla [1.3] segue che A;=p; non appena E; N F; #@, i secondi membri delle
[1.4] e [1.5] sono uguali, e di conseguenza I’integrale della ¢ non dipende dalla sua
rappresentazione.

Con un ragionamento simile si dimostra che, se ¢ e Y sono funzioni semplici, sono
tali anche ¢ + e |y|. Inoltre si ha

[ +v)dx=[pdx+[ydx [1.6]
Ic¢dx=c Iapdx CER, [1.7]

Se p< Y, ciod se p(x) <y (x) per ogni xE R", risulta

J'(pdx<J'\pdx [1.8]
e dunque in particolare:

fodx <[lpldx. [1.9]

L’insieme delle funzioni semplici in R” verra indicato con %
Sia ora f(x) una funzione definita in R”, limitata e nulla fuori di un compatto. In-
dichiamo con %, (f) la classe delle funzioni semplici che maggiorano la f

Si(N)={p€ S o(x)=f(x) VX ER™}.
Analogamente
L(NH=WE L Y(x)<f(x) VXER"}.

E’ chiaro che le classi %,(f) ed & (f) non sono vuote; infatti, se f(x) =0 fuori
del compatto X e se | f(x)| <M, le funzioni semplici

¢=Mpx e Yy=—Myg

sono rispettivamente una maggiorante e una minorante della f.

Definizione 1.2 Siz f: R" = R una funzione limitata e nulla fuori di un compatto.
Si chiama integrale superiore della f il numero

|fax=inf {[pdx;0€ L)),



196 Capitolo sesto

e integrale inferiore il numero

jfdx=SUP{jde; ve&L (N}

La funzione f(x) si dira sommabile (secondo Lebesgue) se il suo integrale superiore
coincide con quello inferiore. In tal caso si chiama integrale di f il valore comune del-
lintegrale superiore e inferiore. L'integrale della funzione f si indica con uno dei sim-
boli

I,(f), ff(x)dx, j f(x)dx,dx, ... dx,.
Rn

Le seguenti proposizioni si dimostrano in maniera identica alle analoghe del primo
volume (cap. 4, § 3), e vengono lasciate per esercizio.

Proposizione 1.1 Condizione necessaria e sufficiente affinché la funzione f(x), li-

mitata e nulla fuori di un compatto, sia sommabile, é che esistano due successioni di
funzioni semplici {px}e {Yx}, le une maggioranti e le altre minoranti, tali che

lim j(‘Pk = y¥x)dx=0.
Kk —>oo

In tal caso esistono i limiti

lim [gdx e lim [ Yy dx,

k o K oo
e si ha

lim (g dx=lim [y,dx={fdx.

k —oo k oo

Osservazione 1.1. Notiamo che si pud sempre supporre che la successione {ix} sia
decrescente e che la {} sia crescente. Infattise si pone

90’1 =¥ \b’l =y,
¢2=¢p1Ag, =min(py,9,) VY2 =V¥1 V¥, =max(y, V2)

kﬁ;c =01 A A Agi J/k=w1V% V..V

. . ’ . . ' . ..
le funzioni ) sono maggioranti e le Y) sono minoranti; inoltre

0<vk — ¥k <¢x — Vi,
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e dunque
lim [ (g = ¥i) dx=0.
E’ chiaro che la successione gy & decrescente, mentre la Yy & crescente.

Proposizione 1.2 Condizione necessaria e sufficiente affinché una funzione f(x),
limitata e nulla fuori di un compatto, sia sommabile, é che per ogni € >0 esistano due
funzioni semplici g e Y, con

Y<f<y
[e-¥)dx<e.

Esempio 1.1. Confronto con l'integrale di Riemann

Abbiamo gia osservato che I'unica differenza, per quanto riguarda la definizione,
tra I'integrale di Lebesgue e quello secondo Riemann consiste nella classe di funzioni
semplici che intervengono nei due casi. Infatti, mentre in un caso (integrale di Lebesgue)
le funzioni semplici sono le combinazioni lineari di funzioni caratteristiche di insiemi
misurabili, nell’altro (integrale di Riemann) si prendono in considerazione solo le fun-
zioni semplici elementari, cioé le combinazioni lineari di funzioni caratteristiche di
intervalli.

Se indichiamo con % la classe delle funzioni semplici e con ¥’ quella delle fun-
zioni semplici elementari, si avrd ovviamente &%’ C %, Se f(x) & una funzione limitata
e nulla fuori di un compatto:

SLUNC L), LHNC L,

cosicché
sup { [Vdx; v €L ()} <sup {[vdxi v € L (NI
<inf { {pdx;p€ L (f)}<
<inf{[pdx; py€LY (1))
Ricordando che una funzione ¢ integrabile secondo Riemann se risulta
sup { [V dx; y €L (N}=inf { [wdx; 9 €L (),

si conclude che ogni funzione integrabile secondo Riemann lo ¢ anche secondo Lebes-
gue e i due integrali coincidono. In particolare le due nozioni di integrale coincidono
per le funzioni continue (e per quelle continue a tratti), e quindi continueranno a va-
lere per I'integrale di Lebesgue i risultati dei capitoli 4 e S del primo volume (ad
esempio il teorema fondamentale del calcolo integrale).



198 Capitolo sesto

Esercizi

1.1 Dimostrare che, se f(x) ¢ sommabile, lo sono anche le funzioni

ff)=max {f(x),0} e f~(x)=—min{f(x),0}.

1.2 Dimostrare che, se f(x) e g(x) sono sommabili, allora anche f+g, cfe |f]|
sono sommabili, e si ha

J(r+gdx=|rdx+[gdx
jcfdx=c jfdx
jf‘dx<_[gdx, se f(x)<g(x) Vx€ER",

[ raxi< [If1dx.

2 Funzioni misurabili

Per ottenere la massima generalita consentiremo qui e nel seguito alle funzioni in
esame di assumere anche i valori + oo e —oo; in altre parole considereremo funzioni a

valori nella retta ampliata’

R={-}URU {+ =}.

Definizione 2.1 Sia f(x) una funzione definita in R". Diremo che f é misurabile se
per ogni t ER l'insieme

F,={xER":f(x)>1}

€ misurabile.

! Alla retta ampliata R si puo estendere I'ordinamento di R ponendo semplicemente —e <g<
< 4 o per ogni numero reale a. Si possono estendere in parte anche le operazioni di somma e di
prodotto (con I'eccezione della somma + e —e e dei prodotti + = -0 e — - 0 che non sono defi-

niti) nel modo seguente:
+ 00 4 00 = 4 oo +a:+ue,

— 00 — 00 =—o00 +a=—oo,

+o se a>0
4o0.g=

—o se a<0,

—o se g>0
—w.g=

+eo se a<0,
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Si vede facilmente che ogni funzione continua é misurabile. Infatti, se f(x) é con-
tinua e se f(xo)>?, esiste un intorno di xo in cui si ha f(x)>¢ (teorema della
permanenza del segno). Di conseguenza F, & aperto e dunque misurabile.

Proposizione 2.1 Le seguenti proprietd sono equivalenti:
(a) Fi= {xER" :f(x)<t}é misurabile per ogni t ER.
(b) Fi= {xER":f(x)<t}é misurabile per ogni tER,
(c) F;" = {xER" : f(x)=>1t} é misurabile per ogni t ER.
(d) f(x) é misurabile.
Dimostrazione
(d)=(a) Basta osservare che
F{=R"-F,
e ricordare che il complementare di un insieme misurabile ¢ misurabile.

(a)=(b) Si osservi che
Fi'= U F{
k=1
e si ricordi il teorema 4.1 del capitolo 5.

(b)=(c) Infatti
F{"=R"-F/.

(c)=(d) Segue dalla relazione

)
Fr_ku Froin.®
=1

Vogliamo ora stabilire alcune proprieta delle funzioni misurabili. Per questo dimo-
streremo il seguente

Lemma 2.1 Se f(x) e g(x)sono due funzioni misurabili, l'insieme
E={x€R" :f(x)>g(x)}
€ misurabile.

Dimostrazione. Se per x € R” risulta f(x) > g(x) (cioé se x EF), esistera un numero
razionale r tale che

F(x)>r>g(x).

Viceversa, se questa relazione € verificata, allora X€E, e dunque in,definitiva, x EE
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se e solo se esiste un numero razionale r tale che x€F, N G, . Ne segue
E= U (F,NG)),
reQ
dove si ¢ indicato con Q I’'insieme dei numeri razionali.
Poiché Q & numerabile, E risultera misurabile grazie al teorema 4.1 del capitolo 5. =
La classe delle funzioni misurabili verra indicata con .Z. Si ha il seguente

Teorema 2.1 (proprieta delle funzioni misurabili)

(1) Sefe Mece R, allora f+ ¢ e cf sono misurabili.
(2) Sefeg€EM, alloraf+g, f* e fg sono misurabili.
) Sef\,fa,... é una successione di funzioni misurabili, le funzioni

M(x)= sup fi(x) e m(x)= inf fi(x)
kEN kEN
sono misurabili .2
(4) Se {fi}eé una successione in M, con f,<f, <...,allora
f(X)=k1im S (x)
€ misurabile.
(5) Se {fx}e una successione di funzioni misurabili, le funzioni
f(X)=m:x lim fi (x) e .&’(X)=mkin lim fj(x)

sono misurabili. In particolare, se la successione {f;} converge puntualmente a f(x),
quest 'ultima funzione risulta misurabile.

Dimostrazione
(1) Segue immediatamente dalla definizione e viene lasciata per esercizio.
(2) Siha

{(xER™: f(x)+g(x)>1t}= {xER" : f(x) > —g(x)}
e per il lemma 2.1 quest’ultimo insieme & misurabile, cosicché f+g E A,
Se t=0, si ha
{XxER" :f2(x)>1}= {XER" : f(x) >V }U {XxER" :f(x)<-\/t—},
mentre, se t <0,
{xER" :f2(x)>t}=R".
? Si vede qui I'utilita di considerare funzioni a valori in R. Infatti se ci fossimo limitati a fun-

zionFilnreali sarebbe stato necessario introdurre I'ipotesi che M(x) < + = e m(x) > — per ogni
xER".
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In ogni caso I'insieme
{xER™: f2(x)>1}

¢ misurabile e quindi 2 €.
Infine si ha

4fe=(f+8’ - (f-g)

e quindi anche fg ¢ misurabile.
(3) Siha per ogni:

{xeR" :M(x)>t}=iCJl {xER" :f;(x)>1},
cosicché M(x) ¢ misurabile, Analogamente ¢ misurabile m(x), dato che
{xER™ :m(x)<t}= Dl {xER" : fi(x)<t}.
(4) Discende immediatalmente da (3),in quanto
f(x) =is(l:1£ £ ().
(5) Sesipone
My (x)=isgr;‘ £ (),
le funzioni My (x) sono tutte misurabili, e quindi sard anche misurabile la funzione
£60= inf My (0 =max lim f;x).
In maniera analoga si procede per il minimo limite. ®

Esempio 2.1
Siano ora f(x) e g(x) due funzioni misurabili. Se si definisce

[i)=f(x), f(x)=f:(x)="=¢g(x),
si ha per (3) che le funzioni

M(x)= sup G0=f(x) Vg(x); mx)=f(x)Ag(x)
]

sono misurabili,
In particolare se f(x) é misurabile lo saranno anche le funzioni

ff®=fx)VO0 e f(x)=[-f(x)]VO.

Viceversa, se f* ed £~ sono misurabili, sara tale anche f=f*—f . =

Vogliamo dare a questo punto una caratterizzazione delle funzioni misurabili in
termini del loro sottografico. Se f(x) ¢ una funzione definita in R", si chiama sotto-
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grafico di f l'insieme
F={(x,y))ER"X R:y<f(x)} (vedifig.6.1).
Si ha il seguente
Teorema 2.2 Una funzione f(x) é misurabile se e solo se l'insieme F é misurabile.
Dimostrazione
(A) Sia & misurabile e sia # € R. Dobbiamo far vedere che I’insieme
F={xER" :f(x)>1}

¢ misurabile, e cioé che per ogni R>0 sono misurabili gli insiemi Ff =F,NIg.
Sia dunque R >0, e per # € N si ponga (vedi fig. 6.2)

FRu={(x,»)€ F: IXI<R,t<y<t+1/h).
L’insieme .9-",{2;, ¢ misurabile e limitato, e si ha
FEX(@t, t +1/n)DF R, DFR X (2, t+1/h).
Ricordando le [5.10] e [5.11] del capitolo S, si ottiene
My (F)> Mty (F L) > T (F Ry ),
e quindi, per ogni h €N,

m, (FR) =M, (FF1m); [2.1]

— ¥ = f(x)

Rn

o
1
1 "N 1T] "Mw
A N\ T W

Figura 6.1
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Figura 6.2
cosicché
.= (R
hhm m, (Ftiym)<m, (Ff)

D’altra parte
F#=VU Fiiim,
h=1
e, per la proposizione 3.2 del capitolo S,

lim m, (Fﬁllh)__'ﬁn(Ff)‘

h —o
Ne segue che FR =F, NI ¢ misurabile per ogni R e quindi F, ¢ misurabile.
(B) Sia ora f misurabile. Per ogni numero razionale r I’insieme

Frx(—°°7r)

¢ misurabile. D’altra parte (x, y)E€.% (cioé y <f(x)) se e solo se esiste un numero
razionale r tale che y <r < f(x).
Allora

F_ U F,X(—,r)
reQ
e quindi % & misurabile. ®

Possiamo a questo punto studiare le relazioni che intercorrono tra funzioni misu-
rabili e funzioni sommabili. Cominciamo con il dimostrare il seguente

Teorema 2.3 Sia f(x) una funzione misurabile, limitata e nulla fuori di un com-
patto K. Allora f é sommabile.
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Dimostrazione. Cominciamo dal caso in cui f(x)=0. Sia P un intero tale che
f(x)<P.
Siah€N, eperj=1,2,...,hPsiponga

j-1 i
Gi={"€“"t Y <f(X)<;}=F(i—x)m-Fim.

Gli insiemi G; sono misurabili e a due a due disgiunti. Se si pone
hP j hP j—1
en()=2Z 95 (X), ¥n(X)=2Z —5— ¢s.(x),
l= 1 h l I =1 h I

siha g, €Y, (f) e Yy € L(S).
Inoltre

hP
Jin—ym)ax=y; £ m@)<y mek),

=1
e per la proposizione 1.1 il teorema & dimostrato nel caso f =0.

Se ora f(x) & una funzione misurabile di segno variabile, le funzioni f* ed f ~ sono
misurabili, limitate, nulle fuori di X e positive. Per quanto appena visto f* ed f ~ sa-
ranno sommabili e quindi anche f=f*—f~ sard sommabile. ®

Sia ora f(x) una funzione sommabile limitata, nulla fuori di un compatto e non
negativa. Consideriamo i due insiemi

Fo={(x,y)ER"XR:0<y <f(x)},

Fo={(x,»)ER"XR:0<y<f(x)}, 2]
e insieme alle funzioni ¢, € Y, definite nella proposizione 1.1, gli insiemi

&, = {(x,»)ER" X R: 0<y <¢, ()},

¥, = {(x,»)ER" X R: 0<y <y (x)}.

Si ha

V,C FCFyCoy,
e quindi

My o1 ()< Ty 1 (F0) < Ty (F0) S My (Bh), [2.3]

My o1 (V) <My (Fo) <Myt g (Fo) <My y (O1). [24]

Per il teorema 5.1 del capitolo precedente

Mpay (¥n)= | Ypdx,

My ey (Pn)= [ on dx,
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e, per la proposizione 1.1,

lim |y dx= lim fundx=[rax.

h —>oo

Dalle [2.3] e [2.4] segue allora il seguente

Teorema 2.4 Sia f(x) una funzione sommabile, limitata, nulla fuori di un com-
patto e non negativa. Allora gli insiemi %, ed ¥ o sono misurabili e risulta

My sy (Fo)=Myey (Fo)= | fdx. (2.5]

Il teorema 2.4 sara usato largamente nel seguito; ce ne serviremo ora per invertire
il teorema 2.3.

Sia f(x) una funzione limitata, nulla fuori di un compatto e sommabile. Supponiamo
dapprima che f(x) sia non negativa. Per il teorema 2.4 I'insieme %, & misurabile, e
quindi é misurabile anche il sottografico Z di f, dato che si ha

F= %y UR" X (—,0]).

Applicando il teorema 2.2 si conclude che la funzione f é misurabile.

In generale, se f & di segno qualsiasi, le funzioni f* ed f ~ sono non negative e som-
mabili se lo & f(vedi esercizio 1.1). Per quanto detto sopra, f* ed f ~ sono misurabili,
e quindi & tale anche f.

