
Capitolo 5 

La misura di Lebesgue in Rn 

l Introduzione. Plurintervalli in Rn 

Lo scopo di questo e del prossimo capitolo è di esporre le linee generali della teoria 
della misura e dell'integrazione secondo Lebesgue . 

Abbiamo già studiato nel volume l (cap. 4) l'integrale di Riemann per le funzioni 

di una variabile . Questa teoria , che ha il notevole pregio della semplicità ,  non è però 

del tutto soddisfacente, sia perché un largo gruppo di funzioni non sono integrabili 

secondo Riemann, sia soprattutto per la scarsa flessibilità dell'integrale di Riemann 

per quanto riguarda il passaggio al limite sotto il segno di integrale. 

Al contrario, la teoria dell'integrazione secondo Lebesgue, che noi tratteremo nel 
seguito,  è completamente esente da queste carenze, pur conservando in gran parte le 
caratteristiche di semplicità della teoria di Riemann. In questo capitolo studieremo la teoria della misura in Rn . La misura di un insieme 
verrà definita per gradi: per prima cosa si considereranno rettangoli e plurirettangoli 
(unione di un numero finito di rettangoli) ; quindi si definirà la misura di insiemi aperti 
approssimandoli dall'interno con plurirettangoli, e di insiemi compatti, mediante 
un'approssimazione dall'esterno. Infme introdurremo la misura di insiemi generali, 
approssimandoli contemporaneamente dall'interno con insiemi compatti e dall'esterno 
con insiemi aperti. 

Un intervallo n-dimensionale /C Rn (vedi fig. 5 . 1 )  è il prodotto cartesiano di n 
intervalli unidimensionali J 1 , J 2 , • • •  , J n 
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Figura 5. 1  

La misura di un intervallo I è semplicemente il prodotto delle misure degli intervalli 
lt . l2 , . . .  , 111 

m(/) = (b 1 - a 1 ) (b2 -a2 ) • • •  (b11 -a11 ). 

La misura così definita è la naturale generalizzazione a R11 della misura elementare di un rettangolo . 
Il secondo stadio è costituito dalla misura dei plurirettangoli. Su ogni asse coordi· 

f. . fi . d' . . ( l ) ( l ) ( 1 ) 11.  Il' nato ISSiamo un numero m1to 1 punti ;  s1ano a 1 , a2 , . . .  , ak que 1 su asse 
(2 ) (2 ) ( l )  I l '  Il' ' . ( d ' fi 5 2) 

' 
xb a 1 , a2 , . . .  , ak, que 1 su asse x2 , e cos1 v1a ve 1 1g . . . 

Consideriamo poi gli iperpiani di equazione 

x 1 =a�l ) , 
x2 =a�2> , 

; =a(11) 11 l ' 

x -a< 1 > l - 2 ' 

x2 =a�2) , 

x =a<11> 11 2 ' 

. . . , 

. . .  , 
X 1 =ail ) l 
x2 =ai2) 2 

x =a<11> 11 kn . 
L'unione di questi k 1 + k2 + . . · + k11 iperpiani si dirà un reticolato in R" . 
Un reticolato f!J divide R11 in un numero finito di intervalli chiusi, che chiame­

remo intervalli di f!J, più un certo numero di insiemi illimitati. 

Definizione 1 . 1 Un insieme Y si chiama plurintervallo (o plurirettangolo) se esiste 
un reticolato f!Jtale che Y sia l 'unione di un numero finito di intervalli di f!J. 

Se /1 , /2 , . . .  , IN sono intervalli di un reticolato f!J e se 

si pone 
m(Y)= m(/1 ) + m(/2 ) + . . .  + m(IN)· ( 1 . 1 ]  

Poiché uno stesso plurintervallo Y può essere rappresentato in più modi, a partire 
da reticolati diversi , è necessario far vedere che la misura di Y data dalla [ 1 . 1 ]  non di­
pende dalla scelta del reticolato f!J. 
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y 

Figura 5 .2 

Chiameremo 9' raffinamento di 9 se 9' -::;9, cioè se in 9' ci sono tutti gli iper· 
piani che compaiono in 9, più eventuali altri. E' chiaro che la misura di Y non cambia 
se si sostituisce a 9 il reticolato f!J' ottenuto aggiungendo a 9 un iperpiano . Per in­
duzione si vede che la misura di Y non cambia se si sostituisce a 9 un suo raffinamento . 

Siano ora 91 e � due reticolati tali che Y si possa scrivere come unione di inter­
valli di 9,. e anche come unione di intervalli di � .  Poiché 91 U 92 è un raffina­
mento sia di 91 che di � ,  la misura di Y, calcolata col reticolato 9. ,  è uguale a 
quella calcolata con il reticolato 92 , in quanto ainbedue coincidono con la misura 
calcolata con il reticolato 91 U � .  • 

Con lo stesso ragionamento si conclude che due plurintervalli Y e Z si possono 
sempre scrivere come unione di intervalli dello stesso reticolato . Ne segue che Y U Z è 
un plurintervallo e che 

m (Y U Z ) � m ( Y) + m(Z) .  

In  particolare , s e  Y n z  = 0,  s i  ha 

m (Y U Z ) = m(Y) + m(Z).  

Esercizi 

[ 1 .2) 

1 . 1 Siano I e l due intervalli. Dimostrare che se I e J hanno punti interni in co­
mune , allora J () J è un intervallo. 

1 .2  Siano Y = I1 U I2 U . . .  U IN e Z =/1 U/2 U . . .  U JM due plurintervalli. Suppo­
niamo che per ogni h =  l ,  2, . . . , N  e k =  l ,  2 ,  . . . , M  l'insieme Ih () Jk sia o vuoto o un 
intervallo. Si dimostri che Y n Z è un plurintervallo. 
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1 . 3  Sia I un intervallo. Dimostrare che : (a) per ogni e >  O esiste un intervallo J 
tale che I C J0 (J0 è la parte interna di J : J0 = J - a J) e che 

m (J ) < m (I ) + e . 

1 .4 Sia Y un plurintervallo . Si dimostri che per ogni E >  O esiste un plurintervallo 
Z con Y C Z0 e tale che m (Z) < m ( Y)  + e ; (b) per ogni E >  O esiste un plurintervallo 
W con W C Y0 e tale che m ( W ) > m ( Y ) - e. 

l . S  Dimostrare che se Y e Z sono due plurirettangoli, con Y C Z, allora m ( Y ) :r;;;; 
:r;;;;m (Z ). 

1 .6  Dimostrare che se Y e Z sono due plurirettangoli, con Y ::> Z, allora la chiusura 
di Y -Z è un plurirettangolo, e si ha 

m ( Y - Z ) = m ( Y ) - m (Z ). 

2 Insiemi misurabili : misura di un insieme 

Come abbiamo detto, il secondo gradino consiste nel defmire la misura per insiemi 
aperti e per insiemi compatti. 

Definizione 2. 1 Sia A un aperto di Rn . Si definisce misura di A l 'estremo superiore 
delle misure dei plurirettangoli contenuti in A:  

m (A ) = sup {m(Y); Yp/urinterval/o, Y C A } . 

Si noti che è possibile che risulti m(A )  = + co ;  ad esempio m (Rn ) = + co . Se però A è 
limitato, cioè A è contenuto in un rettangolo di Rn , allora m(A )  < + co (vedi eserci· 
zio 1 .5). 

Lemma 2. 1 Siano A e B due aperti e sia K un compatto contenuto in A U B; esiste 
un numero d>  O tale che, per ogni x EK, l 'intorno /(x, d) è tutto contenuto in A o 
in B. 

Dimostrazione. Consideriamo le funzioni 

/(x) = dist (x, Rn -A)  e g(x) = dist(x, Rn -B). 

Le funzioni / e g sono continue, e si  ha f(x) + g(x)> O in K. 
Poiché K è compatto , f(x) + g(x) avrà un minimo positivo in K.  
Sia c tale minimo e sia d =c/2 . Per ogni x EK risulterà f(x) +g(x) ;;ll:2d , e dunque 

dovrà essere f(x) ;;ll:d ,  oppure g(x ) ;;l�:  d . 
Nel primo caso si ha /(x, d ) CA ; nel secondo /(x, d) C B .  • 

Lemma 2.2 Siano A e B due aperti. Allora 

m (A UB) :r;;;;m(A ) + m(B). [2 .2] 
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Dimostrazione. Sia W un plurintervallo contenuto in A U B .  Poiché W è compatto, 

si può applicare il lemma precedente con K = W. Sia d come nel lemma 2 . 1 ; raff"mando 
eventualmente il reticolato si può supporre che ogni intervallo di W abbia diametro 
minore di d. Per il lemma 2 . l  ogni intervallo di W è contenuto in A o in B. 

Sia Y l'unione di tutti gli intervalli di W contenuti in A, e sia Z l'unione di quelli 
contenuti in B .  Per quanto detto sopra risulta W =  Y U Z e dunque 

m(W) � m(Y) + m(Z). 

Poiché Y CA e Z C B, si ha m(Y) � m(A )  e m(Z) � m(B), e quindi 

m(W) � m(A) + m(B) 

per ogni plurirettangolo W C A  U B .  Da questa segue immediatamente la [2 .2] .  • 
Passiamo ora alla defmizione della misura per insiemi compatti. 

Defmizione 2.2 Sia K un compatto di Rn. Si definisce misura di K l 'estremo infe­
riore delle misure dei plurirettangoli che contengono K: 

m(K ) = inf {m(Z); Z plurintervallo, Z ::JK}. 

Osservazione 2. 1 .  Ricordando l'esercizio 1 .4 si vede facilmente che 

m(K ) = inf {m(Z ); Z plurintervallo, Z0 ::J K}, 

dove al solito indichiamo con Z0 la parte interna di Z. • 

Lemma 2.3 Siano K e L due compatti disgiunti (K n L = 0). Allora 

m(K U L) ;;;a. m(K )  + m(L). 

[2 .3] 

[2 .4] 

[2 .5]  

Dimostrazione. Se f(x) = dist (x, L)  si  ha f(x) > O  in K, e dunque / ha un minimo 
positivo d in K. Sia W un plurirettangolo che contiene K U L .  Raffmando eventual­
mente il reticolato si può supporre che tutti gli intervalli di W abbiano diametro 
minore di d/2 .  

Se si indica con Y l'unione degli intervalli d i  W che hanno punti in comune con 
K e con Z l'unione di quelli che hanno punti in comune con L ,  risulta 

Y U Z C W, Y n z =0, 

e inoltre 

K C Y, L C Z. 

Allora 

m(W) ;;;a.m(Y UZ) = m(Y) + m(Z) ;;;a.m(K) + m(L), 

da cui segue immediatamente la [2 .5 ] .  • 
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Notiamo che il lemma 2.3 ci serve solo come risultato intermedio . In realtà nella 

[2 .5 ] vale sempre il segno "=",  come si vedrà nel corollario 2 . 1 .  
Una volta definita la misura degli aperti e dei compatti si possono considerare in­

siemi di Rn arbitrari. 

Definizione 2.3 Sia E C Rn . Si chiama misura esterna di E l 'estremo inferiore delle 
misure degli aperti che contengono E: 

m(E) = inf {m(A), A aperto, A :> E}. [2 .6 ) 

Analogamente, si chiama misura interna di E l 'estremo superiore delle misure dei 
compatti contenuti in E: 

m(E) = sup {m(K ), K  compatto, K C E}. [2 .7) 

Se E non è limitato può accadere che per ogni aperto A :::>E risulti m(A ) = + oo . In 

tal caso si porrà m( E) = + 00 . 
Osservazione 2. 2 .  Si noti che si potrebbe usare solo la misura esterna e definire la 

misura interna per mezzo di questa. Se E è un insieme limitato (ci si può limitare a 

considerare tali insiemi ; vedi più oltre, § 4) basterà prendere un intervallo I :::> E e 

definire 

m(E) = m(/) - m(/-E). 

Si può dimostrare facilmente che la misura così ottenuta non dipende dalla scelta 

dell'intervallo /. • 

Lemma 2.4 Se A è un aperto e K è un compatto contenuto in A, esiste un p/uri­
rettangolo W tale che K C W C A. 

La dimostrazione di questo lemma viene lasciata per esercizio. (Si proceda come 

nelle dimostrazioni dei lemmi 2 . 1  e 2 .3 .) Da esso segue facilmente la 

Proposizione 2. 1 Per ogni insieme E C Rn risulta 

m(E);;;,.m(E). [2 .8) 

Dimostrazione. Sia K un compatto e A un aperto con K C E C A .  Per il lemma 

precedente esiste un plurintervallo W con K C W CA . Ricordando le definizioni 2 . 1  e 

2.2 , si conclude che 

m(K ) EO; m(A )  

per ogni compatto K C E e per ogni aperto A :> E, e quindi vale la [2 .8) .  • 
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Se A è aperto, si ha evidentemente m(A ) = m(A );  d'altra parte i plurintervalli sono 

compatti, e dunque 

m(A ) = sup {m(Y), Y plurintervallo , Y C A } � 

� sup {m(K), K compatto , K C A } = m(A ). 

Ricordando la proposizione 2 . 1 , si ha 

m(A ) = m(A ) = m(A ). 

In maniera analoga , tenendo conto dell'osservazione 2 . 1 , si dimostra che 

m(K )  = m(K ) = m(K )  

per ogni compatto K C R" . 

[2 .9] 

[2 . 1 0] 

Possiamo ora dare la definizione di insieme misurabile , e di misura di un insieme. 

Definizione 2.4 Un insieme E C R" si dice misurabile (secondo Lebesgue) se la 
misura esterna e la misura interna di E sono uguali e finite. In tal caso il numero 

m (E) = m(E) = m(E) 

si  chiama misura di Lebesgue n-dimensionale (o più brevemente misura) di E .  

A volte può essere opportuno, per evitare confusioni, scrivere mn (E), e anche 

D1n (E) e !!!n (E), indicando così esplicitamente la dimensione dello spazio in cui si 

esegue la misura . 

Dalla discussione precedente segue che gli insiemi aperti limitati e gli insiemi com­
patti di R" sono misurabili. Comunque la classe degli insiemi misurabili è molto più 

vasta:  gli esempi di insiemi limitati non misurabili sono ottenuti tutti in maniera indi­

retta e non costruttiva (vedi esempio 3 .4). 

Osservazione 2. 3 .  Nella teoria della misura dovuta a Peano e Jordan (precedente a 

quella di I..ebesgue) la misura esterna e la misura interna di un insieme E vengono de­

ftnite mediante plurirettangoli: 

ji(E) = inf {m(Y), Y plurirettangolo , Y ::J E} 

�(E) =  sup {m(Z ), Z plurirettangolo , Z C E} 

e si dice misurabile (secondo Peano-Jordan) un insieme E per il quale le due misure 

coincidono (e sono finite). 

Tenendo presente l'osservazione 2 . 1 ,  si vede facilmente che un insieme misurabile 

secondo Peano-Jordan lo è anche secondo I..ebesgue , e le misure coincidono . Il vice­

versa però non è vero ; ad esempio esistono aperti limitati che non sono misurabili 

secondo Peano-Jordan. 

La ragione per cui la misura di Peano-Jordan è meno raffinata di quella di I..ebesgue 
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risiede, a ben vedere, nella proprietà (b) dei plurintervalli stabilita nell'esercizio 1 .4 ,  
in virtù della quale si può dimostrare facilmente che 

iJ (E) = su p {m (Z) ,  Z plurirettangolo , z c  E0 }, 

e dunque 

iJ(E) = 1J (E0 ). 

Analogamente si dimostra che fi(E) = fi(E), e dunque un insieme E è misura b ile se­

condo Peano-Jordan se e solo se lo sono anche il suo interno e la sua chiusura , e le 

misure di tutti questi insiemi coincidono ; in altre parole se e solo se la sua frontiera 

a E ha misura nulla. 

A ben vedere, la misura di Peano-Jordan consiste nell'approssimare E dall'interno 

con aperti e dall'esterno con compatti. Ora è chiaro che in tal modo la frontiera di E 
entrerà sempre nel calcolo della misura esterna e mai in quella della misura interna . 

Al contrario , approssimando dall'interno con compatti e dall 'esterno con aperti si 

possono prendere in ogni caso quelle parti di a E che appartengono a E ed escludere 

le altre. Di qui la maggior duttilità della misura di Lebesgue . • 

Segue immediatamente dalla definizione la seguente 

Proposizione 2.2 Un insieme E è misura bi/e se e solo se per ogni e >  O esistono un 
aperto A e un compatto K, con K C E  CA tali che 

m(A ) - m(K) < e. 

Analogo ai lemmi 2 .2  e 2.3 è il seguente 

Lemma 2.5 Siano E e F due insiemi di Rn ; risulta 

m(E U F ) EO; m(E) + m(F ). [2 . 1 1 ]  

Inoltre, se E n F=0. si ha 

m(E U F) ;;o, m(E) + m(F) .  [2 . 1 2] 

Dimostrazione. Se m(E) + m(F) = + oo ,  la [2 . 1 1 ]  è evidente.  S i  può allora supporre 
che le misure esterne di E e di F siano ambedue finite .  Per e >  O siano A e B due aperti, 
eon E CA e F C B e tali che 

m(A ) < m(E) + e, m(B ) < m(F) + e. 