Ricordando la proposizione 2.1, si ottiene cosi il seguente

Teorema 2.5 Una funzione f(x) limitata e nulla fuori di un compatto é sommabile
se e solo se é misurabile.

Esercizi

2.1 Si dimostri che un insieme limitato £ € misurabile se e solo se la sua funzione
caratteristica g € misurabile.

2.2 Dimostrare che la funzione
£6) { l1-x se x<0
x -
x+3 se x=20

€ misurabile.

2.3 Dire se sono misurabili le seguenti funzioni:

(@) e —x
(b) [x]

x/|x| se xER- {0}
(c) {

se x=0.
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2.4 Dimostrare che sono misurabili le funzioni semicontinue superiormente (infe-
riormente).

3 Alcune estensioni dell’integrale

Prima di sviluppare ulteriormente la teoria, sard opportuno generalizzare il concetto
di integrale, in analogia con quanto si é fatto per I'integrale di Riemann (vedi vol. 1,
capp. 4 e 6). L’estensione avverra essenzialmente in due direzioni: 1) integrale esteso
a un insieme; 2) integrale di funzioni non limitate.

Definizione 3.1 Sia E un insieme limitato di R", e sia f (X) una funzione limitata,
definita in E. Diremo che fé sommabile in E se la funzione

fx) se x€EF
0 se Xx¢FE

é sommabile. Quando cio awviene, il numero reale j fE dx si chiama integrale della
funzione f esteso a E, e si indica con uno dei simboli

jfdx, Jf(x)dx, Jf(x)dx, dx, ...dx,. [3.1]
E E E

fe(x)= {

Per l'integrale esteso a un insieme E valgono proprieta analoghe a quelle enunciate
nell’esercizio 1.2.

In genere, 'insieme E su cui si esegue I’integrazione si suppone misurabile. In tal
caso si dice che f & misurabile in E se, per ogni ¢ € R, ¢ misurabile ’insieme

Fi={x€E:f(x)>1t}.
Per le funzioni misurabili in £ valgono, con i cambiamenti del caso, la proposizione

2.1 e il teorema 2.1. Vale inoltre ’analogo del teorema 2.5:

Una funzione f definita in un insieme E misurabile e limitato, e ivi limitata, é
sommabile in E se e solo se é misurabile in E.

Veniamo ora alla definizione generale di integrale di una funzione qualunque
(dunque anche non limitata) su un insieme arbitrario. Converra trattare dapprima il
caso di funzioni non negative.

Definizione 3.2 Sia E un insieme di R" e sia f(x) una funzione definita in E e non
negativa. Diremo che f ¢ sommabile in E se:

(@) per ogni t >0, la funzione
fr()=min {f(x), ¢}

€ sommabile in EN 1,
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(b) risulta
lim [ f(x)dx<+oo. [32]

" enr,

1l limite a primo membro della [3.2] si chiama ancora integrale della funzione f esteso
a E, e si denota con uno dei simboli [3.1]. Notiamo che, a causa della monotonia della
funzione

FO= [ fixdx,

ENI;

tale limite, esiste sempre (finito o pari a +9°0). Per abuso di linguaggio, diremo che
lintegrale di f su E é +°° quando, essendo verificata la condizione (a), risulta

lim J‘ fidx=+ oo,
== EAr,

Osservazione 3.1. Se E e f sono ambedue limitati, la definizione 3.2 ¢ in accordo
con la precedente definizione 3.1. Infatti in tale caso esiste un t5 >0 tale che

fi,()=f(x) e ENI, =E.
Ne segue, per t > ¢,

F(0)= | fx)dx,
E
cosicché le due definizioni conducono allo stesso risultato. =

Osservazione 3.2. Se f 20 & sommabile su E| risulta

jf(x)dx=lim lim J’ fs(x)dx=lim lim f fs(x)dx. [3.3]
E

y—>o §=—>oo Eﬁ]r §—o0 Fo Eﬁ]r
Notiamo, per dimostrare tale relazione, che la funzione di due variabili

G(r,s)= J fs(x)dx
ENI,
& crescente in r per ogni s fissato, e in s per ogni r fissato. Sia ora €>0, e sia ¢,
tale che

ff(x)dx—e<F(t)< J‘f(x)dx
E E
per ognit=t,. Ser e s sono maggiori di ¢, risulta, per la monotonia di G,

[ £(x)dx—€e<F(t0)=G(to, 16)< G, 5)< jf(x)dx.
E E
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Passando al limite, prima per s > e poi perr >0, si ha

[rmydx-e<iim 1im Ge.5)< jf(x)dx,
E

r—o §—>oco
E

e per larbitrarietd di € si ottiene la prima delle uguaglianze [3.3]. Un ragionamento
analogo dimostra la seconda relazione. =

Teorema 3.1 Una funzione f(X), definita in un insieme E C R" e non negativa, é
sommabile su E se e solo se gli insiemi

Fo=1{(x,y)EEXR:0<y <f(x)}

Fo={(x,y)EEXR:0<y<f(x)}

Rn +1

sono misurabili in , € hanno misura finita. In tal caso risulta

[fax=mnss (Fo)=maus (Fo). 34]
E

Dimostrazione. Si ponga

F={(x,y)EEXR: |x|<t,0<y<f;(x)},
Fi={(x,y)EEXR: |x|I<t,0<y<f;(x)}.

Per il teorema 2.4, la funzione f; & sommabile su E NI, se e solo se gli insiemi %, e
&, sono misurabili; in tal caso si ha

| £r0ax=m, .. (F)=m,..(F). [3.5]
EQT;

Se si fa tendere ¢ all’infinito, i limiti delle tre espressioni nella [3.5] saranno uguali
(ed esisteranno perché si tratta di funzioni crescenti). Poiché

%=0 F
j=1

risultera

[ rax=m, .1 (Fo)= lim my.1 (F) = lim mpsy (F))=Mpe1 (F o). ®
E jre jre
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Veniamo ora alle funzioni di segno variabile.

Definizione 3.3 Diciamo che una funzione f é sommabile su E se sono sommabili
su E ambedue le funzioni non negative

ff(0)=max {f(x),0} e f~(x)=max{-f(x),0}.

In questo caso porremo

jf(x)dx= J';*(x)dx—ff-(x)dx. [3.6]
E E E

Osservazione 3.3. Talvolta per semplicita di esposizione sara comodo considerare
lintegrale della funzione f anche quando questo assume il valore +9° 0 —<. Piu pre-
cisamente, sia £ un insieme misurabile e sia f una funzione misurabile in E. Le due
funzioni f* ed f ~ sono integrabili su £, nel senso che esistono gli integrali

é[f: dx=rlir?° J- fi(x)dx,

ENI,

i,quali possono assumere valori finiti o pari a +e°.

Se ambedue i limiti sono finiti, la funzione f ¢ sommabile e il suo integrale é dato
dalla [3.6]). D’altra parte, perché la formula [3.6] abbia senso & sufficiente che uno
degli integrali a secondo membro sia finito. In questo caso, diremo che la funzione f
€ integrabile su E, e il suo integrale (che puo essere finito o meno) ¢ dato ancora dalla
[3.6]. E inutile dire che quest’ultima formula perde senso quando ambedue gli inte-
grali a secondo membro sono infiniti.

Ricapitolando, se £ é uninsieme misurabile, possiamo definire tre classi di funzioni,
ognuna contenuta nella precedente:

1) funzioni misurabili su E,

2) funzioni integrabili su E, cioé quelle funzioni misurabili su £ per cui almeno una
delle funzioni f* e f~ ha integrale finito,

3) funzioni sommabili su E, quando ambedue f* e f ~ hanno integrale finito.

Per le ultime due classi I'integrale di f ¢ definito dalla [3.6]. Non sara inutile in questa
occasione raccomandare una certa cautela quando si opera con i simboli oo, Ad
esempio, non sempre la somma di due funzioni integrabili & integrabile. ®

Le funzioni considerate in questo paragrafo e nei seguenti, possono assumere, come
si € detto, anche i valori +o° e —eo, E’ ragionevole pensare che una funzione somma-
bile non possa valere +°o o0 —°° in un insieme troppo grande. Questo é quanto si
dimostra nel seguente



210 Capitolo sesto

Teorema 3.2 Sia f(x) una funzione sommabile su un insieme misurabile E. Se si
pone
F.= {XE€E :f(x)=+ o},
-o= {XE€E  f(x)=—c°},
si ha

m(F.)=m(F__)=0.
Dimostrazione. Consideriamo ad esempio F... Si ha

Fnz

n)s

F‘i’

j=1

quindi F. é misurabile.
Per r >0, si indichi con g, la funzione caratteristica dell’insieme F..MN/,. Si ha

f*(X)>jer(x) perogni jEN,

per cui

m(F,,ﬁ[,)=Iw,dx<% Jf*dx.
E

Passando al limite per j—o°, si conclude che m(F.N/,)=0 per ognir >0, e dunque
m(F.)=0.

In maniera analoga si procede per F__; la dimostrazione in questo caso viene la-
sciata per esercizio. ®

Se una proprieta ¢ verificata per tutti gli x €E, tranne al piu per quelli in un insie-
me di misura nulla, si dice che la proprieta in questione sussiste quasi ovunque in E (o
anche per quasi ogni x EE). Cosi, ad esempio, il risultato appena dimostrato si puo
enunciare dicendo che una funzione sommabile su E é finita quasi ovunque in E.

E’ chiaro che se f(x)=0 q. o. in £, allora si ha

ff(x)dx=0

(pit in generale se f=g q. 0.in E, allora dex Jg dx).
Questo risultato si pud invertire: E

Proposizione 3.1 Se f(x)=0in E e se jfdx=0, allora f(x)=04q. 0. in E.
E

Dimostrazione. Siha

Fo'_‘ {XEE.f(x)>0}= U Fl/l‘.
j=1
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Poiché f(x)>1/j in Fy,j, risulta

Fm@E < [r@dx=o,
E

cosicché m(F,,;)=0 per ogni j e quindi m(F,)=0.®

Esercizi

3.1 Sia f(¢) una funzione continua nell’intervallo (0, 1) e non limitata per t—~>0;
supponiamo inoltre che f sia non negativa. Si dimostri che

1

1
b{f(t)dt= lim J‘f(t)dt.

€0
€

3.2 Dimostrare che se g(x) ¢ una funzione sommabile su E e se f(x) ¢ una
funzione misurabile in E, tale che

| f(x)|<g(x) gq.o.inE,

allora f ¢ sommabile in E.

4 I teoremi di passaggio al limite sotto il segno di integrale

In questo paragrafo ci porremo il seguente problema: se la successione f;(x) tende
puntualmente alla funzione f(x) in E, si pud concludere che

| £y dx= tim [fiyax
E Rt

E’ chiaro che in generale la risposta € negativa (basti ricordare la successione del-
I’esempio 3.3 del cap. 1, per p=2) per cui se si vuole passare al limite sotto il segno
di integrale occorrera aggiungere qualche ipotesi supplementare. Un risultato di que-
sto tipo, per lintegrale di Riemann, & stato precedentemente dimostrato (vedi
cap. 1, § 3): se la successione {f,-} converge uniformemente a f(x) nell'intervallo
[a, b], allora

b b
lim I fidx= j fdx.
j== a a

Questo risultato é essenzialmente ’unico (e comunque il piti naturale) che si possa
dimostrare nell’ambito della teoria di Riemann;al contrario, se si considera I’integrale
secondo Lebesgue, si potra passare al limite sotto condizioni estremamente generali,
come vedremo in questo paragrafo. E’ proprio questa grande flessibilita dell’integrale
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di Lebesgue nei rispetti del passaggio al limite che rende quest’ultima teoria di gran
lunga preferibile alla pili semplice teoria di Riemann.
Ma veniamo ai risultati annunciati.

Teorema 4.1 (di Beppo Levi) Sia f; una successione di funzioni integrabili in E,
con

0<fi(¥)<f; X)<f3(x) <..
esia
f (x)z,-li"l fi ().

Allora

[ r00 dx= tim

E Jore

[re0ax. [4.1]
E

Dimostrazione. Se si pone
S ={(x,y)EEXR:0<y<f;(x)},
Fo={x, ) EEXR: 0<y<f(x)},

siha 5 CF, C...e Fo=
i

ics

%o; . Per il teorema 4.1 (cap. 5) risulta
My 4y («970)= _lim My 4y (3"—01'),
jreo
e ricordando il teorema 3.1 si ha la tesi. ®

Osservazione 4.1. Ci si pud chiedere se il teorema appena dimostrato valga anche
senza supporre che le funzioni f; siano tutte positive. Si vede facilmente che questa

ipotesi si pud sostituire con la piu debole J. f1(x)dx>—o0 (0 pill in generale con
E

j Sy (x) dx>—o0 per qualche # EN): infatti in questo caso si pud applicare il teorema

E

4.1 alle funzioni positive g; =f; —f1.
Quest’ultima ipotesi & invece essenziale: infatti se si prende E=R e f;(x)=—1/i,si

ha f(x)= lim f;(x)=0, e dunque Jf(x) dx =0, mentre Ij}(x) dx=—co.m
i—>oo
Un analogo del teorema 4.1 sussiste per successioni decrescenti di funzioni:

fi12f22.... L'enunciato e la dimostrazione di questo risultato vengono lasciati per
esercizio.
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Teorema 4.2 (lemma di Fatou) Sig { f,} una successione di funzioni non negative,
e integrabili su un insieme misurabile E.
Allora

[ (min tim £) dx<min tim [ fx. [4.2]
E 17" == g

Dimostrazione. Per k=1, 2, ... si ponga

&k (x)= inf f;(x). [4.3]
j>k
Si ha 0<g, <g, <... e inoltre se k <j risulta g (x) <fj(x). Ne segue

J'gk(x)dxgjj}(x)dx perogni j=k,
E E

e quindi

J.gk (x) dx<min lim J.fi(x)dx. [4.4]
E /== E
Alla successione gj si puo applicare il teorema di Levi, ottenendo

(lim g)dx= lim jgkdx<mmmff,dx
k—>o Jreo
E E

Kk —>oo
Da quest’ultima relazione si ottiene immediatamente la [4.2] ricordando che

im g, () =min lim ().

Osservazione 4.2. Nel lemma di Fatou sipu0 sostituire I'ipotesi f; =0 con f;(x) =0
q. 0. in E, o meglio con la piu generale

[i(x)Z2p(x) q.o0.inE,

dove p(x) ¢ una funzione sommabile su E.
Infatti bastera considerare la successione

g(x)=f;(x)—¢(x)=0 q.0.inE

e applicare a questa il risultato precedente.
Analogamente, se Y (x) € una funzione sommabile su £. e se la successione {f;} ve-
rifica la condizione

[i(x)<Y(x) q.o.inkE,
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risultera
j(ma_xx lim f;) dx>max lim jf,'dX. [ [4.5]
E Joree jo= E

Teorema 4.3 (di Lebesgue o della convergenza dominata) Sia (x) una funzione
non negativa e sommabile su un insieme misurabile E, e sia {f,-(x)} una successione di
funzioni integrabili in E tali che

Ix)<Y(x) q.o.inE,

e
lim f;(x)=f(x) q.0.inE
joe
In tal caso
lim jf,- dx= jfdx. [4.6]

E

Dimostrazione. Si ha —y (x)<f;(x) <y (x) quasi ovunque in E, cosicché sussi-
stono le [4.2] e [4.5]. Osservando che

min lim f;(x)=max lim f;(x)=£(x),
Jore

joreo

si ottiene

jf(x)dx<mm limJ‘j}(x)dx<max lim jf,(x)dx< If(x)dx.
E == F == E

e dunque la [4.6]. =

Esempio 4.1
Alla luce del teorema di Lebesgue, ritorniamo per un momento sugli esempi del

capitolo 1 (§ 3).
La successione di funzioni non negative
fi(x)=jPxe” ™ p=>0,

converge alla funzione f(x)=0 nell’intervallo [0, 1]. Inoltre si ha

1
Xj}dx=jp‘2 (1-(j+1)e ),
0
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e quindi, se p <2,

1 1
lim !f,-dx=0=jfdx, [4.7]
1]

j—

mentre la [4.7] non sussiste per p =2.

Se 0<p <1, la successione f;(x) converge a zero uniformemente, e quindi la [4.7]
si poteva dedurre dai risultati del capitolo 2 (§ 3).

D’altra parte la [4.7] € vera anche per 1 <p <2; per questi valori di p la conver-
genza della successione f; non ¢ uniforme, e quindi il risultato sopra menzionato non
¢ applicabile.

E’ invece applicabile il teorema di Lebesgue. La funzione

F()=tPe tx, 1<t<+0o,
assume il valore massimo nel punto #, =p/x, per cui risulta
0<f;(x)=xF(j)<xF(p/x)=pPe Px'-P.