Ricordando il lemma 2 .2 ,  

m(E U F ) EO; m (A  U B ) EO; m(A ) + m (B ), 
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e quindi 

m(E U F ) :E;;;m(E) + m(F) + 2 e. 
Poiché quest'ultima relazione vale per ogni e >  O si ricava la [2 . 1 1 ] . 
In maniera analoga , usando il lemma 2 .3 ,  si dimostra la [2 . 1 2 ] .  • 
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Se gli insiemi E e F sono misurabili e disgiunti (cioè E nF=0), combinando le 
[2 . 1 1 ]  e [ 2 . 1 2] si ottiene immediatamente la relazione 

m (E U F ) = m(E) + m(F ) . [2 . 1 3] 

In particolare se A è un aperto e K un compatto contenuto in A , A -K è un aperto 
(dunque è misurabile) e dalla [2 . 1 3 ] con E =K e F=A -K si ottiene 

m(A -K ) = m(A ) - m(K) . 

Con un semplice ragionamento per induzione si dimostrano le analoghe delle [2 . 1 1 ] e 

[ 2 . 1 2 ] per un numero finito di insiemi, e di qui il seguente 

CoroUario 2. 1 Sia dato un numero finito di insiemi mis10abili a due a due disgiunti 
E1 , E2 , . • .  , En ; in tal caso la loro unione è misurabile e si ha 

[2 . 1 4] 

Teorema 2. 1 Dati due insiemi misura bili E ed F, anche E u F, E n F e E- F sono 
misurabili . 

Dimostrazione. Cominciamo col dimostrare che E-F è misurabile . Sia e > O  e 
siano A ,  A ' due aperti e K ,  K' due compatti, con 

K C E C A ,  K ' C FCA ' ,  

e tali che 

m(A -K)< i · m(A ' -K ') < i · 

Se si pone 

B =A -K ' e L =K -A ' , 

B è un aperto , L è un compatto e inoltre 

L C E-FC B. 

D'altra parte B -L è aperto , e 

B -L C (A -K ) U (A '  -K') ,  

cosicché , per il lemma 2 .2 ,  

m(B -L) :E;;;m(A -K) + m(A ' - K ') < e. 
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In definitiva per ogni e > O abbiamo trovato un aperto B e un compatto L con 

L C E-FC B, e m (B) - m (L) = m(B -L) < e. Per la proposizione 2.2 l' insieme E-F 
risulta dunque misurabile. 

Per quanto riguarda E n F si osservi che 

E n F=E- (E -F), 

cosicché , in virtù di quanto appena dimostrato, l'insieme E n F  sarà misurabile non 
appena lo siano E e F. 

Inf"me si ha 

E U F = E U (F-E) [2 . 1 5 ] 

e i due insiemi a secondo membro sono misurabili e disgiunti .  Per il corollario 2 . 1 la 

loro unione è misurabile , e il teorema è completamente dimostrato .  • 
Osservazione 2. 4 .  Dalle [ 2 . 1 3 ] e [ 2 . 1 5 ] segue 

m (E U F) = m (E) + m (F- E). 

D'altra parte si ha F= (F-E) U (F n E), e dunque : 

m (F) = m (F- E) + m (F n E) . 

Confrontando , si ottiene la relazione 

m(E) + m(F) = m(E U F) + m(E n F ), [2 . 1 6] 

valida per ogni coppia di insiemi E e F misurabili . • 

Esercizi 

2. 1 Dimostrare che se E ,  F e G sono misura bili, allora 

m (E U F U G ) = m (E ) + m (F ) +  m(G ) - m (E n F ) - m (E n  G ) - m (F n  G ) +  

+ m (E n F n G ). 

2.2 Dimostrare la proposizione 2. 2 .  

2. 3 ·  Sia s e  R2 il segmento 

S = {(x , y) E R2 : y = O, O <E;;x <E;; 1 }. 

Dimostrare che S è misura bile, e che m2 (S ) = O. 

2.4 Si dimostri che la misura del triangolo T di vertici (O, 0) ,  (O, a) e ( b ,  0) è uguale 
all'area elementare definita 
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2. 5 Sia f(x)  una funzione continua e positiva nell'intervallo [0 , l ] ;  l'insieme 

F =  {(x , y) E R2 : O E;;; x E;;; l , O E;;;y E;;;f(x)} 

è compatto e dunque misurabile. Si dimostri che 

1 

m (F ) =  J f(x) dx . o 
2.6 Dimostrare che l'insieme costituito da un solo punto è misurabile e ha misura 

nulla . 

*2. 7 Sia E un insieme misurabile di Rn e sia t >  O ;  si ponga 

tE = {x E Rn : x/ t E  E}. 

Si dimostri che t E è misura bile, e che 

m (tE ) =  tn m (E ) . 
(Si dia la dimostrazione per gli intervalli, poi per i plurintervalli ecc . )  

2 .8  Sia E un insieme misurabile e sia v E  Rn . Si  dimostri che l'insieme 

TvE = {x E Rn : x - vE E } 

è misurabile e si ha 

m (TvE ) = m (E ). 

2.9 Si dimostri che, se E C F, allora 

m (E ) E;;;m (F ), 

!!!(E ) E;;;!!!(F ) . 
*2. 1 0  Dimostrare che se A è un aperto limitato di R2 , esiste una successione di -

plurintervalli Y 1 C Y 2 C . . .  con U Y; =A .  (Si metta A in un quadrato, e si suddivida i=1 
prima in quattro quadrati uguali, poi ognuno di questi in quattro quadratini uguali 
ecc. Alla k-esima suddivisione si denoti con Y k l'unione di tutti i quadra tini contenuti 
in A, . . .  ) Generalizzare a Rn . 

2. 1 1  Generalizzare il risultato precedente ad aperti non limitati. 
2. 12  Dimostrare che, se K è un compatto, esiste una successione Z 1 :J Z2 :J . . . di -

plurintervalli, con n z; =K .  i=l 
3 Additività e subadditività numerabile della misura 

Lo scopo di questo paragrafo è di estendere a una infinità numerabile di insiemi i 
risultati del paragrafo precedente , relativi alla misura dell'unione di due o di un nu­
mero fmito di insiemi 
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Lemma 3. 1 Sia data una famiglia numerabile di insiemi aperti, A t t  A 2 , . . . , e sia .. 
A =  U A; ;  

i= l 

allora .. 
m(A) .;;;; 1: m(Ak ). ( 3 . 1 ) 

k = l  

Se poi si ha A 1 CA 2 C A 3  C . . .  , risulta 

m(A ) =  lim m(Ak ) · (3 .2] 
k -+ oo 

Dimostrazione. Sia Y un plurintervallo contenuto in A .  Poiché Y è compatto e la 

famiglia {A;}; E N è un ricoprimento di Y, esisterà una sottofamiglia finita che ricopre 

Y (vedi cap . l , teorema 6 . 1  ) . Esiste dunque un intero j tale che 

Y C A t UA 2 U . . .  UA; . 

Per il lemma 2 .2 si avrà allora i .. 
m(Y) .;;;; 1: m(Ak) .;;;; 1: m(Ak) ·  

k = l  k = l  

(3 .3) 

Poiché questa disuguaglianza sussiste per ogni plurintervallo Y C A ,  si ha immedia­

tamente la (3 . 1 ] .  
Se poi A t C A 2 C . . .  , segue dalla ( 3 .3) che 

Y C A; , 

e quindi 

m(Y) .;;;;m(A;) .;;;; sup m(A;). 
j E N  

D'altra parte la successione m(A;) è crescente ,  per cui 

m (Y) .;;;; sup m(A;) =  lim m(A;). 
j E N  j-+oo 

e infine 

m (A ) .;;;; .lim m(A;). , ...... 
Per dimostrare la disuguaglianza opposta, osserviamo che A; C A , e dunque 

m(A;) .;;;;m(A )  per ogni j E N ;  quindi 

m(A ) �  .lim m(A;). , ...... 
che, confrontata con la precedente, dà la (3 .2) . • 
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Passiamo ora a considerare le misure esterna e interna. 

Proposizione 3 . 1  Sia E 1 o E2 , • • • una famiglia numera bile di insiemi di Rn , e sia 
.. 