Per p <2 la funzione x' ~P ¢ sommabile in (0, 1), e quindi si puo applicare il teore-
ma di Lebesgue e concludere la validita della [4.7]. (Vedianche cap. 1, esercizio 3.6). =

Esempio 4.2
Sia f(x) una funzione definita in R, limitata e nulla fuori di un intervallo (a, b).
Per kE N, si ponga®

M (x) =, ( :ulgk)f ®

f*(x)=klim M, (x)=max lim f(£)Vf(x).
—> o t—x

Osserviamo innanzitutto che M; ¢ una funzione misurabile. Infatti, indicato con
E, I'insieme dei punti in cui My supera ¢, avremo x €E; se e solo se esiste un punto
z€I(x, 1/k) con f(z)>1t e cioé se e solo se la distanza dix da F; ={zER:f(z2)>1t} ¢
minore di 1/k. Ne segue che E, & aperto e dunque misurabile. Per il teorema 2.1 an-
che f* ¢ misurabile.

Come nell’esempio 1.1,indichiamo con %% la classe delle funzioni semplici elemen-
tari (combinazioni lineari di funzioni caratteristiche di intervalli). Poniamo poi

L=mf{j¢dX;¢€<5’$’(f)}-

3 f*(x) si chiama la regolarizzata semicontinua superiormente di f. Essa € la piu piccola
funzione semicontinua superiormente che sia maggiore o uguale a f. Analogamente f, (x) € la piu
grande funzione semicontinua inferiormente che non superi f. E’ evidente che f € continua in x,,
see solo se f*(x,)=/f,(xg).
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Sia gpeyfl(f) e sia xo un punto in cui ¢ & continua. Poiché ¢ & costante a tratti,
esisterd un intorno /(x,, 7)in cui ¢ é costante e siccome ¢ maggiorante di f, risultera

p(xo)=> sup )f(X)-

Xo, 7

Ne segue che f*(xo)<y(xo) in ogni punto in cui ¢ & continua, e dunque in quasi

tutti i punti di R. Allora
If* (x)dx< J.¢(X) dx
per ogni p € L (f), cosicché

_[f*(x)dx<L.

(4.8]

D’altra parte, se si divide I'intervallo (a, b) in intervalli /,, I,, ..., Iy, ognuno di

ampiezza minore di 1/k, e si pone

Ap=sup f(x), h=1,2,.,N,
Iy

N
‘.0(x)=hz_:l Ao, (%),
risultera
()< My (x).
Infatti, ogni x € (a, b) apparterra a qualche I, e dunque

p(x)=Ap=sup f(x)< sup [f()=My(x)
Iy k)

I(x,1/

dato che I, C I(x, 1/k). Si ha allora

L <I¢(x) dx <J'Mk(x) dx

da cui, passando al limite per k—>oo, e ricordando la [4.8], si ottiene la relazione

L =inf{f¢dx; ¢€y+el(f)}=jf*(x)dx.

Analogamente, se si pone

my (x)=1(xiﬂlf/k)f o,

fu (x)=klim my (x)=min lim f()Af(x),
—> o t—x

[4.9]
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si ottiene

sup {[wax; ye L )=[1, @) dx.

Ricordando la definizione di integrale di Riemann (vedi vol. 1, cap. 4, definizione
3.1) si conclude che una funzione f(x) & integrabile secondo Riemann se e solo se

jf*(x)dx=ff,(x)dx. [4.10)

Poiché si ha sempre f*(x)=>f, (x), la [4.10] ¢ verificata se e solo se f*(x)=f, (x)
quasi ovunque (vedi proposizione 3.1). D’altra parte f *(x)=f, (x) se e soltanto se la
funzione f ¢ continua nel punto x, per cui risultera in conclusione che una funzione
f(x), limitata e nulla fuori di un compatto, é integrabile secondo Riemann se e solo
se é continua quasi ovunque (teorema di Vitali).

Osservazione 4.3. Un insieme E & misurabile secondo Peano-Jordan se e solo se la
sua funzione caratteristica pg & integrabile secondo Riemann, e dunque se e solo se
g & continua quasi ovunque. Poiché i punti di discontinuita di yg sono i punti di
frontiera di E, si ritrova per questa via che E ¢ misurabile secondo Peano-Jordan se e
solo se dF ha misura nulla; un risultato gid dimostrato nel capitolo 5, osserva-
zione 2.3.®

Esempio 4.3
Se a> 0, risulta
o n x n
J'e"‘x“"dx= lim (l-;:_) x*1dx. [4.11]
n —»oo
°

La funzione

so=(1-3)

¢ decrescente in [0, n], e quindi g(x) <g(0)=1.
Se si pone

n
(l —5-) x* 1 0<x<n
fa(x)= n
0 x=n,
risulta

0<f, (x)<x*'e™*

lim f, (x)=x*"te *.

n—oew
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Poiché per a>0 la funzione x*~! e¢~* ¢ sommabile in (0, +°), la [4.11] segue

immediatamente dal teorema di Lebesgue. ®

Se invece di successioni si considerano serie di funzioni, si possono applicare i ri-
sultati appena dimostrati alla successione delle somme parziali e ottenere cosi teoremi
che consentono di scambiare tra loro le operazioni di somma della serie e di integra-
zione.

Di particolare interesse ¢ il caso di una serie di funzioni non negative.

Sia {ug (x)} una successione di funzioni definite in un insieme misurabile £, non
negative e misurabili. La successione {s,, (x)} delle somme parziali della serie

2 ur(x), Xx€E,
k=0

sara crescente, e dunque ad essa si potra applicare il teorema di Levi. In conclu-
sione, se {uy(x)} é una successione di funzioni non negative e misurabili su E, ri-

sulta
Pk

In altre parole, nel caso di serie a termini positivi si possono sempre scambiare tra
loro le operazioni di somma e di integrazione.
Nel caso di serie a termini di segno qualsiasi, la [4.12] non é sempre valida; se pero

si ha
J.{ z |“k|}dx< + o0
k=0

E

ue)dx= I [u,()dx. [4.12]

(] k=0é

™M

(o, il che ¢ equivalente, X | |uy|dx <+o°), allora risulta
k=0
E

» uk(x)dx=f{ > uk(x)}dx. (4.13]
0E g (k=0

Per dimostrare la [4.13], consideriamo la funzione

v(x) =k§o [ty (X))

Poiché J. v(x)dx < + o, la serie X |uy(x)| converge quasi ovunque (teorema 3.2)
2 k=0
e dunque, per il teorema della convergenza assoluta, convergera quasi ovunque anche

la serie X uy (x).
k=0
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Se si pone
m oo
sm(0)= 2 we(x), s(x)= T ur(x),
k=0 k=0
si ha
lim s, (x)=s(x) q.o.inE,
m oo
e inoltre
[$m X)I<v(X) q.0.inE.

Per il teorema di Lebesgue si avra allora

E m=>=k=0 g

cioé la [4.13].

Esempio 4.4

bt n?
jl_x In(1/x)dx=".

Si ha, per 0<x<1,

1
1-x

=3 xk
k=0

e quindi

1

In(1/x)= = ** In(1/x). 0<x<1.
1-x k=0

Js(x)dx= lim Is,,,(x)dx= lim g juk(x)dx
mocE

219

=2 j-uk dx,
k=0E

Le funzioni x* In(1/x) sono non negative e quindi sussiste la [4.12]. Si avra allora

k=0

e la tesi segue ricordando I’esempio 5.3 del capitolo 2. =

Esercizi

4.1 Dimostrare che

1

() S X nmdx= T (k)2 p>-1,
01 x k=1

1 w 1 o
I3 L hn(/x)dx= 3 [# mamyax= T ge+1y?
o -X ° k=0
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1 ?
(b) J1+ In(1/x)dx="— =

4.2 Si dimostri che

1 nx 1 n32
lim j—z dx=0, Lim E——-——— dx=0.
n—oo ° l+n2x n->¢-°1+n2x2

4.3 Sia E un insieme misurabile, con m(E)<+<0, e sia {f;} una successione di
funzioni misurabili in E tali che

M 1M q.0.inE,
) klim i(X)=f(x) q.o0.inE.

Si dimostri che

lim | fydx= fdx

k—}oe
4.4 Sia fi (x)=k/(x®> +k?). Si dimostd che 0<f; <1, hm fk(x) 0 per ogni

xER, e f fi (x)dx=m. Perché questo non contraddice il risultato dell’esercizio

precedente?
4.5 Sia {Ex} unasuccessione di insiemi misurabili, con E; CE, C ..., e sia
E=VUE k-
k=1
Sia f(x) una funzione integrabile su E'. Dimostrare che

[r@ax=im [ r@ax.
E k== B

4.6 (Assoluta continuita dell’integrale) Sia F misurabile e f(x) sommabile su E.
Si dimostri che per ogni € > 0 esiste un § > 0 tale che, se FCE e m(F)<$, allora

I;‘-Ifldx<e.

(in caso contrario esisterebbe un €3> 0 e per ogni k€N un insieme F) tale che

m(F)<2%-1 ¢ J' Iflax>eo. Si ponga £;= U Fy; siha By DE; D .., m(Ep)<
, Fg
<27 e Ilfl dx=€q. La successione g,‘IfIwE ¢é decrescente (g, =g, =>...) e tende

E .
j
a zero quasi ovunque. Applicare il teorema di Lebesgue).
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4.7 Sia E misurabile e limitato e sia f(x)=0 in E; allora

jfdx=sup{dex;K compatto, K CE}.
E K

4.8 Lo stesso risultato vale anche senza I’ipotesi che E sia limitato.

49 Si dimostri che la successione {f,} dell’esempio 4.3 converge a x*~! e, uni-

formemente su ogni intervallo chiuso [a, +°°), a> 0. Si ricavi il risultato dell’esempio
4.3 usando la [3.3] del capitolo 1.

5 11 teorema di Fubini

La teoria svolta finora non di alcun metodo per il calcolo di integrali in R",
tranne ovviamente che nel caso di una variabile (n=1) in cui, come abbiamo gia os-
servato, resta valido il teorema fondamentale del calcolo integrale.

In questo paragrafo mostreremo come sia possibile calcolare un integrale n dimen-
sionale eseguendo successivamente n integrazioni in una variabile. Per semplificare
le dimostrazioni considereremo in dettaglio il caso n =2, lasciando per esercizio la
generalizzazione dei risultati a integrali in un numero qualsiasi di variabili.

Cominciamo col considerare il problema della misura di un insieme di R?; al
solito tratteremo per primi i casi di insiemi aperti e compatti.

Lemma 5.1 Sia A un aperto di R? (vedi fig. 6.3), e per ogni x € R si ponga
Ax={y€ER:(x,y)EA}

Figura 6.3
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Si ha
m,(A)=fm1(Ax)dx. [5.1]
Dimostrazione. La [5.1] & ovvia per intervalli, e quindi sussiste anche per plurin-
tervalli.
Sia {Y) } una successione di plurintervalli contenuti in 4, e tali che
chyzc... € UYk=A.
k=1
Si avra
ms (4)= lim m, (¥,)= lim Jm,(Yk,x)dx. (5.2]
Draltra parte per ogni x € R risulta
Y xCY,,C..
e
U Yk, x =4 X
k=1
cosicché
my(Yy,x)<my(Y, )< ...
e

klim my (Yy,x)=m;(A4,).
Dal teorema di Levi, si ottiene

lim [ my(Fe)de= [ m(dz)dx,

che, confrontata con la[5.2],dd la [5.1]. m

In maniera analoga (la dimostrazione viene lasciata per esercizio) si prova che per
ogni compatto K C R? si ha

mz(K)=Jm1(Kx)dx. [5.3]

Teorema 5.1 Sia E C R? un insieme misurabile; si ha

ma (E)=jm1(5x)dx. [5.4]

Dimostrazione. Cominciamo col supporre che m, (E)<+oo. Siano {4;} e {K;}
due successioni, la prima di aperti contenenti E, e la seconda di compatti contenuti
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in E, tali che
A; DA, .., limm,(4))=m,(E),
joee

Kl CK2C..., hm mz(Kl)=m2(E)

I—}u

Per ogni x €R, risulta

Aj,x DFE, DKi,x’ [5,5]
(]

m, (E)= lim f m, (4;, ) dx = lim j m, (K; ) dx,

jore jore

cosicché

lim | {m, (4;,) = my (K )} dx =0, [5.6]

joree

Se si pone

gj(x)=ml(Aj,x) —ml(K‘,x),

la successione {gj} € una successione decrescente, con 0<gj(x)<g;(x). Poiché g,
¢ sommabile, si pud applicare il teorema di Levi; si ha per la [5.6]

[{1im g;(}ax=o,

) Andal
e quindi, per la proposizione 3.1,

lim my (A,,x)=hm ml(K,'x) q.o0. in R. [57]
joe

i—)n

Quest’ultima relazione, insieme alla [5.5], implica che E, é misurabile per quasi
ogni x € R. Inoltre si ha, per ogni intero j,

m, (K,-)=jm,(1<~_,)dx<jm,(E,)dx <[m,(Ex)dx<jm,(A,-,x)dx=

=m, (A;‘),

e passando al limite per j—>oo si ottiene la [5.4].
La [5.4] vale anche sem, (E) = + oo. Infatti, posto ER =E N g, risulta

my (Ex) = sup m; (E5)
R>0
cosicché la funzione m, (Ey) ¢ misurabile. Inoltre
m, (ER)=jm,(E§)dx<jm,(E,)dx

e la [5.4] si ottiene passando al limite per R > +c°. ®
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Se si pone
E,={x€ER:(x,y)EE},

risulterd, con una dimostrazione del tutto analoga,

ms (E)= [ my(E,)dy.

In generale consideriamo lo spazio R"**¥=R" X R¥ e indichiamo con (x, y),
XxER", yeR¥, un generico punto di R"*¥_ Se £ ¢ un insieme misurabile di R"*¥
si ponga, per ogni xE€ R",

Ex={y€R*:(x,y)EE}
e per ogni y €ER¥
Ey={x€ER":(x,y)EE}.

Con una dimostrazione identica alla precedente si prova che

Mo vk €)= | meE)ax= [ ma(&y)ay. (58]
R" R

Esempio 5.1
Sia E un insieme normale rispetto all’asse delle y (vedi fig. 6.4)

E={(x,y)ER? :a<x<b,a(x)<y<p(x)}.

Si ha
B(x)—a(x) se a<x<b
my (Ex ) = { . .
altrimenti,
y
y =B(x)
Ey y=alx)
|
|
]
PN |
| | |
| | |
| 1 ]
| | |
1 1 |
a x b x

Figura 6.4
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e dunque

b
m, (E)= f (Bx)-a(x))dx.=

Esempio 5.2. Volume dei solidi di rotazione
Sia f(z) una funzione non negativa, definita per a<z<b. Nel piano xz (vedi fig.
6.5) si consideri I'insieme

F={(x,2):a<z<b;0<x<f(2)},
e sia E I’insieme ottenuto ruotando F attorno all’asse z:
E={(x,y,2):a<z<b;x*> +y? <f%(2)}.

Per il teorema 5.1 sara

b
ms ()= [m3 (E;)dz,
dove
E;={(x,y)ER?:(x,y,z)EE}

¢ la proiezione sul piano x y dell’intersezione di £ col piano orizzontale passante per z.
Per <z <b I'insieme E, ¢ un cerchio di raggio f(z), e dunque

1f2(z) a<z<b

mZ(Ez)={

0 altrimenti.

Figura 6.5
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In definitiva,
b
m, (E)=n Jf’ (2)dz.
a

Consideriamo ad esempio il solido ottenuto a partire dalla funzione
f(@@)=sinz, 0<z<m,
Si ha

m 2
m; (E)=1r(fsinzzdz="7.

Esempio 5.3. Misura della palla n-dimensionale
Indichiamo con [ (vedi fig. 6.6) la palla n-dimensionale di raggio 1:

I={xeR":|x|,<1}.
e sia

w, =m, ).
Se si pone, per 0<¢<1,

I®=IN({t}X R" 1

Pinsieme /(¢) & una palla n-1 dimensionale, di raggio r(t)=(1—¢2)!'2 (vedi fig. 6.7).

Xy
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1 rit)=V1-¢?

t

Figura 6.7
Se si indica con [, la proiezione di /() sull’iperpiano di equazione x;=0, si ha

m, ()= f M-y (y) dt.