E =  U E1 • l= l 
Si ha 

.. 
m(E) E;;; .I: m(E;). i= l [3 .4] 

Inoltre, se gli insiemi E; sono a due a due disgiunti, risulta 
.. 

m(E) ;;;a. l: m(E;) . i= l [3 .5 ]  

Dimostrazione. Cominciamo dalla [ 3 .4] . Se il secondo membro è + oo non c'è nulla 
da dimostrare . Si potrà supporre dunque che tutte le misure esterne degli E; siano 
ftnite. 

Sia e >  O, e per ogni i E N sia A; un aperto che contiene E; e tale che 

m(A;) < m(E;) + e r 1 • 

Se si pone 
.. 

A = U A1, 
i= l 

risulta E C A  e quindi m(E) E;;;m(A).  Per il lemma 3 . 1 ,  
.. .. .. 

m(E) E;;; l: m(A1) < l: m(E;) + e l: r 1 , 

e quindi 
i= l i= l i= l 
.. 

m(E) < l: m(E;) + e.  l =  l 
Poiché questa disuguaglianza è vera per ogni e >  O, la [3 .4] è dimostrata. 
Per quanto riguarda la [3 .5 ] ,  si osservi che, per ogni intero k, 

k 
E -::J U E1,  

i=  l 

e dunque, ricordando il lemma 2 .5 ,  

k k 
m(E) :> m( u E1) ;;;a..I: m(E1), 

i= l jo: l 
da cui segue la [ 3 .5 ]  passando al limite per k -+  + oo . • 
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Nel caso in cui gli insiemi E; formino una succes�one crescente (cioè verifichino 
la relazione E 1 C E2 C . . . ), vale la seguente: 

Proposizione 3.2 Sia {E;h e N  u na  famigUa numerabile di insiemi di Rn , con 
E1 C E2 C . . .  e sia 

-
E =  U E1 ;  

i= 1 
in tal caso 

iii<E> =  lim iii<E1). (3 .6] 1-+• 
Dimostrazione. Come nella dimostrazione precedente, sia e > O  e per ogni i sia 

A1 un aperto contenente E1 e tale che 

m(A;) < m(E;) + e2- i .  

Gli insiemi A ;  non sono in �enerale contenuti l'uno nel successivo , e quindi non si 
può applicare la [3 .2 ) . Per ovviare a questo inconveniente poniamo 

e facciamo vedere che si ha 
k . 

m(Bk ) < m (Ek ) + e � r ' .  
i= 1 

[3 .7 ] 
La (3 .  7] è vera per k = l  ; supponiamo la vera per k e dimostriamola per k + l .  Poi­

ché Bk +1 =Bk UAk +1 , si ha 

m(Bk + 1 ) = m(Bk ) + m(Ak + d - m(Bk nA k + 1 > · 

Osserviamo ora che Ek C Bk n Ak +1 , e dunque m (Ek ) E;;;m(Bk nA k +1 ) .  Dalla 
(3 .7] per k segue allora 

k 
m(Bk + 1 ) < m (Ek ) + e � r 1 + m(Ek + 1 ) + r k- 1 e - m(Ek ), 

i= 1 

e quindi la [3 .7 ]  per k + l .  
In questo modo la (3 .7)  è dimostrata ; da essa segue immediatamente 

Se ora si pone 
-

B =  U Bk k = 1 

risulterà B :::>E; ricordando la [3 .2 ] ,  

m (E) E;;;m(B) = lim m(Bk) E;;; lim m (Ek ) + e, 
k -+ oo  k -+- •  
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e per l 'arbitrarietà di e si trova 

m(E) � Hm m (Ek ). 
k -+ e 

D'altra parte ,  E -:J Ek e dunque m(E) � m (Ek ) ; passando al limite per k -+- 00 ,  si 
ottiene 

m (E) � lim m(Ek ),  
k -+ oo  

che , confrontata con la precedente , d à  la tesi. • 
Nel caso che gli insiemi considerati siano misurabili, si hanno i seguenti importanti 

risultati .  

Teorema 3 . 1  (additività numerabile della misura) Sia E � o  E 2 ,  . • .  un 'infinità 
numera bile di insiemi misura bili, a due a due disgiunti. Sia 

e 
E =  U E; , 

i= l 

e si supponga che m(E) < + 00• Allora E è misurabile e si ha 

e 

-
m(E) = � m(E;). 

ì= l 

Dimostrazione. Per la proposizione 3 . 1 , - -
m(E) �  � m(E1) = � m(E;) 

i= l i• l  - -
!!!(E) ;;ilo  � m(E1) = � m(E;), 

i= l l= l 

da cui si ottiene -
m(E) = m(E) = � m(E1). • 

i= l 

[3 .8] 

Teorema 3.2 (subadditività numerabile della misura) Sia E � o  E 2 ,  • • •  una famiglia 
numerabile di insiemi misurabili, e sia -

E =  U Et.  
i= l 

Se m (E) < + ...,, allora E è misura bile, e -
m(E)� � m(E1). [3 .9] 

i• l 
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Se poi E1 C E2 C . . .  , si ha 
m(E) = lim m(E1). [3 . 1 0) i-+ • 

Dimostrazione. Si ponga 

Gli insiemi F; sono misurabili e a due a due disgiunti; inoltre, per ogni i E N ,  si ha 
F; C E1,  e quindi m(F1) � m(E1), cosicché 

- -
� m(F1) � � m(E;). 
i= 1 1= 1 

[3 . 1 1 )  

D'altra parte E è l'unione degli F1 , cosicché per il teorema precedente E è misura--
bile e m(E) = � m(F;).  l = l  

La [3 .9)  è allora conseguenza della [3 . 1 1 ) . 
Infine se E1 CE2 C . . . , la [3 . 1 0) segue immediatamente dalla proposizione 3 .2 .  • 

Esempio 3. 1 
Se E 1 , E 2 , • • •  è un'infinità numera bile di insiemi di misura nulla , la loro unione è 

misurabile , e ha misura nulla (teorema 3 .2). In particolare , siccome un punto ha 
misura nulla , ogni insieme numerabile ha misura nulla . Così l'insieme Q dei numeri 
razionali compresi tra zero e uno , essendo numerabile ,  ha misura unidimensionale 
nulla. 

Questo fatto può essere dimostrato direttamente nel modo seguente . 
I numeri razionali compresi tra O e l possono essere posti in una successione 

{r "  r2 , • • • }. Per e >  O, l' insieme aperto 

A = LJJ(r · er 1- 1 ) e ' '  
i= 1 

contiene Q. Per il teorema 3 .2, risulta 
- -

m (A e) �  � m (I(ri , e 2 - i - 1 )) = � e r i = e .  
i =  1 i = 1 

Ma allora iii(Q ) = O e dunque m (Q ) = O .  • 

Esempio 3. 2 

L'insieme Q ' dei numeri irrazionali compresi tra zero e uno ha misura l . Infatti 

Q ' = [O , I ) - Q 

e per il teorema 2 . 1  Q '  è misurabile . Inoltre , poiché Q e Q ' sono disgiunti si ha 

l = m( [O , l ] ) = m(Q ) + m(Q ' ) = m (Q') .  • 
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Esempio 3. 3. Un insieme compatto, non numerabile e di misura nulla: l 'insieme 
di Cantar 
Questo notevole insieme si costruisce nel modo seguente. Si parte dall'intervallo 

[0 ,  l ] , che si divide in tre parti uguali togliendo l'intervallo aperto centrale ( 1 /3 ,  2/3) ;  

resta così  l ' insieme chiuso K l >  composto dei due intervalli [0 ,  1 /3 ]  e [ 1 /3 ,  l ] , ognuno 

di ampiezza 1 /3 .  Si continua ora dividendo ognuno degli intervalli chiusi che com­

pongono K 1 in tre parti uguali, e togliendo l'intervallo centrale aperto ; resterà un 

insieme chiuso K2 composto di quattro intervalli chiusi, ognuno di ampiezza 1 /9 .  Si 

prosegue sempre allo stesso modo ; dopo m passi si otterrà un insieme compatto 

composto di 2m intervalli chiusi, ognuno di ampiezza 3 - m , e dunque di misura totale : 

Risulta evidentemente K 1 "J K 2 "J ·<::> Km "J · · · ; posto allora 

K è un insieme compatto , con (vedi esercizio 3 .4) 

m (K) =  lim m (K;) = O . 
i-+ 00 

L'insieme K si dice insieme di Cantar. E' chiaro che K non contiene alcun intervallo ; 

inoltre K ha la potenza del continuo (cioè può essere messo in corrispondenza biuni­
voca con un intervallo , vedi esercizio 3 .2) e dunque non è numerabile. • 

Esempio 3. 4. La funzione di Cantar 
Strettamente legata all' insieme di Cantor è una funzione un po' patologica , detta 

funzione o anche scala di Cantar . 
Per introdurla , descriviamo in primo luogo un'operazione sulle funzioni lineari de­

finite in un intervallo . Sia f(x) una funzione lineare nell' intervallo [a , b ] ,  che assume i 

valori o: e � ai due estremi a e b .  Dividiamo l'intervallo [a, b ]  in tre parti uguali ; la 
funzione trasformata l{ x) sarà definita ponendo f<x) = (o: + �)/2 nell'intervallo cen­

trale e raccordando i valori linearmente negli intervalli laterali (vedi fig. 5 .3) .  Notiamo 

che 1 ha la stessa immagine di [, e dunque 

1 1 1 -f i l� � 1 � -o: l , 

mentre l'immagine (tramite 1 ) di ognuno degli intervalli laterali ha ampiezza l � - o: 1 /2 .  