Draltra parte, /, & una palla a n-1 dimensioni di raggio (¢ ).e dunque
n-1

my_y (I)=wy_ (1 -tz) 2

In definitiva

1 n-1 2
w,,=w,,_1j(l—t2) 2 dt=2w,,_,J'cos"udu.
1 0

Ricordando la [5.4] del capitolo 5 (vol. 1) si ha

n2 m/2

J'cos"udu=n—1 J cos" "2 udu.
0

Se n é pari (n=2k), si ottiene

_(Qk-1)(2k-3)..3
2k(2k=2)...2

k-1
T Qi

(Y]

w2 -
I cos?* udu >
0

mentre, se n & dispari (n=2k+1),

/2
]’ cos2k+! udu=ﬂ—.
. Qk+ 1)

In conclusione,
_ QK-
“2k T o
QM

Wak+1 =m 2wk,

MTWak-1,
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cosicché
Wak+1 _ . Qk-1n! __2nm
Wak -1 Qk+11t  2k+1°

Wak Qk-2)!' 4
™ =—
Wak-2 QM k

Ricordando che w; =2 e che w, =, si ricava infine

mk
k!
2k+l1rk

Qk+1)! -

Wk =

Wak+1=

Teorema 5.2 (di Fubini) Sia f(x, y ) una funzione sommabile in R?. Allora

(1) per quasi tuttigli x €ER la funzione y - f(x, y ) é sommabile in R;
(2) la funzione

g(x)=ff(x.y)dy
R

é sommabile in R;
(3) risulta

[reyaxay=[([ 1o, arax [5.9]
R? R R

Analogamente, per quasi ogni y ER, esiste Fintegrale
[ fee.vyax=n0),
R

e si ha
[ 1 yaxay=[( [fxanay. [5.10]
R? R R

Dimostrazione. Supponiamo dapprima che sia f(x, y)=0. Per il teorema 3.1,
I'insieme

Fo={(x,y,2)ER* : 0<z<f(x,)}
¢ misurabile e si ha
ma (Fo)= [ f(x,»)dxdy. [5.11]
ﬁ:
Dal teorema 5.1 segue che I'insieme

Zo,x={(y,2)ER? : (x,y,2)E Fo}={(¥,2) ER? : 0<z <f(x, )}
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¢ misurabile per quasi ogni x €R e risulta

ms (Fo)= [ma (Lo x)dx.
R

D’altra parte, sempre per il teorema 3.1,
m; (Fo,x)= [ F(x,7)dy,
R

e dalla [5.11] si ottiene immediatamente la [5.9].

La dimostrazione della [5.10] & identica alla precedente e viene lasciata per eser-
cizio.

Infine se la funzione f(x, y) & di segno variabile, bastera considerare le funzioni

ffef-.m

Anche il teorema di Fubiniammette una generalizzazionea R"*¥: se (x,y), xER",
yER¥, ¢ un generico punto di R"** e f(x, y) ¢ una funzione sommabile in R"*¥ | si
ha

| senaxay=[ax [ reyay=
R"* R" R R

fkdyj F(x,y)dx. [5.12]
R"

Esempio 5.4. Integrale esteso a un insieme normale
Sia

E={(x,y)ER? :a<x<b, a(x)<y<p(x)}
e sia f(x, y) una funzione inte_grabile in E. Se indichiamo al solito con fg la funzione
fCx,y) se (x,y)EE
0 se (x,y)€E,

si ha, per il teorema di Fubini,

fE(xry)= {

[reyaxday= [ fe ) axay=[ax [frx, ) dy.
E R? R R

Se x ¢ (a, b) risulta fg(x, ¥)=0 per ogni y, cosicché
b
fdx ffE(x,y)dy=J dx ffs(x,y)dy-
R R a R

Dr’altra parte, per ogni x €(a, b) la funzione fg(x, y) é nulla se y &(a(x), B(x)) e
coincide con f(x, y) se y €E(a(x), f(x)). Allora

B(x)
[ fe.yyay= [ fer)dy.
R

a(x)
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In conclusione
b Bx)
| ryyaxay=[ax | sy, [5.13]
E

T €]

Esempio 5.5

Si calcoli (vedi fig. 6.8)
J‘ xydxdy,
E

dove
E={(x,y)ER? :0<x<1,x2<y<+x }.
Si ha
1 Vx 1 ) y=x
fxydxdy=deJ xydy=".dx[5xy;‘ =
E [} 2 (]

x -ly=x3?

1 (25 =l(l_1)=L
> (x*—x)dx ACE ..

o— =

Se I'insieme E € normale rispetto all’asse delle x,
E={(x,»)ER? :c<y<d,y(»)<x<8(»)},
si ha I’analoga della [5.13]:

d 6&(y)

[reey)axay=[ay [ f@ e
E c  1»
y
T S
|
l
Vx :
|
|
|
E x? |
|
|
|
1

Figura 6.8
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Esempio 5.6
Sia A I'insieme in figura 6.9; si calcoli

J'x(l -y)dxdy.
A

Si ha

A={(x,):0<y<1/V2;y<x<V1-y? },

e dunque
l/\/2- Vi
J'x(l—y)dxd j dy J x(l—y)dx=
A 0 y
1/V/2 1 x=Vi-y?
= j' dy[ix"'(l—y)] =
0 x=y
1 1/\/2_ \/'2" 1

=3 J [(1-y*)-»*1(1-y)dy="¢= ¢

Si osservi che I'insieme A é normale anche rispetto all’asse delle y

A={(x,y)ER?:0<x<1,0<y<q(x)},

dove
x se 0<x<1/v/2
q(x)=
Vi-x?  se 1/V2<x<1.
y
G
2 V2,
y=x
x2 +y?r=1
A
0 1 x

Figura 6.9
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Si ha dunque
1 9@ 2 x
Ix(l-y)dx’dy=fdx !x(l—y)dy= J' dex(l—y)dy+
E 0 0 o
1 Vi-x?
+ f dx 5 x(1-y)dy.
12 °

I calcolo degli ultimi due integrali viene lasciato per esercizio; é evidente che il
risultato dovra essere lo stesso nei due casi. ®

I metodi degli esempi precedenti si estendono al caso di piu variabili; ad esempio,
se F & un insieme di R? e se

E={(x,y,2)ER’ : (x,y)EF, a(x,y)<z<B(x,»)},

risulterd

B(x,»)
Jf(x,y,z)dxdydz=J‘dxdy fx,y,2)dz,
E F a(x,y)

cosicché il calcolo di un integrale triplo & ridotto a quello di un integrale semplice e,
successivamente, di uno doppio.
Esempio 5.7
Sia (vedi fig. 6.10)
T={(x,y,2):x>0,y>0,z>0,x+y +z<1}.

\\\\\\\\\\\\\W\\\\\\\\\\\\\..

‘ \\\\\\\\\\\

Figura 6.10
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Si calcoli

f(x +2z)dxdydz.
T

Si vede facilmente che
T={(x,y,2):(x,y)€EA,0<2z<1-x—y},
dove
A={(x,y):x>0,y>0,x+y<1}={(x,y): 0<x<1,0<y<1-x}.

Si ha allora

1-x-y 1 z=l-x-y
j(x+z)dxdydz=dedy f (x+z)dz=J’dxdy|ixz+Ez’] =
T a ) A

z=0

[a-p+x0-y-x)dxay=
A

L 1
J.dx
0

1 y=1-x

idx [—% (1-yp —xzy] -
y=0

1
lj(_l__z za) _ L
20 3 X +3x dx 12

N —

X

[(1-y)*-x*]dy=

|-

Ot—— !

N | —

Osserviamo che si sarebbe ottenuto lo stesso risultato integrando prima rispetto
ay:

1-x~-2

J(x +2)dxdydz= Idxdz J (x+2)dy= j(x +z)(1-x-z)dxdz.
T B 6 B

dove
B={(x,2)ER?:0<x<1,0<z<1-x},

o anche eseguendo in primo luogo l’integrazione rispetto a x. Lasciamo per esercizio
I’esecuzione dei calcoli in questi casi.

Esercizi

5.1 Calcolare i seguenti integrali, nei quali gli insiemi 4 sono dati in figura 6.11:

@a) J(x2 +y)dxdy
A
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»

(a) (b)

N

(c), (a) (e), (N

(9) (h)

Figura 6.11

(b) jxydxdy
A

© [
A

) ny cos(x +y)dxdy
A

(e) szewdxdy
A

® jx(y+smy)dxdy
A
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®) _[(1 +x+y)? dxdy
A

(h) j *? +y%)dxdy
A

5.2 Si disegnino schematicamente gli insiemi sotto indicati, e se ne trovi la misura:

A={(x,y,2)ER?:x20,y>0,0<y<4-x2-:%}
B={(x,y)ER? : —1<x<2;x2<y<x+2}

C={(x,y,2)ER® :x? +y2<1/2,Vx? +y? <z<V1-x2-)?}

D={(x,y)ER? :—1<y<], |y|-1<x<V1-y? }
E={(x,y,2)ER? : x|+ |yl +z|< 2, |xI<1, |y <1}

5.3 Se 4 ¢ un insieme di R” si chiama baricentro di A il punto di coordinate

x;= ! j.x,-dx.
m(A)A

Trovare il baricentro degli insiemi considerati negli esercizi 5.1 e 5.2.

5.4 Si disegnino schematicamente i solidi ottenuti ruotando intorno all’asse z gli
insiemi che seguono, e se ne calcoli il volume:

(@) F={(x,z)ER?:0<z<1, 0<x<\/;} (paraboloide di rotazione)
(b) F={(x,z)ER?:1<z<2,0<x<Inz}
() F={(x,z)ER?:0<z<1,1+z<x<¢"}

(d) F={(x,z)ER?:0<z<2,0<x<min(z,V2-2)}.

§.5 Si trovino i volumi dei solidi ottenuti ruotando intomo all’asse verticale gli
insiemi dell’esercizio S.1.

5.6 Il momento d’inerzia di un solido omogeneo £ C R® rispetto a una retta r &

I.= l.[dist(x, NP dx,

E

dove dist(x, r) indica la distanza del punto x dalla retta r.
Dimostrare che il momento d’inerzia di E rispetto all’asse z

I = J‘(x2 +y?)dxdyd:z.
E

Trovare le analoghe espressioni dei momenti I, e I,.

5.7 Sia E un solido di rotazione, ottenuto ruotando intorno all’asse z I’'insieme
F={(x,z)ER? :a<z<b, 0<x<f(2)}.
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Dimostrare che

b
Iz=%Jf4 (z)dz.

5.8 Si trovino i momenti d’inerzia rispetto all’asse z dei solidi degli esercizi 5.4
e5.5,

6 Cambiamento della misura per diffeomorfismi

Siano 4 e B due aperti di R". Un’applicazione g : A - B si dice un diffeomorfismo
di classe C' (o brevemente un diffeomorfismo) se-

(1) gé iniettiva;

(2) g(4)=B;
(3) g elasuainversag™' : B> A sono di classe C' (e cioé sono differenziabili con
derivate continue).

Se g & un diffeomorfismo e xo €4, sia yo =g(xo) €B. Indichiamo con J; (xo) €
Jg-1(yo)le matricijacobiane dig e g} nei punti xq e y, rispettivamente (vedi cap. 4,

[4.6]).
Si hag™! o g(x)=x e quindi per la [4.12] del capitolo 4.

Jg=1 (Vo) g (x0) =1, (6.1]
dove si é indicata con [ la matrice unita di ordine n, di elementi
o 1 se i=j
Iii_aii_{o se I#j.
Dalla [6.1] segue che
Vg (xo)]™! =Jg_1(Yo)
e quindi la matrice jacobiana di g non é mai singolare, da che si ha
detJg(x)#0 in 4, detJ,_,(y)#0 inB. [6.2]

Cid premesso, sia E un insieme misurabile contenuto in 4. Lo scopo di questo pa-
ragrafo é di calcolare la misura dell’insieme g(£’), immagine di E tramite il diffeomor-
fismo g.

Dimostreremo il seguente

Teorema 6.1 Se E é misurabile, g(E) é misurabile e risulta

m(g(E))= j |det J, (x)| dx. (6.3]
E
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Ladimostrazione del teorema 6.1 verrafatta per gradi, e prendera tutto il paragrafo.
Cominciamo dal caso particolare in cui g & un’applicazione lineare. In questo caso
esiste una matrice L tale che

g(x)=Lx,
o in maniera esplicita
n
gi(x)=2% Lixj, i=1,2,..,n.
j=1
Se g ¢ lineare si ha ovviamente

Jg=L. [6.4]

Lemma 6.1 Sia g(x)=Lx unapplicazione lineare non singolare di R" in R", e sia
K un compatto di R". In tal caso

m(g(K))=I|det L| m(X). [6.5]

Dimostrazione. Cominciamo col dimostrare la [6.5] nel caso di applicazioni lineari
di tipo speciale.

(a) g ¢ I'applicazione che scambia tra loro le componenti x; e xx

{gi(x)=xk , &k (X)=x;»
g (x)=x; J#i k.

Una tale trasformazione manda intervalli in intervalli (e quindi plurintervalli in
plurintervalli) lasciandone inalterata la misura. Si vede allora facilmente che

m(g(K))=m(K),

per ogni compatto K. D’altra parte, per una trasformazione g del tipo descritto, risulta
|det L |=1 e dunque sussiste la [6.5].

(b) La matrice L & diagonale, cioé siha
g&(xX)=N\;ix;, i=1,2,...,n.
Se I é un intervallo (e quindi anche se / & un plurirettangolo) risulta (vedi fig. 6.12)
m(g)=\1 A, ...\, m({J), [6.6]
e quindi la [6.6] sara valida anche per i compatti. Poiché
detL=X\ 17z ...,

la [6.5] & verificata anche in questo caso.
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14 y
\NdpF———
db—-
gl
/

clb—- Nek—-—- |

1 1 ) 1

a b x @ b x

Figura 6.12

(c) La trasformazione g ¢ del tipo seguente:
8 () =x; +
{g.- (x)=x; i#k
o in forma vettoriale,
g(x)=x+Ax;jey.

Possiamo supporre j#k (altrimenti si ricade nel caso precedente); per fissare le idee
supporremo j =1. Sia @ =g(K) (vedi fig. 6.13), e per ogni u ER, sia

0,={X'ER™ : (u,x")EQ),
K,={x'€eR"!:(u,x)EK}).
Per ogni u, @, coincide con I'insieme K, traslato di Au nella direzione ey :
Qu=TauerKu,
e dunque (vedi cap. 5, esercizio 2.8)
M,y (Qu)=my_; (Ky).

Ma allora

My (Q)= [ my_1 Q) du= [,y (K,) du=my (K),

e, dato che det L =1, 1a [6.5] ¢ dimostrata anche in questo caso.

Abbiamo cosi dimostrato la [6.5] nel caso di trasformazioni elementari, cioé di
uno dei tre tipi descritti.

Osserviamo ora che se la [6.5] vale per due trasformazioni linearig e 4, vale anche per
la loro composizione. Infatti, se L ed M sono le matrici di g e h, LM sara la matrice di
go h, e dunque

m(geh(K))=|det L|m(h(K))=|det L| det M|m(K)=|det LM|m(K).
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- — — — —

b — — — =

b — - —

u u

Figura 6.13

Per concludere la prova del lemma sara allora sufficiente dimostrare il seguente

Lemma 6.2 Ogni trasformazione lineare non singolare é prodotto di trasforma-
zioni elementari.

Dimostrazione. Dimostreremo questa affermazione per induzione sulla dimensione
n dello spazio. L’esempio 6.1 che segue mostra che essa sussiste per n=2. Supponiamo
ora che sia vera per n—1 e dimostriamola per n.

Sia L ={a;;} una matrice n X n non singolare. Poiché non puo essere a,-,,Lin =0 per
ogni i (Li” ¢ il determinante della matrice ottenuta eliminando la riga i-esima e 'ul-
tima colonna), potremo supporre, scambiando eventualmente due variabili che sia
app L™ #0. Dato un vettore xE€ R", indicheremo con X il vettore di R”~! di com-
ponenti (X, X,,..., X,_;), € porremo L=L"". Per induzione, la trasformazione
X - Lx, e dunque anche quella che manda x=(X, x,,) in (L X, X,,) si puo scrivere come
prodotto di trasformazioni elementari.

Moltiplicando x,, successivamente per a,,, sy, ..., @n _1 n € Sommando rispettiva-
mente alla prima, seconda (n — 1)-esima riga (tipo (c)) si passa a (L X + ax,, x,,), dove
si ¢ indicato con a il vettore di R”~! di componenti (a,,, s, ..., @n_1,n). Abbiamo
cosi sistemato le prime n—1 righe; resta da trasformare I’ultima.

Con una trasformazione di tipo (b) si giunge a (L X + ax,,, bx,), dove b ¢ un nu-
mero che sceglieremo pili tardi. Osserviamo ora che la matrice L non ¢é singolare; sia
M=L ! la sua inversa, ¢ sia w=L X +ax,,. Si ha

n-1
Mw);=x;+x, E m;jajn
j=1

n-1
e quindi moltiplicando la riga i-esima per X a,,my; e sommando i risultati all’ul-

tima, questa diventa: k=1

n-1 n-1
2z a,,kxk+(b+ z AniMikdn) Xn.
k=1 i,k=1
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Scegliendo b in modo che il termine tra parentesi sia uguale ad a,, si ottiene la tra-
sformazione L come prodotto di trasformazioni elementari. ®

Abbiamo cosi dimostrato la [6.5] per ogni trasformazione lineare. Osserviamo ora
che la misura & invariante per traslazioni (vedi cap. 5, esercizio 2.8) e quindi, se G(x)
¢ una trasformazione affine

G(x)=Lx+y,,
si avra ancora
m(G(K))=|det L| m(K). [6.7]
Esempio 6.1

La generica trasformazione lineare di R? in sé é data da

Xy apyxytapx;
g: - =Ax.
X a3 xy +axnx,

Se g & non singolare deve essere det A =a,;,a,, —a,,a, ¥0, per cui dovrd essere
ay, #0, oppure a5 #0. Supponiamo per fissare le idee che sia a;, #0. Allora g si
scrive come composizione di quattro trasformazioni elementari nel modo seguente:

Xy a3 Xy ay Xy tapx; ayy xy +a;px;
Y . o e
Xa ] S \X2 81\x, 83\ (@, —ay2a21/a11) x, | 84

apx;tapx;
>
a1 X +022x; .
Si verifichi che ognuna delle trasformazioni g, ..., g4 € di tipo elementare e per
ognuna di esse si calcoli la matrice associata. m

Esempio 6.2. Misura di un parallelepipedo in n dimensioni
Dati in R" n vettori v, v,, ..., v, linearmente indipendenti, Iinsieme

n
P={y€R"”:y=Z x;v;,0<x;<1}
i=1

¢ un parallelepipedo in R”, generato da vy, v, ..., V,.
Se si indica con L la matrice le cui colonne sono formate dai vettori vy, v,, ..., V,,
e si pone

g(x)=Lx,
si ha
P=g(lo),
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dove I, é un cubo n-dimensionale di lato 1:
Iy={x€ER":0<x;<1}.
Si ha allora
m(P)=|detL|.

In particolare, se n =3, indichiamo i tre vettori linearmente indipendenti con u, v e
w (vedi fig. 6.14).
Siha
Uy n w
m(P)=|detlu, vs wy ) |=I(u,vAW),
Uz V3 ws

dove si indica con vAw il prodotto vettoriale o prodotto esterno dei vettorive we
ciog il vettore di componenti

(V2 W3 = V3 Wy, V3w =V W3, VW, — Uy Wy). B
Tomiamo alla dimostrazione del teorema 6.1. Il secondo passo consiste nel dimo-
strare la [6.3] nel caso in cui E ¢ un intervallo.
Stabiliamo dapprima alcune notazioni. Indichiamo con Q il cubo in R” di centro

Xo e lato 2p (vedi fig. 6.15)

0=0(xo,p)={xER" : |x;—xp;|<p;i=1,2,..,n},

= ---- -

(N4

N ———

Figura 6.14
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Figura 6.15

e per 0<7<1 siano Q, e Q_, i cubi, concentrici a Q, di lato 2(1 +)pe 2(1—7)p
rispettivamente:

{Q,= {XER" : Ix;—x0:IS(A +7)p;i=1,2,..,n} (6.5]
Q_,={XER":|x;—x0;I<(1-7)p;i=1,2,..,n}.
Dato un diffeomorfismo g : 4 - B, indichiamo con G I'applicazione affine
G(x)=g(xo) +dg(xo) (X~ Xo).
Si ha
G(x)=yo +Lx, (6.9]
dove
L=Jg(x0),
e

Yo =g(x0)—Lxo.-
Se K ¢ un compatto contenuto in A, poniamo
4d=dist(K,R" —A)
(se A=R" si pone d=1). L’insieme
Kg={x€R" : dist(x, K)<d}

¢ anch’esso un compatto contenuto in 4.

Lemma 6.2 Esistono due costanti positive v e N taliche, per ogni x, x, €K, risulta

vIx—x|<Ig(x)—g(x))I<N |x—x,l. [6.10]

Dimostrazione. Se |x—x,|=>d, allora

[g(x)—g(x;)I1<2 sup lg(y)I<2 sup lg(y)l Ix—x1l/d=N1Ix—x,l.
YEK yeEK
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Supponiamo ora che |[x—x;|<d. In questo caso il segmento di estremi x e x; &
interamente contenuto in K4. Ricordando la formula di Taylor (vedi cap. 4, [3.7]
con k =0) si ottiene

gi(x)=gi(xl)+(Dgi(£i)’x_xl)’ i=1a""na [6111

dove §; é un punto del segmento di estremi x e x,, e quindi in definitiva un punto di
K4. Si haallora

lg;(x)—g; (x)I< sup IDg;(MlIx—xil, i=1,..,n,
YEKg
e dunque
lg(x)—g(x1)ISN2Ix—xl,
da cui segue 1a seconda delle disuguaglianze [6.10], con N =max(N,,N;).
Per dimostrare I’altra disuguaglianza, sia y=g(x) e y; =g(x,). Si ha x=g~'(y) e

x; =g~'(y1); con lo stesso ragionamento di prima (si osservi che y e y, appartengono
al compatto g(K) C B) si ricava

g (v)—¢g (y1)I<Ply—y,l,

e tornando a x, x,, si ottiene la prima delle [6.10] con y=P~! =

In maniera del tutto analoga si dimostra che esistono due costanti positive u e M
tali che, per ogni xo, €K e per ogni x, x! ER":

mIx—x I<IGX)—G(x))|ISM|x—x,]. [6.12]

Lemma 6.3 Per ogni 7>0, esiste un §, 0<8 <d, tale che, se xo €K e diam Q=
=2p\/n <8, allora

G(Q--)Ce(Q)CG(Q,). [6.13]

Dimostrazione. Dalla [6.11], scritta con x al posto di x;, segue
£i(x)—G;j(x)=(Dg;(§;)—Dg;i(x0), x—xo)
per ogni x tale che il segmento di estremi x e X, sia interamente contenuto in 4, §;
essendo un punto di tale segmento.
Poiché Dg; ¢ continuo, per ogni €>0 esiste un §, 0<6<d, tale che se xo €EK e
Ix—xo|<8, allora
lg: (%)= Gi(x)| < elx—xo|/Vn,
e dunque
lg(x)~G (x)|<elx—xol. [6.14]
Cio premesso, cominciamo col dimostrare la seconda delle inclusioni [6.13]. Per
questo prenderemo €=€; =ur/ \/n, e indicheremo con 8, il corrispondente.
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Sia y €g(Q) e x; =G ! (y). Occorrera far vedere che x, €Q,. Poniamo x=g~! (y).
Siavra xE€Q e quindi, per la [6.12],

IX; —x|<pG(x) - G(X)|=p" lg(x)-G(X)I.
Se diam Q<& siavri | x—xo|<8, e quindi, per la [6.14],
1 T
IX—Xo|=—= |x—Xol< 7p.
n

le —x|<€1l.l._

Ma allora, per ogni i=1, 2, ...,n,siha
Ix1i=x0il <lxy;—x;l +|x;—x0;l <7p+p=(1+7)p,

cosicché x; €Q, e la seconda inclusione ¢ dimostrata.
In modo simile si dimostra la prima inclusione. Sia yEG(Q_,), e siano x=G ~! (y),
x; =g '(y). L punti x e x, appartengono all’insieme compatto

KqUg ' (G(Kq)).
Per il lemma 6.2 esistera una costante positiva v tale che
Ix=x; [<v~! Ig(x) =g (x| =v"" Ig(x) -G (X)I.

Siprenda €, =7v/Vn . Se |x—xo| <5, risulterd

Ix=x;1 <P €3 1x—Xo| = —= [x— %ol < 7p(1 = 7)< 7P,
n

e ragionando come sopra si conclude che x; € Q, e quindi la primainclusione [6.13].
Il teorema & cosi dimostrato con § =min(§,,5,).®

Siamo ora pronti a dimostrare che se / ¢ un intervallo contenuto in A4, allora

m(g(D))= J'Idet.lg(x)l dx. [6.15]
I

Usiamo il lemma precedente con K =1; se 7>0 e Q ¢ un cubo con centro Xo €/ e
diametro inferiore a 8, risulta

m(G(Q-))<m(g(Q))<m(G(Q,))
e, poiché G @ una trasformazione affine,

(1-7)" |detJg(x0)Im(Q)<m(g(Q))<(1 +7)" |det J, (xo)Im(Q). [6.16]

D’altra parte la funzione |detJy(x)| & continua in / (e quindi uniformemente
continua); ne segue che esiste un numero positivo & tale che, se diam Q<8', si ha

max |detJg (x)|— min |detJg (x)|<7. [6.17]
xeQ xEQ
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Supponiamo ora che / abbia lati razionali. Si puo allora dividere / in un numero
finito in cubi Q,, Q,, ..., Qn, di centri x;, X3, ..., Xy, € tutti di diametro minore del
minimotra§e 8’

Dalle [6.16] e [6.17], scritte per il cubo @, si ottiene

(1-7y* M~ 1)m(Q:)<m(g(Q))<(1 +7) (m; +1)m(Qy),
dove si & posto

m; =min |detJg (x),
Qi

M;=max |detJg(x)l.
Qi
Sommando da 1aN,

N
-7 ,_‘:21 M;m(Q)—r(1-7' m(I)<m(g(N)<

&b N
<A+ Z mym(Q)+7(1+17) m().
i=1

D’altra parte, per la definizione stessa di integrale, si ha

N N
Z mim(Q)< [Idet/, (0ldx< Z M;m(Q),
i=1 i i=1

e dunque

(1= { [1detJ, ol dx-rm(D}<m(e(1)<
I
<1 +7Y {J'Ideth ®)ldx+rm(D},
I

e la [6.15] si ottiene passando al limite per 7—0.
Se poi / non ha lati razionali bastera approssimare / con una successione /3 di in-
tervalli con lati razionali, e passare al limite per k >, ®

Una volta provata la [6.15] si puod senz’altro passare alla dimostrazione del teo-
rema 6.1. Cominciamo con l'osservare che la [6.3] vale per i plurintervalli. Come
ormai é usuale, dimostreremo la [6.3] prima per insiemi aperti e compatti, per poi
estenderla a insiemi misurabili qualsiasi.

(1) Sia K un compatto contenuto in 4. Esiste una successione di plurintervalli Y}, con

s

ADY,DY,D..;

Y;=K.
1

Gli insiemi g(¥;) sono compatti, e risulta

BIg(1)5(1)2. Na(r)=5(K),
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per cui (vedi cap. 5, esercizio 3.4):

m(g(K))= lim m(g ().

D’altra parte, per il teorema di Levi (si tenga presente che |detJg| ¢ continua, e
dunque limitata in Y,)

lim m(g(Y;))= lim f |detJ, (x)l dx = Ildetlg(x)l dx,
== I_’“Yi K

cosicché la [6.3] vale anche per insiemi compatti.

(2) Con un procedimento del tutto analogo, che viene lasciato per esercizio, si dimo-
stra la [6.3] per insiemi aperti.

(3) Sia ora E un insieme misurabile e limitato, con E CA, e siano Aj e Kj due succes-
sioni, la prima di aperti contenenti £ e la seconda di compatti contenuti in E| tali che

A1DA4;D..; lim m(4;)=m(E),
==

K,CK,C..; lim m(K;)=m(E).

j—»n

Poiché E ¢ limitato ed E C A4, si potra supporre che anche A4, sia limitato, e che
A,CA.

Si ha, per ogni j,
m(g(4;))=>m(g(E))=>m(g(E))=>m(g(K;)).
Draltra parte
0<m(g(4;))-m(g(K;))= J |det Jg (x)| dx <m(4; —K;) %lp |det Jg |
Aj-Kj !

e, poiché lim m(4;-K;)=0,

j—»w

ilﬂll{m(g (4;))~m(g(K;))}=0.
In conclusione, g(E£') ¢ misurabile e si ha

m(g(E))= lim m(g(4;)) =,-li"l m(g(X;)). [6.18]

joe

Si osservi ora che la [6.3] & valida per gli insiemi 4; e K; per cui

m(g(K;)) = j|deth(x)|dx<jldetjg(x)|dx< j|det1g(x)|dx=
E Aj

K;j
=m(g(4;)),

]
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e per la [6.18]

m(g(E))= [IdetJ, ()l dx. [6.19]
E

(4) Infine, se E non & limitato, o se E non & contenuto in 4, posto 4,={XEA:
:dist(x, 9 A)>1/r}, bastera scrivere la [6.19] per ENI,N A, e passare al limite per

¥y —> oo

Il teorema 6.1 ¢ cosi completamente dimostrato. ®

Osservazione 6.1. Se sipone g(E)=F,la[6.3] diventa
m(F)= J‘ |det J, (x)|dx; [6.20]
g '(F)

questa forma ¢ in genere piu utile per il calcolo della misura di un insieme.

Dato un insieme F, si trattera di trovare un diffeomorfismo g tale che l'integrale
a secondo membro della [6.20] sia calcolabile con relativa facilita.

In genere cid dipendera dallinsieme g~!(F); si cerchera allora di scegliere I’ap-
plicazione g in modo che g~ (F) sia un insieme il piut semplice possibile (ad esempio
un intervallo, o comunque un insieme normale).

In pratica, s1 cerca un diffeomorfismo vy di F in R" tale che y( F) sia il piu semplice
possibile, e poi si prende g=v~!. =

Esempio 6.3
Si calcoli I’area dell’insieme E raffigurato nella figura 6.16.
Si ha

E={(x,y)ER? : 0<x<y<2x;1<xy<2}.
La trasformazione
{u =xy
Y:
vV=y[x
manda E nel quadrato
Q=v(E)={(u,v)ER? : 1<u<2;1<v<2}.
La trasformazione inversa g=v~! ¢ data da

x=Vulv
y=Vuv
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y \ \ /Y= //y—x
\ / P
\ / /
\ /
7/
\ /7
7/
/ \\
/ S \\\
/7 0S T~
—
//// \\\\5\ Se=—xy=2
W// ———xy=1
X
Figura 6.16
esiha
1 _ Nu
2Vuv 20V
Jg=
1./2 1. /u
2V u 2V v
Allora
1
deth—E>0,
e quindi

nmE)=j-§;dudv=
Q

N —
—_-———
(=%

S
—_-—

(=%
<|8
[}

N | =
5
)

Esercizi

6.1 Dimostrare che le trasformazioni di tipo (a) si possono ottenere come compo-
sizione di trasformazioni di tipo (b) e (c).

7 Cambiamento di variabili negli integrali

Teorema 7.1 Siano A e B due aperti di R" e sia g un diffeomorfismo tra A e B.
Sia E un insieme misurabile contenuto in B e sia f(y) una funzione integrabile in E.
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La funzione composta F (x) =f (g(x)) é integrabile in g~ (E) e si ha

[royay= [ reepidetsymlax. [7.1]
E

g '(E)

La [7.1] contiene come caso particolare (con f=1) i risultati del paragrafo prece-
dente e in particolare la [6.20]. Come abbiamo osservato in precedenza, la [7.1] puo
essere usata per calcolare I'integrale a primo membro. Infatti, se si sceglie opportuna-
mente il diffeomorfismo g, I'insieme g~!(E) pud essere notevolmente pill semplice
dell’insieme di partenza E, e l'integrale a secondo membro della [7.1] pud risultare
piu facile da calcolare di quello a primo membro.

Esempio 7.1
Si calcoli I'integrale

I (x+y)dxdy
E
dove E ¢ I'insieme dell’esempio 6.3.
Si ha

j(x +y)dxdy= j(\/u/v +Vuv )20dudo=
E 0

2 2
=%j\/u—duj(v'3’2 +v'”2)dv=%(4—\/2—).l
1 1
Esempio 7.2
Si calcoli
fdxdy
E Xy’

dove E ¢é I'insieme della figura 6.17.
Se si pone

u=x+y
{v =ylx,
’applicazione v : (x,y)—> (4, v) manda E nel rettangolo
R=v(E)={(u,v)ER? : 1<u<3,1<v<2}.
Il diffeomorfismo inverso ¢

_ _lz{x=u/(1+v)
YT\ =unia +0),



250 Capitolo sesto

y L /y=2x //y:x
\ / ,
N\ / /
N / /
N 7
\N/ /
/
7/
7/
N\
\
1 N
\
\ \\
/ \
////\\x+y=1 \x+y=3
¥ AR AN
X
Figura 6.17
esiha
; <1/(1+v) —u/(1+v)’>
& /(1 +v) u/(1+v)?* /.
Risulta
detJ, =u/(1+v)*>0,
e dunque
dxd 1+ )2 3 2
== oy dudv=fd—“jd—”=m2m3.-
xy o4 o uv (1+o) U

Veniamo ora alla dimostrazione del teorema 7.1. Come al solito, cominceremo col

supporre f(y)=0.
Consideriamo gli aperti

&= {(x,u)ER" XR:XEA,u€ER}=AXR,
B={(y,t)ER"XR:yEB, tER}=BXR.