Ciò premesso , partiamo dalla funzione f0 (x) =x nell'intervallo [0 ,  l ]  e operiamo 

nel modo detto ; otterremo una funzione f1 (x) che sarà costante nell'intervallo ( 1 /3 ,  

2/3) e lineare negli altri due . I n  ognuno d i  questi intervalli operiamo d i  nuovo come 
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a 
Figura 5 .3  

sopra , e così via . Dopo h passi otterremo una funzione fh che sarà lineare in ognuno 
degli intervalli /1 , 12 , • • •  , 12h che compongono Kh , mentre sarà costante in ognuno 

degli intervalli che formano [0 ,  1 ] -Kh . Non è difficile vedere che l' immagine fh (/8) 

di un qualsiasi intervallo /8 ha ampiezza 2 - k ({3 - a) .  

Se ora m è un intero positivo, la funzione fh + m  sarà uguale alla fh fuori di Kh , 

mentre in ognuno degli intervalli di Kh avrà la stessa immagine di fh . Ne deriva 

La successione {fh }  è dunque una successione di Cauchy ; essa converge uniforme· 

mente a una funzione continua f(x) ,  detta funzione di Cantor. La funzione di Cantor è una funzione crescente ,  dato che è limite di funzioni ere· 

scenti. Essa ha inoltre derivata nulla in ogni punto di [0 ,  l ] -K. Infatti se x0 fi.K dovrà 

risultare x0 fi. Kh per qualche h E N .  Ma allora f(x) = fh (x) =costante in un intorno di 

x0 , e dunque f '(x0 ) = 0 . Poiché K ha misura nulla , la funzione di Cantor ha derivata 

nulla in quasi tutti i punti di [a , b] (e cioè in tutti i punti tranne al più in un insieme 

di misura nulla) , e verifica f(a) = a  e f(b) = {3 .  • 

Esempio 3.5. Un insieme non misurabile 
Nell'intervallo (0 ,  l ]  due punti si diranno equivalenti se la loro differenza è un 

numero razionale . Si d i'insieme quoziente di (0 ,  l ]  rispetto a questa relazione di 

equivalenza. Ogni elemento o: E.JJ/ è costituito da un punto di (0 ,  l ]  e da tutti i punti 
ad esso equivalenti ,  e cioè che differiscono da questo per un numero razionale. Per 

ogni a E d  si scelga un numero reale Xo: E a, e sia E l ' insieme costituito da tutti 
questi punti :  
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Dimostreremo , ragionando per assurdo,  che E non è misurabile . 

Supponiamo che E sia misurabile , e per ogni numero razionale r E  [ - I ,  l ]  sia 

TrE = {x E R : x - r E E} = {x + r  : x E E} 

l'insieme ottenuto traslando di r tutti i punti d i  E .  L'insieme TrE è misurabile , e s i  ha 

m(TrE) = m (E) (vedi esercizio 2 .8) .  

Non è difficile vedere che se  r :#= s  si ha TrE n T9E= (/J. Infatti altrimenti esistereb­

bero due punti x 1 e x2 di E tali che x 1 + r = TrX 1 = T9 X2 =x2 + s , e dunque x 1 -x2 = 

= s -r sarebbe un numero razionale diverso da zero , mentre per definizione in E non 

ci sono punti equivalenti .  Inoltre , dato che in E c'è un rappresentante di ogni classe 

di equivalenza, per ogni punto w di [0 ,  l ]  esiste un punto di E che differisce da w per 

un numero razionale compreso tra - I  e l .  Ne segue 

8= U TrE -::J [0 ,  l ] . 
r E Q n ( - 1 , 1 ) 

Inoltre tutti gli insiemi TrE, e dunque anche 8, sono contenuti in [ - I ,  2 ] .  

S i  ha  allora 

I = m ( [O ,  I ] ) E;;;m (8 ) E;;;m ( [ - I ,  2 ] ) = 3  

e poiché gli insiemi T h E sono a due a due disgiunt i :  

m (8) =  � m (TrE) =  � m (E).  
rE Q n ( - 1 , 1 ) r E O n ( - 1 , 1 ) 

Queste relazioni sono contraddittorie . Infatti se m (E) = O  si deve avere anche 

m(8 ) = 0 , e dunque non può essere m(8 ) � l , mentre se m(E) > O  si avrà m(8 ) = +  oo, 
e non potrà essere m (8 ) E;;;3 .  • 

Esercizi 

3. 1 Sia E0 il cerchio /(0, l )  in R2 , c per k > O  sia xk = ( 1 - 4 -k , O) c 
Ek = I(xk > 4- k- 1 ) ; 

sia inoltre 

E = Eo - (El U E2 U . . .  ) = Eo - U Ek . 
k = l 

Si trovi la misura di E. 

3. 2 (A) Dimostrare che ogni x E ( 0, l ]  si può scrivere nella forma 

-
X = � Dj 3 - i , j .. l 

con at = O, l o 2. 
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(B) Se x è scritto nella fonna (A) , l'espressione 

x = O, a , a2 a3 a4 . . .  è la rappresentazione di  x in base 3 ;  ad esempio 
2 -9 = 0,02000 . . . = 0,020. 

Verificare che si ha anche 
2 -
9 = 0,0 1 2 . 

Capitolo quinto 

(C) In caso di non unicità della rappresentazione preferiremo quella che contiene 
meno numeri l ;  ad esempio, alla rappresentazione 

1 6  -
27 = 0, 1 2 1 0 , 

preferiremo 
1 6  -27 = 0 , 1 202 .  

In tal modo, ogni numero ha rappresentazione unica. 
Ciò premesso, si dimostri che un numero reale x E [O, l ]  appartiene all'insieme di 

Cantor K se e solo se la sua rappresentazione in base 3 non contiene la cifra l .  (Ad 

esempio l /3 = 0,02 E K ; mentie 1 6/27 = 0, 1 202 €F K . )  
( D )  S i  consideri l'applicazione f :  K -+  [O, l ] , che associa al punto x = O, a 1  a2 a3  . . . E 

E K  il punto 

� 
f(x ) = � a; 2- i- l . 

i= l  

Si dimostri che f è un'applicazione surgettiva, cosicché K non è numerabue. 

3. 3 Dimostrare che se m (E)  = O  e F C  E, allora anche m (F )  = O. 

3.4 Sia K 1 :J K 2 :J · · ·  una successione di insiemi compatti, ognuno contenuto nel 
precedente, e sia 

K =  n K; .  
i= l 

Si provi che m (K ) =  lim m (K;). (Si prenda un aperto A :J K 1 e si considerino gli in­
siemi A;= A - K; . )  i-+ � 

3.5 Siano Q e Q' gli insiemi dei numeri razionali e dei numeri irrazionali dell'inter­
vallo [ 0, l ]  (vedi esempi 3 . 1 e 3 . 2) .  Si dimostri che jl(Q) = jl(Q' ) = l ,  mentre �o� (Q) = 
= g (Q' ) = O. 

-

4 Insiemi di misura infinita 

Nel paragrafo 2 abbiamo definito misurabili quegli insiemi le cui misure interna ed 
esterna sono uguali e finite . Talvolta però può essere comodo avere una definizione di 
misurabilità anche per insiemi di misura infinita. 
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Definizione 4. 1 Un insieme E C Rn si dice misurabile se per ogni r >O l 'insieme 

E rìl, (intersezione di E con la palla di centro O e raggio r) è misurabile, cioè se per 
ogni r 

E' evidente dal teorema 2 . 1  che se un insieme E è misurabile nel senso della defini­
zione 2 .4, cioè se m (E) = m(E) < + oo ,  lo sarà anche secondo la definizion� precedente . 
Non sarà però vero il viceversa ; ad esempio, un qualsiasi aperto di misura infinita (in 
particolare tutto Rn ) sarà misurabile ai sensi della definizione 4 . 1 , ma non avendo mi­
sura finita non ricadrà sono la defmizione 2 .4. Nel seguito quando parleremo di in­
siemi misura bili intenderemo sempre riferirei alla definizione 4 . 1 . 

Proposizione 4. 1 Se E è misura bile, si ha 

[4. 1 ]  

Dimostrazione . Si indichi con L il limite a destra della [ 4 .1 ] ;  tale limite esiste perché 
m(E rì l,) è una funzione crescente di r. Per ogni r > O, esiste un compatto K, C E  rì l, 
tale che 

Poiché K, C E, risulterà 

m(E) > m (E rìi,) - I /r 
e, passando al limite per r -+  + 00 ,  

m(E) � L . 

D'altra parte 

E= U E rì l, 
r E N 

e, per la proposizione 3 .2 ,  

m(E) = L ,  

che confrontata con la [4.2] d à  la tesi .  • 
[4.2] 

Il teorema 2 . l  continua chiaramente a valere per insiemi misurabili secondo la 
nuova defmizione 4. 1 : si ha infatti 

(E U F )  rì l, = (E rì l,) U (F rì l,) 

(E rì F ) rì l, = (E rì l,) rì (F rì l,) 

(E -F)  rì l, = (E rì l,) - (F rì l,) ,  
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e quindi, se E e F sono misura bili, lo saranno anche E U  F, E n F e E-F. In particolare, 
siccome R" è misurabile (in quanto aperto), il complementare di ogni insieme misura­
bile è misura bile, e dunque gli insiemi chiusi sono misura bili. 

Osservazione 4. 1 .  Si potrebbe essere tentati di defmire semplicemente gli insiemi 
misura bili come quegli insiemi per cui m(E) = m(E), eliminando così le lungaggini 
della doppia defmizione 2 .4 e 4. 1 .  In questo modo si avrebbero però dei seri incon­
venienti con gli insiemi di misura infmita ; in particolare, il teorema 2 . 1  non sarebbe 
valido in generale. 

Sia infatti F un insieme non misurabile, contenuto in I 1 , e sia 

E = F U (R" -I1 ) . 

Si ha evidentemente m(E) = m (E) =  + co  e dunque E risulterebbe misurabile , men­
tre E n i1 =F non lo è .  

Queste difficoltà scompaiono adottando l a  defmizione 4 . 1 ; infatti l'insieme E non 
è misurabile , dato che per l'appunto non lo è F=E n i1 •  • 

I risultati del paragrafo precedente restano validi anche per insiemi misurabili 

qualsiasi. 

Teorema 4. 1 Sia E 1 , E2 , E 3 ,  • • •  una famiglia numera bile di insiemi misurabili, e sia 

l 'insieme E è misurabile e si ha .. 
m(E) os;;;; l: m (E1) , 

i= l 
[4 .3] 

Se poi gli E; sono a due a due disgiunti, risulta 

m(E) = l: m(E1) .  [4.4] 
i= l 

Infine, se si ha E1 C E2 C E3 C . . .  , allora 

m(E) = lim m(E1). [4 .5 ] j -+ oo 
Dimostrazione. L'insieme E è misurabile : infatti per ogni r abbiamo 

E n I,. = u (E; n I,.) , 
i= l 

e dunque E n i,. è misurabile essendo unione numerabile di insiemi misurabili , e verifi­

cando la condizione m(E ni,.) os;;;;m(I,.) < + co .  
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Per la proposizione 4.1 risulterà m (E) = m(E), e le [4.3) e [4 .4) seguono dalla pro­

posizione 3 . 1 .  

lnfme la [4.5 )  segue immediatamente dalla proposizione 3 .2 .  • 

Esercizi 

4. 1 Si dimostri che se E e F sono insiemi misurabili,  F C  E, e m (F ) < + co ,  allora 

m (E - F ) = m (E ) - m (F ) . 

4.2  Si provi che se F 1 ,  F 2 ,  . . . sono insiemi misura bili, allora 

F =  n Fi 
i = l 

è misurabile. 

4. 3  Sia F1 , F2 , F3 , . . . una successione di insiemi misurabili, con F1 -:J F2 -:J • • • e 

con m (F 1 )  < + oo , e sia 

F =  n Fi. 
i = l 

Si dimostri che se m (F! ) < + oo allora 

m (F ) = lim m (Fi) 
i -+ -

(si considerino gli insiemi E i = F 1 - Fi ) .  

S La misura nei prodotti cartesiani 

I risultati di questo paragrafo non sono molto importanti di per sé (e anzi il prin­

cipale risultato, il teorema 5 . 1 ,  è un caso particolare del teorema di Fubini , che verrà 

dimostrato nel prossimo capitolo), ma rappresentano un mezzo tecnico che sarà utile 

per lo sviluppo della teoria dell'integrazione . 

Teorema S . l  Siano E C R" e F C  Rk due insiemi misurabili. Allora / Ynsieme 
E X  FC Rn + k è misurabile e si ha 

m
n

+ k (E X F ) = m  .. (E) mk (F ) . [ 5  . l ]  

Dimostrazione. Verrà fatta in vari stadi. Si comincia dapprima con l' osservare che 

la [ 5 . l ] è ovvia se E e F sono intervalli, ed è semplice se E e F sono plurintervalli . 

Il passo successivo consiste nel dimostrare la [ 5 . l ]  per insiemi aperti .  Siano A c R" 
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e B c Rk due aperti .  Sia {Pi} una successione di plurintervalli, con P1 CP2 C P3 c . . . e 
con 

U p. =A (vedi esercizi 2 . 1  O e 2 . 1 1 ). 
j= l 1 

Si ha, ricordando il teorema 3 .2 ,  

m,. (A ) = 
.
lim m,. (Pj ) .  , _ _  

Analogamente, sia {Qi} una successione di plurintervalli con le stesse caratteristiche 
della precedente, relativa all'aperto B. Se si pone Ri =Pi X Qi• si ha R 1 C R2 CR 3  C . . .  e 

cosicché 

m,. .k (A X B) = lim mn +k (Rj) = lim m,. (Pj) mk (Qj) = m,. (A ) mk (B ), i -. - j -+ -

e la [ 5 . l ]  è dimostrata per insiemi aperti .  
Con una dimostrazione analoga, utilizzando l'eserci"lio 2 .1 2 ,  e l 'esercizio 4.3 al 

posto del teorema 3 .2 ,  si prova la (5 . 1 ) per insiemi compat t i .  
Siano infine E e F due insiemi rnisurabili ; siano {A;} e {B;} due successioni di 

aperti, con A ;  -:::>E, B1 -:::> F, e tali che 

m,. (A;)-+ m,. (E) ; mk (B;)-+ mk (F). 
Si ha E X  FCA1 X B; , e dunque 

ffin+k (E X  F) :E;;;mn+k (A; X B;) = m,. (A ;) mk (B;), 

da cui, passando al limite per i -+ oo ,  

ffi,. +k (E X F) :E;; m,. (E) mk (F). (5 .2] 

Con lo stesso ragionamento, approssimando E e F dall'interno con insiemi com­
patti, si ottiene la disuguaglianza 

IDn +k (E X  F) ;;;;,m,. (E) mk (F), ( 5 .3 )  

che confrontata con la  [5 .2 ]  dà la  [5 . 1  ] .  • 
Osservazione 5. 1 .  Si vede facilmente {il ragionamento è lo stesso), che se E e F 

sono insiemi arbitrari, invece delle (5 .2 ] ,  [ 5 .3 ]  si ottengono le disuguaglianze 

ffin +k (E X  F) :E;;;m, (E)ffik (F), 

!En +k (E X  F) ;;;;,!!!n (E)!!}k (F). 

In realtà la ( 5 .5 ]  si può migliorare ; si ha infatti 

IDn+k (E X  F) = m,. (E) mk (F). 

[ 5 .4) 

( 5 .5 )  

[5 .6) 
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Si consideri, per verificare tale relazione, un compatto � contenuto in E X F, e sia 

H= projn (�) = {x E Rn : 3 y E Rk , (x , y) E �} 

la proiezione di � su Rn . Indichiamo poi con K la proiezione di � su Rk . 
I due insiemi H e K sono compatti e risulta H C E e K C F. Poiché � C H X K, si ha 

e, per l'arbitrarietà di � .  

illn +k (E X F) <;�n (E) !!!k (F), 

che insieme alla [ 5 . 5 ]  dà la [5 .6 ) .  • 

Anche nella [5 .4 )  si ha l'uguaglianza, ma la dimostrazione è notevolmente più 
complicata. Per il seguito sarà comunque sufficiente la seguente 

Proposizione S. l Siano E C Rn 
e F C Rk. Si ha 

ffin (E) !!!k (F) <; mn +k (E X F). 