L’applicazione

G=sA->B,



L’integrale di Lebesgue in R 251
di componenti

{ y=g(x)

t=u,

¢ un diffeomorfismo tra &7 e %, e si ha

Jg (%) 0
Jo(x,u)= < > ,
0 1

cosicché
detJg (x, u)=detJ (x).
Se si pone
ZF={(y,)ER" X R;yEE, 0<t<f(Y)}
risulta
G (%)= {(x,u)ER"XR:xEg™1(E), 0<u<f(g(x))}.
Per il teorema 6.1,

mnﬂ(ﬁ): J Idetlg(x)ldxdu.
G '(#

D’altra parte
My 41 (F)= ff(y)dy,
E

mentre per il teorema di Fubini

f(g(x))
4[ Idetjg(x)|dxdu= f Ideth(x)|dx ‘{ du=
Gl g (&) A
= ,[ f(g(x)) |det Jg(x)|dx.

g ' (E)

Il teorema é cosi dimostrato per funzioni positive; in generale bastera scrivere
f=f*—f",scriverela [7.1] per f* ed f ~, e infine sottrarre. ®
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Esercizi

7.1 Sicalcoli (vedi fig. 6.18)

f(x +y%)dxdy.
E
y
\\# ,1' Xy
-3
1S / —-y=0
\\ 2/ ,/X y
4
U4
~
~,
\\~ So
~
1 ~
- ~
2 ~ \\\
// \\\ SN
7 ~ \\
4 ~ ~
1 \~‘ 1 \‘
] 1o~ 2N, X
\\
Figura 6.18

7.2 Siconfrontila [7.1] con la formula di cambiamento di variabili per gli integrali
in R (vedivol. 1, cap. 5, [6.2]).

b ()
j fxydx= f Flo@) o) dt.
a ¢ ()

8 Coordinate polari

Un caso speciale di cambiamento di variabili, di particolare interesse nelle applica-
zioni, é quello che conduce alle coordinate polari. Specialmente nel caso di integrali
doppi o tripli, I’introduzione delle coordinate polari pud portare a notevoli semplifi-
cazioni nei calcoli quando il dominio d’integrazione presenta simmetrie rispetto a
rotazioni.

Cominciamo dal caso di due variabili. Un punto P di R?, di coordinate (x, y),
puo essere individuato assegnando la distanza di P dall’origine 0

p=Vx?+y?

e I'angolo 0 che il segmento di estremi 0 e P forma con I’asse delle x (vedi fig. 6.19).
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X e ——

Figura 6.19

Le relazioni tra le coordinate polari p, 8 e le coordinate cartesiane x, y sono date da

x=pcosf
{ [8.1]

y=psinf.
L’applicazione [8.1] manda la striscia
S={(p,0)ER? : 0<p<+, 0<6<27}

nel piano R?. Essa & surgettiva, ma non iniettiva, dato che se p=0si ha x=y =0 per
ogni valore di 6. Se pero si fanno variare p e  nell'insieme aperto

A={(p, 0)ER?:0<p<+, 0<0<27},
l'applicazione g definita dalla [8.1] & un diffeomorfismo tra A e il piano R? privato

della semiretta

o={(x,y)ER?:y=0,x=>0}.

Si ha
cosf —psinf
Jg(py 0)= .
sin 6 p cos 6
e dunque
deth =p.
Se E & un insieme misurabile, contenuto in R? —g, si ha per1a[7.1]
jf(x,y)dxdy= j f(pcosh,psing)pd pdf. (8.2]
E g '(E)

D’altra parte, se E' & un insieme misurabile qualsiasi, risultera

[feaxay= | reyaxey,
E E-g

dato che ¢ ¢ di misura nulla. Ne segue che la [8.2] ¢ valida per un arbitrario insieme
misurabile del piano.
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Esempio 8.1
Si calcoli I'integrale

f(x +y?)dxdy
E

dove F é I’insieme in figura 6.20.

Figura 6.20

Quando il punto P, di coordinate cartesiane (x, y), varia in F, le sue coordinate
polari descrivono I’insieme

0={(p,0)ER?:1<p<2,0<9<n/2}.

Si ha allora

m2

Jp’(cose +psin? 9)dé =%+ 1
)]

1—611'..

f(x +y2)dxdy=po
E 1

Esempio 8.2
Trovare la misura dell’insieme (vedi fig. 6.21)

E={(x,»)ER?:y>0,x+y>0,x? +y? <3Vx? +y% -3x}.

Introducendo coordinate polari si ha

psinf >0,
p(sin 8 +cos6)>0,
p? <3p(1—cosb),
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\
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Figura 6.21
e quindi
0<6<3n/4

0<p<3(1-cosh),
cosicché
g7 (E)={(p, )ER? : 0< 6 <37/4,0<p<3(1—cos )}
Si ottiene dunque
3ma  3(1-cos 6)

3
m(E)= J pdpdb= f dée f pdp:%
g ' (E) 0 0

=%(%n—4\/2——1).-

4
(1—cosg)*do =

© '\.3

Veniamo ora alle coordinate polari in tre dimensioni, dette anche coordinate sfe-
riche (vedi fig. 6.22).

Se P ¢ un punto di R3, di coordinate cartesiane (x, y, z), si indica con p la distanza
traPeO:

p=Vxt+y? +z2

con 6 Pangolo che il segmento OP forma con I’asse z, e con g I’angolo tra I’asse x e il
segmento OQ, proiezione di OP sul piano xy.

Si ha
x =p sin @ cos ¥
y=psin§ siny

zZ=pcos O
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P=(x,y,2)

/Sl S

Q=(x,y,0

X

Figura 6.22

e l'applicazione g : (p, g, v)~> (x,y, 2) & un diffeomorfismo tra I’aperto
A={(p, 6,9)ER® :0<p< +,0<9<nm,0<p<27}

e R3 privato del semipiano
2={(x,y,2)ER3:y=0,x>0}.

La matrice jacobiana dell’applicazione g &

sin 6 cosy p cos 6 cosy —p sin 0 siny
Jg=| sin 6 singp p cos @ siny p sin 6 cosy
cos @ —psin 6 0
e dunque

detJ, =p? sin 6 >0.

Si ha allora, dato che £ ha misura nulla,
[ ey, 2)dxdydz=
E

= ff(psinBcomp,psinBsingp,pcosﬂ)pzsin0dpd0dap.
g (E)

(8.3]
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Esempio 8.3
Si trovi il volume dell’intersezione tra il cono

xt+y?2<22?
e la sfera
x2+y?+22<2az.
Introducendo coordinate polari si ha
p? sin?  <p? cos? g
p%<2apcosb,
e quindi

g1 E)={(p,0,9)ER? :0<p<2m,0<0<7/4,0<p<2a cosh}.

Per la [8.3]
w4 2a cos § 27
m(E)= J. stinedpd0d¢=J. sin 6 d6 J p? dp'|‘d‘p=
g~ (E) ) o o
3 T4
= 16;0 J. cos® sing df =ma. =
°
Esempio 8.4

Trovare il momento d’inerzia diun cono C dialtezza h eraggio dellabase a, rispetto
a una retta passante per il vertice e perpendicolare all’asse del cono.

Scegliamo l'origine come vertice, 1’asse z come asse del cono, e I’asse delle x come
asse rispetto al quale si deve calcolare il momento d’inerza. Si ha

I= J.(yz +2z2)dxdydz.
o

Se si indica con a I’apertura del cono
a=arctg(a/h)
si ha, passando a coordinate polari,
g1 (0)={(p,0,9)ER?:0<p<27m,0<0<a,0<p<h/cosh)},
e quindi

I= J p* sin 0 (sin? 9 sin? ¢ +cos?9)dpdOdy=
P (&)
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a h/cos 6

2m
=Isin6d0 p4dpj(sm20 sin2 9 +cos? g)dy=
) 0 0

h/cos 6

o] ﬂhs ]
=1rj sin 8(1 +cos? 0)dé j’ ptdp= 5 J

) () )
_7h

5

mh’s [1 ( 1 1 ( 1 )]
~ -1)++ -1)].
4\ cos*a ) 2 \cos?a

Ricordando che tg a=a/h, e quindi cos®> a=h?/(h? +a?),si ottiene, in conclusione,

sin 8 (1 + cos? 6
( ) 49 =

cos® 6

_ mha?

==

(4h? +a%).m

Per finire questo paragrafo, sara il caso di menzionare le coordinate cilindriche in
R3, legate alle coordinate cartesiane dalle relazioni:

Xx=rcos 0
y=rsin 6
z=z,
In sostanza le coordinate cilindriche si limitano a operare un cambiamento di va-

riabili nel piano xy, nel quale vengono introdotte coordinate polari, lasciando inalte-
rata la terza coordinata. Per questa trasformazione la matrice jacobiana &

cos§ -—-rsinf O
Jg=| sin 6 rcosf6 0
0 0 1
cosicché
deth =r,
e quindi
Jf(x,y,z)dxdydz= J f(rcosf,rsin6, z)rdrd6dz. = (8.4]
E g 1(E)
Esempio 8.5
Si calcoli

foz +y? dxdydz,
E

dove E ¢ I'insieme

{(x,y,2)ER3 : x>0, 22 <x? +y? <ax}.
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Passando a coordinate cilindriche si ottiene

g E)={0r,8,2)€R? - T <9< T 0<r<acosd,-r<z<ri,

2 2’
e dunque
n/2 acosf r 2 acos 6
[V5r 4y axdydz= (KX [ r2ar[az=2 [ a6 [ roar=
E -n/2 ) -r -n/2 [
2 4
=%a4 f cos‘0d9=—3%.I
-m/2
Esempio 8.6

Sia A un insieme misurabile del piano xz, contenuto nel semipiano x =0, e sia £
Iinsieme di R® ottenuto facendo ruotare A4 attorno all’asse z (vedi esempio 5.2).
Per calcolare il volume di £ si possono usare coordinate cilindriche; si ha

g (E)={(r,0,2):0<0<2m,(r,z)EA}
e dunque

m(E)=2n jrdrdz.
A

Se poi, invece di far ruotare A di 27, si esegue solo una rotazione di un angolo 6,
indicando ancora con E' il solido cosi ottenuto, si ottiene

m(E)=0, errdz.l [8.5]
A
Ricordando la definizione di baricentro di una figura (vedi esercizio 5.3) si ottiene

il seguente teorema (di Pappo-Guldino):

1l volume di un solido di rotazione é uguale al prodotto dell area della figura ruo-
tante per il cammino percorso dal suo baricentro.
Infatti sia X la prima coordinata del baricentro di 4

1
m(A4)

x=

J.xdxdz.
A

Il cammino percorso dal baricentro di 4 nella rotazione di un angolo 6, sara
0 ¢Xx, che moltiplicato per m(4) da

6, dexdz,
A

cioé¢ lamisuradi £E. ®
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Esercizi

8.1 Trovare I’area delle seguenti regioni del piano:
E={(x,y):9<x*> +y* <8y}
F={(x,y):0<y<8, y?/4a<x<2y}
G={(x,y): (x* +y?)*<16x%}.

8.2 Trovare il volume delle seguenti regioni dello spazio R3:
Ey={(x,y,2):x? +y* <4, x> +y?2 +22< 16}
Ey={(x,y,2):22>x* +y? x? +y? +22 <4?}
Es={(x,y,2):0<2z<x? +»2 <2y}
Eq={(x,9,2):2>0,x* +y2<z? x-2:+2>0}
Es={(x,y,2):x* +y* + 22 <2az, x* +y? <az}
E¢={(x,5,2):2>0,x* +y?<z? x? +»? + 22 <2ax).

8.3 Trovare I’area dell’asteroide
A= {(x,y) . x213 +y2/3 <a2/3}

(si operi il cambiamento di variabili
x=rcos’ ¢

y =rsin® p).

8.4 Si calcoli I’area del dominio
Ap= {x y): x2/(2h-1) +y2/(2h-l) <a2’(2"")}.

Che cosa succede quando h =+ °?

8.5 Calcolare i seguenti integrali:

4 Vax-x? 1 Vx
[ax [ Ve, jdxj (2 +y2) 12 gy,
° -Vax-x2 ° x

2y
far o +5772 ax.
[ 0

8.6 Calcolare I'integrale

J.e"‘z'y2 dxdy.
RZ

Usare il risultato precedente per dimostrare che

j e~ dx=V7.
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8.7 Calcolare gli integrali delle funzioni che seguono, negli insiemi indicati a fianco:

jx yzdxdydz, E={il tetraedro limitato dai piani coordinati e dal
E piano di equazione x +y +z=1}

Jzz dxdydz, E={(x,y,2):x? +y*>d* x* +y* +2% <4a?}

E

J'Vx2+y2 dxdydz E={(x,y,2):x2 +y*<2:<4x}

E

IVx2+y2 dxdydz E={(x,y,2):2%> <x*+y?,(x? +y?)? <a*(x% —»?)}.
E

8.8 Calcolare il volume del solido generato ruotando la figura dell’esercizio 7.1 at-
torno all’asse y (e attorno all’asse x).

9 Derivazione sotto il segno di integrale

Sia E un insieme misurabile di R”, 4 un aperto di R¥, e sia
EXA={(x,t):xEE,tEA}

il loro prodotto cartesiano.
Se f(x, t) & una funzione definita in £X A, e integrabile in x per ogni tEA, po-
niamo

F(t)= jf(x, t)dx. [9.1]
E

In questo paragrafo studieremo il problema della continuita e della differenziabilita
della funzione F(t). In particolare ci interessera stabilire la validitd di formule che
permettono di derivare sotto il segno di integrale (vedi teorema 9.1).

Cominciamo con lo stabilire un semplice risultato.

Lemma 9.1 Sia f(x, t) una funzione integrabile in x per ogni t in A e continua in
t per quasi ogni x in E. Supponiamo che esista una funzione g(x) sommabile in E e
tale che

1f(x, t)| <g(x) [9.2)
per ogni tEA e per quasi tutti gli xEE. Allora la funzione F(t) é continua in A.

Dimostrazione. Sia t, un punto di 4, e sia {t; } una successione a valori in 4, con-
vergente a tq . Poiché f(x, t) & continua in t per quasi ogni x € E, risultera

;.lir?. f(x,ty)=f(x,ty) q.o.inE.
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Per la [9.2] risultera inoltre | f(x, t,)|<g(x) e quindi si pud applicare il teorema
4.3 (di Lebesgue):

tim [ £(x t)dx= [£(x,to)dx.
h==g E

Ricordando la definizione di F (t), quest’ultima relazione si scrive

i F(t)=F (to) (93]

e poiché la [9.3] vale per ogni successione t; —>to, si puo concludere che
lim F(t)=F(to)
t-t,
e dunque la continuita della funzione F(t). ®
Osservazione 9.1. Sevienmeno I'ipotesi [9.2],ilteorema cessa di valere in generale.
Ad esempio, se si prende A =EF=R, e

[¢]— x|
fe,0)=¢ t*

0 se |x|=¢l,

se |x|< |t

risulta F(¢)=1 per t#0, e F(0)=0, e dunque F non ¢ continua in 0. ®

Veniamo ora alle proprieta di differenziabilita della funzione F.

Teorema 9.1 Sia f(x, t) una funzione sommabile in E per ogni tE A, e di classe
C'(A) per quasi ogni xEE. Supponiamo che esistano k funzioni sommabili in E,

£1(x), ..., gx (x), tali che, per ogni tE A e per quasi ogni XE E, risulti

)
la—,f,(x, t)|<g(x), j=1,2,..,k. (9.4]
]

In tal caso F(t)é di classe C' in A, e risulta

oF . (9f
Gk é‘a—ti(x,t)dx. [9.5]

Ricordando la definizione della funzione F,1a [9.5] si puo mettere nella forma
) _[9f
o jf(x, t)dx= j 5 (6 09x,
E E

che prende il nome di formula di derivazione sotto il segno di integrale.
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Dimostrazione. Cominciamo col supporre che A sia un aperto di R, cosicché F

risulta funzione di una sola variabile reale.
Fissato to €A, sia r >0 tale che I(ty, r)C A, e sia {r;} una successione a valori in
I(to,r) e convergente a t,. Risulta

F(,h) F(IO) J‘f(x‘th)_f(xvto) d
X

th —lo

_to

Poniamo

f(xv [h)_f(xx tO) .

th 1o ’

Vp (x)=

per il teorema del valor medio, per quasi ogni x €E esisterd un punto § €/(¢,,r) tale
che

Y (X)——f(x £)

e dunque per la [9.4]:

[Vn (x)|<g;(x), q.o.inE.