Dimostrazione . Si può ovviamente supporre che ffin +k (E X F ) < + oo . [5 .7) 

Sia C un compatto contenuto in F (vedi fig. 5 .4) , e per e > O  sia A un aperto 

c 

Figura 5.4 

l l l l l l l _ _ _  T _ _ _  _ l l l 

x 
l l l l 

{x } x C 1 l l l l l - - - - - - - - - - - ,  l 

8 
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contenente E X F tale che 

mn +k (A ) < mn +k (E X F) + e .  

Si ponga 

B =  {x E R" : {x} X  C C A }. 

Poiché {x} X C è un compatto contenuto nell'aperto A ,  esiste un intorno V di x 
tale che V X  C C A .  Ne segue che 

B -:J E; B X  C C A .  

Allora 

(nell'uguaglianza centrale si è usato il teorema 5 . l ). Si ha dunque 

mn +k (E X F ) > mn (E) mk (C) - e, 

e , per l 'arbitrarietà di e,  

Quest'ultima disuguaglianza è valida per ogni compatto C C F, e dunque 

mn + k (E X F) � mn (E) �k (F) .  • 

Figura 5.5 

- - - - - - - - - - - - - - - - - - - - - - - ? " " / / / - - - - - - - - - - - - - - - - - - - - - 7  -- - - - - - - ....... // l l /" - - - - - - 4 - - - - - - - - -� - - /  l l l l l l � 

/ 
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Osservazione 5. 2 .  E' evidente che oltre alla [ 5 .7 ]  si avrà anche 

IDn (E) mk (F) EO;;mn+k (E X  F) .  
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[ 5 .8 )  

Confrontando le [ 5 .6) , [ 5 .7] con le [ 5 .4 ] ,  [ 5 . 5 ]  si conclude che s e  uno degli insiemi 
E, F (ad esempio F) è rnisurabile, allora 

[ 5 .9 )  

Un  caso che sarà usato nel seguito s i  presenta quando F= (a , b ) ,  oppure F= [a , b ]  
(vedi fig. 5 .5) .  Se  si pone 

E! =EX (a, b), ff: =E X [a , b) , 

si ottiene 

Din + l (i"! ) = mn + l (E: ) = (b -a) mn (E), 

illn + l (i!) =mn + l (Ea) = (b -a) mn (E). • 

[5 . l O) 

[5 . 1 1 )  
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L'integrale di  Lebesgue in Rn 

l L'integrale di Lebesgue 

La definizione dell'integrale secondo Lebesgue di una funzione è concettualmente 
identica a quella dell'integrale di Riemann (vedi vol .  l ,  cap . 4, §§ 2 e 3). L'unica dif· 
ferenza consiste nella definizione delle funzioni semplici. 

Definizione 1 . 1  Si dice funzione semplice in R" una combinazione lineare di fun­
zioni caratteristiche di insiemi misurabili e limitati di R", a due a due disgiunti, N 

�P(x) = � Ài'PE·(x). 
i= 1  l 

Se lP è la funzione semplice [ 1 . 1 ]  si definisce integrale di lP il numero N 
� Ài m(Ei). 
i = 1  

L 'integrale di lP si indica con i simboli 

[ 1 . 1 ]  

[ 1 .2] 

Una funzione semplice lP si può scrivere in più modi come combinazione lineare di 
funzioni caratteristiche ;  come nel capitolo 4 (vol. I ), si dimostra che l'integrale non 
dipende dalla rappresentazione . Infatti, se oltre alla [ l .  l ]  si ha anche M 

lP = � P.k IPFk k = 1  

con gli Fk misurabili, limitati e a due a due disgiunti, si avrà N M N M 
lP = �  � Ài iPE · n F  = � � P.k iPE· n F  · i= 1 k = 1 l k i= 1 k = 1 l k [ 1 .3] 
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D'altra parte N N M 
� À, m(E;) =  � � À, m(E; n Fk). 

i= 1 i= 1 k = 1  M N M 
� IJk m(Fk) = � � IJk m(E; n Fk ). 

k = l  i= l k = l  
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[ 1 .4] 

[ 1 .5 )  

Poiché dalla [ 1 .3] segue che À; = /Jk non appena E; n Fk :#0, i secondi membri delle 
[ 1 .4] e [ 1 .5 ]  sono uguali, e di conseguenza l'integrale della <P non dipende dalla sua 
rappresentazione. 

Con un ragionamento simile si dimostra che, se <P e t/1 sono funzioni semplici, sono 
tali anche <P + t/1 e l <P l - Inoltre si ha 

j (<P +  t/l) dx =  J <Pdx +  J t/l dx 

Jc</)dx =c  J<Pdx c E R, 

Se <P "" t/1 , cioè se <P(X) "" t/l (x) per ogni x E R" , risulta 

J </) d x ""J t/1 dx  

e dunque i n  particolare : 

L'insieme delle funzioni semplici in R" verrà indicato con !/. 

[ 1 .6)  

[ 1 .7] 

[ 1 .8 ] 

[ 1 .9) 

Sia ora f(x) una funzione definita in R" , limitata e nulla fuori di un compatto . In­
dichiamo con �(!) la classe delle funzioni semplici che maggiorano la f 

!/..(!) = {<P E  Y: <P(x) ;;;a.f(x) Vx E R"}. 

Analogamente 

!:/._ (/) = {t/l E  Y: 1/l (x) ""f(x) Vx E R" }. 

E' chiaro che le classi Y.(f) ed !:/_ (!) non sono vuote ; infatti, se f(x) = O fuori 
del compatto K e se 1/(x)l �M, le funzioni semplici 

<P =M<PK e t/1 = -M<PK 

sono rispettivamente una maggiorante e una minorante della f. 
Defmizione 1 .2 Sia f :  R" -+ R una funzione limitata e nulla fuori di un compatto. 

Si chiama integrale superiore della f il numero 
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e integrale inferiore il numero 

Jtdx = sup { J  lP d x ; lP E !/_ (!)}. 

La funzione f(x) si dirà sommabile (secondo Lebesgue) se il�uo integrale superiore 
coincide con quello inferiore. In tal caso si chiama integrale di fil valore comune del­
l 'integrale superiore e inferiore. L 'integrale della funzione f si indica con uno dei sim­
boli 

In (f), J f(x) dx , 

Le seguenti proposizioni si dimostrano in maniera identica alle analoghe del primo 
volume (cap. 4, § 3), e vengono lasciate per esercizio. 

Proposizione 1 . 1  Condizione necessaria e sufficiente affinché la funzione f(x), li­
mitata e nulla fuori di un compatto, sia sommabile, è che esistano due successioni di 
funzioni semplici {IPk} e { lPk }, le une maggioranti e le altre minoranti, tali che 

In tal caso esistono i limiti 

lim J�k d x e lim r lPk dx, k -+- k -+ oi e si ha 

Osservazione 1. 1 .  Notiamo che si può sempre supporre che la successione {�Pk} sia 
decrescente e che la {IPk}  sia crescente. Infatti s e  si pone 

'P; =VJ1 W't = l/1 1 
lP� =IP1 A IP2 = min(IP. , IP2 ) lP� = lP 1 V lP2  = max(ll! . , IP2 ) 

le funzioni IPi sono maggioranti e le �Pi sono minoranti ; inoltre 



L 'integrale di Lebesgue in rf' 1 9 7  
e dunque 

lim f (.,oic - 1/lic) dx = O .  
k ---

E' chiaro che la successione IPk è decrescente, mentre la l/li è crescente . 

Proposizione 1 .2 Condizione necessaria e sufficiente affinché una funzione f(x), 
limitata e nulla fuori di un compatto, sia sommabile, è che per ogni e >O esistano due 
funzioni semplici <.p e 1/1, con 

e 
J(.,o - 1/l) dx < e. 

Esempio 1 . 1 .  Confronto con l 'integrale di Riemann 
Abbiamo già osservato che l'unica differenza, per quanto riguarda la definizione, 

tra l'integrale di Lebesgue e quello secondo Riemann consiste nella classe di funzioni 

semplici che intervengono nei due casi . Infatti, mentre in un caso (integrale di Lebesgue) 

le funzioni semplici sono le combinazioni lineari di funzioni caratteristiche di insiemi 

misurabili, nell'altro (integrale di Riemann) si prendono in considerazione solo le fun­

zioni semplici elementari, cioè le combinazioni lineari di funzioni caratteristiche di 

intervalli. 