D’altra parte per quasi ogni XEE la successione ,, converge a 9 f(x, t9)/a¢; per il
teorema di Lebesgue:

lim M=J. af(x to)dx.

9.6
h—w th 1o [5-6]

Poiché la [9.6] vale per ogni successione t,, >, la funzione F risulta derivabile in ¢,
e dunque il teorema ¢ dimostrato nel caso kK =1.

Per dimostrare il teorema 9.1 nel caso generale, si fissino le variabili ¢, ¢,,...,
Li_1s tjsy,s-s Ii € si faccia variare la sola #;. Per quanto detto sopra si avra

3, £ 0= f—(x,t)dx j=1,2,.k
E

Applicando il lemma 9.1 alla funzione df/d¢;, si trova che 9F/dt; € continua,
quindi che Feé diclasse C' in 4. =

Un caso interessante si ha quando £ ¢ un intervallo della retta reale: £=[a, b].
Supponiamo che f(x, t) e 3f/d¢; siano funzioni continue in [2,5]X 4.

La funzione
w

F(t,u,w) [f(x,t)dx
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¢ definita in 4 X [a, b] X [a, b], & di classe ¢! erisulta

wa
gg(t,u,w)=i[a—£(x.t)dx [9.7]

oF
E(t,u,w)=—f(u,t), %(t,u,w)=f(w,t).

Se ora a(t) e B(t) sono funzioni di classe C'(A), a valori in [a, b], si pud porre

B(t)
G)= j fx,)dx=F(, a(t), B(t)).
a(t)

Dalla formula di derivazione delle funzioni composte e dalla [9.7] segue allora

3G .. _ B da HONY
a—ti(t)-f(ﬁ(t).t)a—tj(t)-f(a(t), t)a—,i(t)+a[( t)'ai‘(X,t)dx. [9.8)

In particolare, se A CR la funzione G (¢) dipende da una sola variabile reale, e
risulta

, B of
G'O=/(BE.DBO-F@O, 0O+ [ Fr(xndx. [99]
ao(t)

Esempio 9.1
Si calcoli I'integrale

F@)= Iexp(-x’ —t%/x?)dx.
0

Siha F(-t)=F(t)e F (0)=\/; /2 (vedi esercizio 8.6). Sard dunque sufficiente
considerare il caso ¢ >0.
Sifissir>0e sia A =(r, + ), E=(0, +°). La funzione

f(x,t)=exp(—x2 —t?/x?)

¢ continua in £'X 4 e inoltre, ricordando che per y >0 risulta ye ™ <%:

af

of 2 12
at

2
3,2 _ e %
—e g =
t x2 re

(x,0)|=

Si-pud dunque applicare il teorema di derivazione sotto il segno di integrale. Risulta

F'(t)=—§-2—2t- exp(—x2 —t%/x?)dx
x
0



L’integrale di Lebesgue in R" 265

per ogni ¢ >r; per I'arbitrarietd di r questa formula vale per ogni > 0. Eseguendo il
cambiamento di variabile y =¢/x, si trova

F'(r)=—2jexp(—t2/y2 —y?)dy=-2F(),
0

e quindi, per >0,

F(t)=F(0)e ?'=YT ¢-2¢

%

In definitiva, tenendo conto del fatto che F'()=F (—t), si trova

]’ 4

exp(—x? —t2/x2)dx=———2" e 2"l m

Esercizi

9.1 Trovare F'(t) se

1 LN
F(z)=j1n(x2 +12)dx, F(r)=j St g,
0 0

9.2 Sia

1
F(z)=j1n(2—x2 t?)dx
0
Si dimostri che F'(0)=0 e che F (r) & concava nell’intervallo (— 1, 1).

9.3 Sia

- »
gx)= [e costxdt.
o

Dimostrare che g'(x)= —x g(x)/2 e quindi trovare g(x).

9.4 Sia

o . 2
F(z)=j' (i’;‘—") e 1% dx.
0

Si calcolino F'(t) e F"(t), e a partire da quest’ultima si ricavi una formula espli-
cita per F(t) (si tenga conto del fatto che lim F(¢)= lim F'(t)=0). Si dimostri che

et | e

o . 2 oo . 2

j’(smx) ax=T. J(_sy_x_) 2% gy
x 2 x

0 1]

In 2.

FNE
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Notizie storiche

(A) La teoria dell’integrazione da Riemann a Lebesgue®

Abbiamo visto come la prima definizione moderna di integrale sia stata data espli-
citamente da Cauchy, nel suo Résumé des lecons données a I’Ecole Polytechnique.
Cauchy si limita al caso di funzioni continue, o con un numero finito di punti di
discontinuita. Quando una funzione f ha un punto di discontinuita ¢, nelle vicinanze
del quale pud o meno essere limitata, egli introduce la nozione di integrale improprio
o generalizzato (vedi vol. 1, cap. 6, § 8), nozione che si estende al caso di un numero
finito di punti di discontinuita.

Sempre nel Résumé, Cauchy prova l'integrabilita delle funzioni continue, un risul-
tato che Dirichlet, nella sua celebre memoria del 1829 sulle serie di Fourier, dice
facile da dimostrare. Non & chiaro qui se Dirichlet alluda alla dimostrazione di Cauchy,
oppure se ha gia in mente la dimostrazione che poi esporra nelle sue lezioni del 1854
all’'Universita di Berlino (pubblicate perd solo nel 1904). A noi comunque interessa
pit l'ultima parte del lavoro, in cui Dirichlet si pone il problema dell’integrabilita
delle funzioni con infiniti punti di discontinuita:

Quando le soluzioni di continuita sono in numero infinito — egli dice — € necessario
che la funzione ¢(x) sia tale che, se si indicano con a e b due quantita comprese tra
[gli estremi di integrazione]—m e , sia sempre possibile inserire tra a e b due altre
quantita 7 e s in modo che la funzione sia continua nell’intervallodar a s.

In altre parole, Dirichlet sembra affermare che condizione necessaria per ’integra-
bilita di una funzione ¢ sia che I'insieme dei suoi punti di discontinuita sia “rado”
(nowhere dense) cioé¢ che la sua chiusura non abbia punti interni. Per corroborare la
sua affermazione egli introduce la celebre funzione di Dirichlet :

1 se x é razionale
p(x)=

0 se x éirrazionale,

dicendo che una tale funzione non puo essere integrabile.

La condizione sopra descritta non & né necessaria né sufficiente; comunque l'inte-
resse della memoria di Dirichlet sta nell’aver legato esplicitamente I'integrabilita di
una funzione all’insieme dei punti di discontinuitd, dando cosi inizio a uno studio
che si protrarra fino all’apparire della teoria di Lebesgue.

Nello stesso lavoro Dirichlet promette di tornare sulla questione dell’integrazione
delle funzioni discontinue, senza peraltro dare seguito al proposito.

Possiamo perd farci un’idea delle sue ricerche da quanto pubblicato da Rudolph
Lipschitz (1832-1903) nel 1864. Questi considera il caso in cui il derivato 2 D dell’in-
sieme D dei punti di discontinuitad ¢ finito, ad esempio ¢ costituito dal solo primo
estremo a. In (a2 +€, b) cade allora un numero finito di punti di discontinuita, e si
puo usare la definizione di Cauchy. L’integrale tra a e b sara cosi il limite per e—>0
dell’integrale trag +ee b.

4 Gran parte del materiale per questo paragrafo mi & stato fornito da G. Letta.
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Siamo dunque davanti a una sorta di integrale improprio ripetuto; ¢ evidente come
si possa generalizzare questo risultato al caso in cui il derivato n-esimo di D sia finito
(e dunque I'(n + 1)-esimo sia vuoto).

Nel seguito chiameremo insieme di prima specie un insieme con derivato n-esimo
vuoto, per qualche intero n. E’ chiaro che un insieme di prima specie & rado; in realta
Lipschitz pensa che sia vero il viceversa, e addirittura afferma che un insieme rado ha
derivato finito, credendo cosi di aver dimostrato la sufficienza della condizione di
Dirichlet. Questo errore non deve stupire poiché i concetti topologici erano all’epoca
in una fase estremamente primitiva. Possiamo anzi dire che la storia dell’integrazione,
tra la memoria di Riemann e quella di Lebesgue, ¢ in gran parte la storia della preci-
sazione graduale, non priva di errori e circoli viziosi, dei concetti topologici di insieme
rado e insieme di prima specie e delle loro relazioni con gli insiemi di misura nulla.

La memoria di Riemann, presentata come tesi di abilitazione alla libera docenza
all’Universita di Gottinga nel 1854, resta praticamente sconosciuta fino al 1867,
quando viene pubblicata a cura di Dedekind. In essa, dopo aver introdotto I'integrale
che porta il suo nome, Riemann si pone il problema di caratterizzare la classe delle
funzioni integrabili.

Il risultato finale ¢ il seguente:

Condizione necessaria e sufficiente affinché una funzione limitata f(x) sia integra-
bile é che per ogni o, >0 esista una suddivisione dell'intervallo (a, b) in un numero
finito di intervalli tale che la somma delle lunghezze di quelli nei quali | oscillazione
della funzione supera o risulti minore di 8.°

$ Per comodita del lettore riportiamo la dimostrazione della sufficienza della condizione. Dati
o €68, sia D la suddivisione in questione, e indichiamo con J,(h=1, 2,..., n) quegli intervalli in
cui l'oscillazione della funzione supera ¢ (che hanno misura totale minore di§) e con I (k=1,
2,...,N)glialtri.

Sia al solito

My =sup f(x), my =inf f (x)
Ix Ik
e sia
L=sup f, I=inf f.
(a,b) (a,b)

Le funzioni

‘N n
e(x)= X Myop, +L Z o,
k=1 k h=1 h

N n
vx)=Z myy, +1 T g
k=1 ko

sono rispettivamente una maggiorante e una minorante di f, e si ha

b

N n
jlﬂp(x)—w(x)]dx: 2 (Mk—mk)m(lk)+(L—l) pX m(Jh) <
k=1 h=1

a
N
<0 Z mh)+(L-Ds <o(b-a)+(L-Ds.
k=1

Per l'arbitrarieta di o e § la funzione f sara dunque integrabile (vol. 1, cap. 4, teorema 4.2).
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Riemann mostra la generalita di tale condizione costruendo una funzione che la
soddisfa, e per la quale i punti di discontinuitad formano un insieme denso (non verifi-
cante dunque la condizione ritenuta necessaria da Dirichlet).

Non riporteremo qui I’esempio di Riemann, limitandoci a osservare come lo stesso
comportamento sia esibito dalla funzione

0 X irrazionale

fe=11
n

che ¢ integrabile in [0, 1] e discontinua in ogni punto razionale (vedi vol. 1, cap. 4,
esercizio 5.2).

La pubblicazione della memoria di Riemann diede origine a una notevole serie di
ricerche, soprattutto in Germania e in Italia, volte a estendere e chiarificare le idee
contenute in essa, e in principal modo a legare I'integrabilita delle funzioni all’insieme
dei loro punti di discontinuita.

Tali ricerche, oltre a consentire la chiarificazione delle proprieta topologiche degli
insiemi dellaretta e delle loro mutue relazioni, condurranno Cantor a fondare la teoria
degli insiemi, e sfoceranno nella costruzione di una teoria della misura e infine nell’in-
tegrale di Lebesgue. Gli anni 1870-90 vedono la pubblicazione di un considerevole
numero di lavori, la maggior parte nella direzione indicata. Il primo di questi & dovuto
ad Hermann Hankel (1839-1873), che in un lavoro del 1870, introdotto il salto della
funzione f nel punto x,°

s,(x)=m§x#lim IF()=f ),

m -
x=--,men primi tra loro,

dimostra, o meglio crede di dimostrare, che ‘“condizione necessaria e sufficiente affin-
ché una funzione limitata f(x) sia integrabile secondo Riemann ¢é che per ogni 0>0
Pinsieme degli x in cui s¢(x)> o sia rado”.

Il risultato non ¢é esatto, e la condizione di Hankel & necessaria ma non sufficiente;
d’altra parte, il lavoro ha il merito di avere svincolato la condizione d’integrabilita
dalla considerazione dell’oscillazione su intervalli, e aver introdotto, anche se non
esplicitamente, il salto 5.

L’errore della dimostrazione di sufficienza di Hankel consiste essenzialmente nel
ritenere che un insieme rado sia trascurabile, cioé racchiudibile in un numero finito
di intervalli di lunghezza totale arbitrariamente piccola. Quest’ultima nozione era gia
suggerita dalla condizione di Riemann, nella quale pero, per cosi dire, mancava il sog-
getto (cioé I'insieme che doveva essere trascurabile) in quanto essa era espressa in ter-
mini dell’oscillazione di f su intervalli.

Un passo decisivo in questa direzione ¢ compiuto da Ascoli, che nel 1875 introduce

I'oscillazione della f in un punto (vedi esempio 4.2)
Wr ()= *(x)=f ()
e dimostra il seguente teorema:

Condizione necessaria e sufficiente affinché una funzione limitata f sia integrabile é
che per ogni 0> 0 l'insieme degli x in cui w¢(x)> o sia trascurabile,

facendo vedere I’equivalenza di questa condizione a quella di Riemann.

¢ Piu che introdurre esplicitamente il salto, Hankel si limita a definire la nozione di salto mag-
giore di o.
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La questione della relazione tra insiemi radi e trascurabili ¢ risolta nello stesso anno
da Henry J. S. Smith (1826-1883), che costruisce un esempio di insieme rado non tra-
scurabile.

Né la memoria di Ascoli né quella di Smith ebbero la diffusione che avrebbero
meritato. La prima rimase praticamente sconosciuta, e tale resta anche oggi ad alcuni
storici della teoria dell’integrazione, i quali, forse appoggiandosi su un’analoga affer-
mazione di Lebesgue, attribuiscono il risultato di Ascoli a Du Bois-Raymond, che lo
ritrova nel 1882. La seconda venne anch’essa ignorata per lungo tempo, e non contri-
bui, come avrebbe potuto, a far chiarezza sulle relazioni tra insiemi di prima specie,
radi e trascurabili.

In questo campo continua a dominare una certa confusione: Ascoli, come abbiamo
visto, sostituisce un suo criterio a quello di Hankel (data la sostanziale equivalenza tra
il salto sy e l'oscillazione wy, la condizione di Ascoli si pud ottenere da quella di Han-
kel semplicemente sostituendo ‘‘rado” con ‘“trascurabile”) senza pronunciarsi sulla
validita di questo, cioé in ultima analisi sull’equivalenza tra i due concetti.

Du Bois-Raymond nel 1875 e poi pil esplicitamente A. Harnack (1851-1888) nel
1880 sembrano confondere addirittura i tre concetti; se il primo nel 1882 si corregge
e da addirittura un esempio diinsieme rado non trascurabile (nello stesso libro compare
la definizione esplicita di insieme trascurabile, o integrirbare Punktmenge), Harnack
nel 1881 riconosce la differenza tra insiemi di prima specie e insiemi trascurabili (di-
skrete Menge) e cita I'insieme di Cantor (vedi cap. 5, esempio 3.3) come esempio di
un insieme non di prima specie e trascurabile, ma persiste nel confondere questi ultimi
con gli insiemi radi, errore che correggera ’anno successivo fornendo anch’egli un
esempio.

Un esempio di insieme rado non trascurabile era peraltro apparso nel 1881, ad
opera di Volterra, che ovviamente come gli altri ignorava I’articolo di Smith.

Esente da queste confusioni & invece 'opera di Ulisse Dini (1845-1918) del 1878,
Fondamenti per la teorica delle funzioni di variabili reali, 1a prima esposizione siste-
matica delle ricerche originate dal lavoro di Riemann. Innanzitutto Dini ha ben pre-
sente la distinzione tra insiemi di prima specie e insiemi trascurabili; egli prova che
ogni insieme di prima specie € rado e trascurabile, e anche se non arriva a dimostrare
la non coincidenza di queste due nozioni si premura di tenerle sempre distinte. In
particolare fa rilevare I'inconsistenza della dimostrazione di Hankel.

D’altra parte, egli non riconosce probabilmente I'importanza del concetto di in-
sieme trascurabile; tali insiemi non hanno una definizione esplicita (né I’hanno in
Volterra, che del Dini era allievo alla Scuola Normale di Pisa) e dunque necessaria-
mente non occupano il posto che ci si aspetterebbe di trovare.

E’ probabilmente proprio a causa di questa mancata intuizione che Dini enuncia la
maggior parte dei suoi risultati per insiemi di prima specie, salvo poi usare questa
ipotesi unicamente per dedurre che I'insieme in questione & trascurabile.

Gli anni intorno al 1885 segnano comunque I’abbondono definitivo delle nozioni
topologiche (insiemi di prima specie, insiemiradi);d’altra parte la condizione di Vitali,
che si afferma perod solo in seguito alla riscoperta da parte di Du Bois-Raymond, sug-
gerisce quasi naturalmente I’idea di una “misura”, rispetto alla quale gli insiemi tra-
scurabili appaiano come insiemi di misura nulla.

Nel 1884 Otto Stolz (1842-1905) e I'anno dopo Hamack definiscono il contenuto
(Inhalt) di uninsieme A nel modo seguente: incluso A nell’'unione di un numero finito
di intervalli si prende la somma delle lunghezze di questi; ’estremo inferiore di tali
numeri € appunto il contenuto dell’insieme.
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Piit 0 meno nello stesso periodo, Cantor considera per un insieme E di R" I'invo-
lucro esterno di E, di raggio p:

E,={xER" : dist(x, E)<p},

e definisce il contenuto di £ come I’estremo inferiore del volume di E,. Che cosa sia
poi questo volume Cantor non lo dice, limitandosi ad affermare che puo essere calco-
lato con un integrale multiplo.

Ambedue queste definizioni hanno I'importante difetto di non essere additive: il
contenuto dell’unione di due insiemi disgiunti pud essere strettamente minore della
somma dei contenuti. Ad esempio I'insieme dei punti razionali e quello degli irrazio-
nali dell’intervallo [0, 1] hanno ambedue contenuto 1.

Per ovviare a questo inconveniente Giuseppe Peano (1858-1932) definisce nel 1887
una “lunghezza” per gliinsiemidellaretta, poi generalizzata da Camille Jordan (1838-
1922) nel 1893 ainsiemi di R". Questa misura, nota sotto il nome di misura di Peano-
Jordan, é definita tramite i plurintervalli: si definisce miswra interna di un insieme F
'estremo superiore delle misure dei plurintervalli contenuti in E, e misura esterna
I’estremo inferiore delle misure di quelli che contengono E. Un insieme si dira poi mi-
surabile (secondo Peano-Jordan) se coincidono le misure interna ed esterna: come si
vede, una misura piu rozza di quella di Lebesgue (vedi cap. 5, osservazione 2.3) ma
un notevole miglioramento rispetto alle concezioni primitive di Stolz, Harnack e
Cantor. In particolare la misura di Peano-Jordan ¢é additiva (gli insiemi “patologici”
non risultano misurabili), ma non numerabilmente additiva.

La questione dell’additivita numerabile era gia apparsa in precedenza: nel suo la-
voro del 1885 Harnack si era chiesto se la somma delle misure di un’infinita numera-
bile di intervalli a due a due disgiunti, la cui unione & 'intervallo (a, b), fosse uguale
a b—a. La risposta, come si deduce dal teorema 3.1, é affermativa, ma Harnack aveva
creduto di potere rispondere negativamente, e probabilmente per questo aveva definito
il contenuto di un insieme tramite sistemi finiti di intervalli.

Il problema viene ripreso da un punto di vista nettamente differente da Emile
Borel (1871-1956) nel 1898. Egli dimostra il risultato che Harnack aveva ritenuto
falso, e se ne serve come punto di partenza per una definizione “assiomatica” della
misura, enucleando alcune proprieta che gli sembrano essenziali. Queste sono:

(a) la misura di un intervallo (aperto o chiuso) & la differenza degli estremi;

(b) la misura della differenza di due insiemi misurabili 4 e B, A DB, ¢ la differenza
delle misure;

(c) la misura dell’'unione di un’infinitd numerabile di insiemi misurabili e disgiunti é
la somma delle misure.

Nella sua memoria, Borel indica molto brevemente come costruire una classe di
insiemi misurabili, chiamati poi insiemi boreliani; questi sono la minima classe che
contenga gli intervalli e che sia stabile per differenza e unione misurabile (tale cioé
che la differenza di due insiemi della classe, e I’'unione di un’infinitd numerabile di
insiemi di essa sia ancora un insieme della classe).

La teoria di Borel rappresenta un enorme passo avanti rispetto alle idee di Peano e
Jordan, soprattutto a causa dell’additivita numerabile che sirivelera una delle proprieta
pit feconde. D’altra parte, essa appariva nel lavoro di Borel soprattutto come un
mezzo tecnico in vista dello studio di altre questioni, ed era dunque trattata in modo
incompleto e quasi marginale. Spettera a Henri Lebesgue (1875-1941) il merito di
aver compreso I'importanza delle nuove idee e di averle rielaborate ponendole alla
base della sua trattazione dell’integrale.
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(B) L’integrale di Lebesgue

Le idee di Lebesgue sono gia elaborate nella sua tesi: /ntégrale, longueur, aire del
1902 e poi in forma definitiva nelle Legons sur l'integration et la recherche des func-
tions primitives del 1904. Per quello che riguarda la misura, egli mette insieme le
nuove idee di Borel con quelle di Peano, definendo dapprima la misura esterna di un
insieme E come I’estremo inferiore delle misure degli aperti che contengono E (vedi
cap. 5, definizione 2.3); quindi, nel caso in cui E sia limitato, e dunque contenuto in
un intervallo Q, la sua misura interna come la differenza tra la misura di Q e quella
esterna di Q—E, definizione equivalente a quella da noi introdotta per mezzo dei
compatti (vedi cap. 5, osservazione 2.2).

Chiamato misurabile un insieme la cui misura interna coincide con I’esterna, Le-
besgue dimostra che la differenza di due insiemi misurabili &€ misurabile, e che tale &
anche I'unione di un’infinitd numerabile di insiemi misurabili, ritrovando cosi le con-
dizioni (b) e (c) di Borel.

II contributo piu importante di Lebesgue € tuttavia ’applicazione di queste idee
alla teoria dell’integrazione. Egli non si pone piu il problema di caratterizzare le di-
scontinuita delle funzioni integrabili secondo Riemann, ma estende decisamente la
classe delle funzioni integrabili dando dell’integrale una nuova e piu efficiente defini-
zione.

La differenza tra i due modi (di Riemann e di Lebesgue) di vedere I'integrazione é
descritta dallo stesso Lebesgue nel suo articolo divulgativo Sur le development de la
notion d'intégrale del 1926.

Seguendo Riemann, per definire I'integrale di una funzione f in un intervallo [a, b]
si divide [a, b] in un numero finito di intervalli Iz (k=1, ..., N) e si costruiscono le
somme

- N N
S=2X Mm(l;) e S=Z mym(ly),
k=1 k=1

dove M, e m; denotano rispettivamente 1’estremo superiore e inferiore della fin I .
Una funzione sara integrabile secondo Riemann se si pud rendere arbitrariamente
piccola la differenza S—S raffinando opportunamente la suddivisione, cioé prendendo
un numero sempre pil elevato di intervalli sempre piu piccoli.
Poiché si ha

_ N
§—=8= T My—my)m(ly),
k=1

é chiaro che il prendere intervalli di misura sempre pil piccola rendera sempre piu
piccole le differenze My —my; (e dunque S—S) se la funzione f é continua, o anche se
ha poche discontinuita. Quando pero la funzione in esame € discontinua dappertutto,
non c’é nessuna ragione perché il divenire gli intervalli 7, sempre piu piccoli debba
rendere sempre piu piccole le differenze M; —m; (cioé ’'oscillazione della funzione
nell’intervallo /).

Per queste funzioni discontinue, conclude Lebesgue, il metodo di Riemann non
funziona quasi mai, e quando funziona &, per cosi dire, un caso. Di fronte a tale dif-
ficolta, Lebesgue ricorda che lo scopo era di ottenere degli intervalli in cui I'oscilla-
zione della f fosse piccola, e per questo si divideva I'intervallo [a, b] in intervalli sem-
pre piu piccoli, sperando che tale piccolezza si ripercuotesse sull’oscillazione della f.
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Ora é chiaro che se si vogliono ottenere insiemi in cui f varia poco, non si deve divi-
dere l'intervallo [a, b] dove la f é definita, ma l'intervallo [c,d]=[inf f, sup f), imma-
gine di [a, b] tramite f.

Dividiamo dunque [c, d] in N parti mediante i puntic=y, <y, <, ..., <yy=d,e
definiamo

Ge={x€la,b]:yx_1 <fX)<yx}, k=1,..,N.

Se si pone
N N
o= T yive, (), ¥X)= T yie196,(x)
le due funzioni ¢ e ¥ sono una maggiorante e una minorante di f, e risulta
N
1(\4’)_1(\1/)=k?l (Vi =Yik-1)m(Gy)

quantita che pud esser resa piccola a piacere raffinando la suddivisione di [c, d] (teo-
rema 2.3).

Naturalmente, agendo in questo modo si sono sostituiti agli intervalli I, la cui
misura ¢ nota elementarmente, degli insiemi G che possono essere anche molto com-
plicati; di qui la necessita di avere una misura abbastanza generale da applicarsi al
maggior numero possibile di insiemi.

La differenza tra I'integrale di Riemann e di Lebesgue é illustrata chiaramente da
Lebesgue, nell’articolo summenzionato, per mezzo di un’analogia. Vediamola nelle
sue stesse parole:

I geometri del diciassettesimo secolo consideravano l'integrale di f(x) — la parola
“integrale” non era afcora stata inventata, ma non importa — come la somma di
un’infinitd di indivisibili, ognuno dei quali era l’ordinata, positiva o negativa, di
f(x). Benissimo! Noi abbiamo semplicemente raggruppato insieme gli indivisibili
di grandezza vicina. Abbiamo, come si dice in algebra, riunito termini simili. Si po-
trebbe dire che, secondo il procedimento di Riemann, si cerca di sommare gli indi-
visibili prendendoli nell’ordine nel quale ci sona fomiti dalla variazione di x, come
un commerciante confusionario che conta monete e biglietti a caso, nell’ordine in
cui gli vengono dati, mentre noi operiamo come un commerciante metodico, che dice:

ho m(G,) monete da 100, che valgono 100 m(G,)

ho m(G,) monete da 500, che valgono 500 m(G,)

ho m(G;) biglietti da 1000, che valgono 1000 m(G,).
Tutto insieme, ho

§=100m(G,)+ 500m(G,)+1000m(G3)+ -

I due procedimenti porteranno di certo il commerciante allo stesso risultato poiché
per quanti soldi abbia c’é¢ solo un numero finito di monete e di biglietti da contare.
Ma per noi che dobbiamo sommare un numero infinito di indivisibili la differenza dei
due metodi ¢ di capitale importanza.

Con la nuova definizione di integrale si veniva cosi ad ampliare notevolmente il
campo delle funzioni suscettibili di integrazione. Ma non & questo il solo né forse il
pili importante dei risultati che derivano da essa.
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Di molto maggiore momento ¢ infatti 'introduzione di una misura numerabilmente
additiva che & determinata dalla necessita di misurare il pill gran numero possibile di
insiemi, ma che porta con sé analoghe proprieta per l'integrale, in primo luogo il
teorema di passaggio al limite sotto il segno di integrale (teorema 4.3) che ¢ una delle
pietre angolari della teoria.

Non ¢ possibile descrivere qui neanche sommariamente tutti i progressi che I'intro-
duzione dell’integrale di Lebesgue ha fatto compiere all’analisi infinitesimale, anche
perché sarebbe indispensabile nella maggior parte dei casi un linguaggio notevolmente
tecnico.” Ci limiteremo invece alla discussione di alcuni punti.

Integrazione e primitive
X
Sia f(x) una funzione sommabile, e sia F(x)= j f(t)dt la sua funzione integrale.
a
E’ vero che F'(x)=f(x), cioé che F & una primitiva di f? E viceversa, se G & una
b
primitiva di f: G’ =F, si puo affermare che J f(x)dx=G(b)—G(a)?
a

Il teorema fondamentale del calcolo integrale da una risposta affermativa nel caso
in cui f(x) sia continua; quando pero cade questa ipotesi i risultati sono tutt’altro che
evidenti, e anzi la risposta pud essere negativa.

Nel suo libro Legons sur l'intégration et la recherche des functions primitives con
un’analisi molto sottile che combina i risultati piu riposti della teoria dell’integra-
zione con la teoria dei numeri derivati introdotti da Dini, Lebesgue dimostra i seguenti
teoremi:

(a) Se fé integrabile, F é continua, e risulta F' (x)=f(x) per quasi ogni x.

(b) Viceversa, se G ¢ derivabile, e la sua derivata é limitata, allora G' ¢ integrabile e
vale la formula
X
G(x)-G(@a)= jc'(r)d:. (1]
a
Se G' non ¢ limitata pud non essere integrabile (come ad esempio la funzione
x sin 1/x). In questo caso Lebesgue dimostra che G' ¢ integrabile se e solo se G ¢ a
variazione limitata.
Infine, questa ipotesi non ¢ ancora sufficiente per la validita della relazione [1]
(vedi esempio 3.4); per questa & necessario e sufficiente che la G sia “assolutamente
continua”, nozione introdotta e studiata da Giuseppe Vitali (1875-1932).

Spazi funzionali

Cauchy aveva limitato la definizione dell’integrale alle funzioni continue, o al mas-
simo a quelle con un numero finito di punti di discontinuita. Successivamente, so-

7 Maggiori dettagli si potranno trovare nel capitolo ‘‘Integrazione” degli Elementi di storia
della Matematica di N. Bourbaki (Feltrinelli, Milano 1963), come pure nella voce ‘‘Misura’ del-
I'Enciclopedia Europea, 12 voll. (Garzanti, Milano 1976).
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prattutto ad opera di Riemann, la teoria dell’integrazione viene estesa a funzioni piu
generali, anche con infiniti punti di discontinuita. Tuttavia, a causa del meccanismo
messo cosi bene in luce dal passo di Lebesgue riportato piu sopra, I'integrale di Cauchy-
Riemann si muove completamente sotto il segno della continuita, sia in positivo,
come nel teorema dell’integrabilita delle funzioni continue, sia in negativo, I'integrabi-
lita di una funzione essendo determinata dalla struttura dei suoi punti di discontinuita.

Il quadro cambia radicalmente con la teoria di Lebesgue, nella quale le funzioni
continue svolgono un ruolo marginale, e anche le funzioni piu bizzarre vengono assog-
gettate alle regole del calcolo.® Corrispondentemente, vengono introdotti e studiati
spazi funzionali nei quali la continuita gioca un ruolo minore se non nullo: le funzioni
a variazione limitata, le funzioni assolutamente continue.

In questo panorama occupano un posto di rilievo i cosiddetti spazi LP (2), i cui
elementi sono funzioni f(x) tali che | f(x)|P & sommabile nell’aperto 2 di R".

Se si introduce in L? (£2) (1 <p <o) la norma

111 =( [15P axfre,
Q

gli spazi LP (2) sono completi, e dunque spazi di Banach.

L’importanza degli spazi LP & andata sempre crescendo via via che se ne scopriva
I’estrema versatilita nelle applicazioni, al punto che si pud dire che essi in molti casi
hanno preso il posto tradizionalmente occupato dalle funzioni continue. Una trasfor-
mazione analoga hanno subito gli spazi C* (e pil in generale C*), che sono stati sosti-
tuiti in molte applicazioni dagli spazi H'P (e H*+P), delle funzioni con derivate in
LP, una generalizzazione al caso di pill variabili della nozione di funzione assoluta-
mente continua.

Giad considerati nei loro lavori da Beppo Levi (1875-1961) e Leonida Tonelli,
questi spazi sono stati poi studiati a fondo da C. B. Morrey e da S. L. Sobolev (sono
noti appunto come spazi di Sobolev); essi sono alla base delle teorie moderne del cal-
colo delle variazioni e delle equazioni alle derivate parziali.

8 Esempi di funzioni non integrabili (o, il che € equivalente, di insiemi non misura bili) secondo
Lebesgue vengono trovati piu tardi (in particolare nel 1905 da Vitali, vedi anche esempio 3.4):
tutti fanno uso dell’assioma della scelta nella sua forma piu generale; un assioma che solo dire-
cente, dopo aver provocato non poche controversie, ¢ diventato di uso comune (vedi il capitolo
“Fondamenti della matematica™ del gia citato Elementi di storia della matematica di Bourbaki).