Se indichiamo con !/' la classe delle funzioni semplici e con yel quella delle fun­

zioni semplici elementari, si avrà ovviamente yel C !/'. Se f(x) è una funzione limitata 

e nulla fuori di un compatto : 

!/'!1([) c !/.([). ye_l (f) c !/'_ (f), 

cosicché 

sup { j 1/l dx ; 1/I E!/'e_1(f)}or;;;sup { I 1/l dx ; 1/I E  !/'_ ([)}" 

or;;;inf { J.,odx ; <.pE  !/'+([)}"  

" inf { J .,od x ; .,oE!/'!1 (f)}. 

Ricordando che una funzione è integrabile secondo Riemann se risulta 

sup { J 1/l dx ; 1/1 e!l'e_1 (f)}= inf { f.,odx ; <.pEY'!1 (f)}, 

si conclude che ogni funzione integrabile secondo Riemann lo è anche secondo Lebes­

gue e i due integrali coincidono. In particolare le due nozioni di integrale coincidono 

per le funzioni continue (e per quelle continue a tratti), e quindi continueranno a va­

lere per l'integrale di Lebesgue i risultati dei capitoli 4 e 5 del primo volume (ad 

esempio il teorema fondamentale del calcolo integrale). 
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Esercizi 

1 . 1  Dimostrare che, se /(x) è sommabile, lo sono anche le funzioni 

.r+(x) = max { /(x) , O} e r <x) = - min {/(x) , O}. 

Capitolo sesto 

1 .2 Dimostrare che,  se f(x) e g(x) sono sommabili, allora anche f+ g, cf e 1 / 1 
sono somma bili, e si ha 

Ju+ g) d x =  J fdx + J gdx  

Jc fdx = c  J fdx 

Jtdx �  J gd x, se f(x) �g(x) 't:/ x E R" , 

l J fdxl � J I l i d x. 

2 Funzioni misurabili 

Per ottenere la massima generalità consentiremo qui e nel seguito alle funzioni in 
esame di assumere anche i valori + oo e - oo ;  in altre parole considereremo funzioni a 
valori nella retta ampliata 1 

R = {- oo} U R U {+ oo} . 

Definizione 2.1 Sia f(x) una funzione definita in R". Diremo che f è misurabile se 
per ogni t E R l 'insieme 

Ft = {x E R" : f(x) > t} 

è misura bi/e. 

1 Alla retta ampliata R si può estendere l'ordinamento di R ponendo semplicemente - oo < a <  
< + .. per ogni numero reale a. Si possono estendere in parte anche le operazioni di somma e di 
prodotto (con l'eccezione della somma + .. - oo  e dei prodotti + .. · O e - oo · O  che non sono defi­
niti) nel modo seguente : 

+ oo  + oo = + oo + a = + oo ,  

- oa - oo  = - oo  + a = - oo , {+ .. 
+ oo · a =  

- oo  

se a > O  

se a < O, 

{ _ .. - oo  · a =  
+ oa 

se a > O  

se a < O. 
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Si vede facilmente che ogni funzione continua è misurabile . Infatti , se f(x) è con­

tinua e se f(x0 ) > t, esiste un intorno di x0 in cui si ha f(x) > t  (teorema della 
permanenza del segno). Di conseguenza F, è aperto e dunque misurabile . 

Proposizione 2. 1 Le seguenti proprietà sono equivalenti: 

(a) F; = {x E Rn : f(x) <.  t} è misurabile per ogni t E R . 
(b) F; = {x E Rn : f(x) < t} è misurabile per ogni tE  R .  
(c) F;" = {x E Rn : f(x) �  t} è misurabile per ogni t E  R .  
(d) f(x) è misura bile . 

Dimostrazione 

(d) => (a) Basta osservare che 

e ricordare che il complementare di un insieme misurabile è misurabile . 

(a) => (b) Si osservi che 
� 

F;' = U Fl- 1 tk k = l  

e si ricordi il teorema 4. 1  del capitolo S .  
(b) => (c) Infatti 

(c) => (d) Segue dalla relazione 
� 

F, = U F;� I tk · • 
k = l  

Vogliamo ora stabilire alcune proprietà delle funzioni misurabili . Per questo dimo­
streremo il seguente 

Lemma 2. 1 Se f(x) e g(x) sono due funzioni misurabili, l 'insieme 

E = {x E Rn : f(x) >g(x)} 

è misurabile. 

Dimostrazione. Se per x E Rn risultaf(x) >g(x) (cioè se x EE), esisterà un numero 
razionale r tale che 

f(x) >r>g(x). 

Viceversa , se questa relazione è verificata , allora x E E, e dunque in , definitiva, x E E  
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se e solo se esiste un numero razionale r tale che x E Fr n G; .  Ne segue 

E= U (Fr n G;), 
rE Q 

dove si è indicato con Q l'insieme dei numeri razionali. 

Poiché Q è numerabile, E risulterà misurabile grazie al teorema 4. 1 del capitolo S .  • 

La classe delle funzioni misurabili verrà indicata con vii. Si ha il seguente 

Teorema 2.1  (proprietà delle funzioni misurabili) 

(l) Se [E vile c E  R, allora f+ c e cf sono misurabili. 
(2) Se f e gE.,/f, allora f + g, f2 e fg sono misura bili . 
(3) Se !t , [2 , . . . è una successione di funzioni misurabili, le funzioni 

M(x) = sup fk (x) e m (x) = inf fk (x) 
k E N  k E N  

sono misurabili.2 
( 4) Se {fk } è una successione in _A, con !t .;;;;. /2 .;;;;. • • •  , allora 

f(x) = lim fk (x) k --

è misura bile . 
(5) Se {fk } è una successione di funzioni misurabili, le funzioni 

f(x) = max lim fk (x) e g(x) = min lim fk(x) k -+• k -+oo 

sono misurabili. In particolare, se  la successione {fk} converge puntualmente a f(x), 
quest 'ultima funzione risulta misurabile. 

Dimostrazione 
( I )  Segue immediatamente dalla defmizione e viene lasciata per esercizio . 

(2) Si ha 

{x E Rn : f(x) +g(x) > t} =  {x E Rn :f(x) > t -g(x)} 

e per il lemma 2. 1  quest'ultimo insieme è misurabile , cosicché f + g Evll. 
Se r ;;o.: o, si ha 

{x E Rn : [2 (x) > t}=  {x E Rn : f(x) > Vt } U {x E Rn :f(x) < - Vt }, 

mentre, se t < O, 

2 Si vede qui l'utilità di considerare funzioni a valori in R. Infatti se ci fossimo limitati a fun. 
zioni reali sarebbe stato necessario introdurre l'ipotesi che M(x) < + .. e m (x) > - .. per ogni 
xE ff .  
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In ogni caso l'insieme 

{x E R" : [2 (x) > t} 

è misurabile e quindi f2 eA. 
Infme si ha 

4fg = (f+g)2 - (f-g)2 

e quindi anche fg è misurabile . 
(3) Si ha per ogni t :  .. 

{x E R" : M(x) > t }=  U {x E R" : Jì (x) > t }, 
i= l  

cosicché M(x) è misurabile. Analogamente è misurabile m (x), dato che .. 
{x E R" : m (x) < t } =  U {x E R" : Jì (x) < t}. 

j = l  
(4) Discende immediatamente da (3), i n  quanto 

[(x) = sup Jì (x) . 
j E N  

(5) Se si pone 

Mk (x) = su p Jì(x), 
i �k 

201 

le funzioni Mk(x) sono tutte misurabili, e quindi sarà anche misurabile la funzione 

[(x) = inf Mk (x) = max lim Jì(x). 
k E N  j � .. 

In maniera analoga si procede per il minimo limite . • 

Esempio 2. 1 
Siano ora [(x) e g(x) due funzioni misura bili. Se si definisce 

si ha per (3) che le funzioni 

M(x) = sup Jì(x) =[(x) Vg(x) ; m (x) =[(x) /\g(x) 
j E N  

sono misurabili . 
In particolare se [(x) è misura bile lo saranno anche le funzioni 

rCx) =f(x) V O e r- Cx) = [ -[(x)] V O. 

Viceversa , se [+ ed [ - sono misura bili , sarà tale anche [=[+ -[ - .  • 

Vogliamo dare a questo punto una caratterizzazione delle funzioni misurabili in 
termini del loro sottografico. Se [(x) è una funzione definita in R" .  si chiama sotto-
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grafico di f l 'insieme 

fF= {(x , y)E Rn X R : y <f(x)} (vedi fig .  6 . 1 ). 
Si ha il seguente 

Teorema 2.2 Una funzione f(x) è misurabile se e solo se l 'insieme $' è misurabile. 

Dimostrazione 
(A) Sia fF misura bile e sia t E R . Dobbiamo far vedere che l'insieme 

Ft = {x E Rn : f(x) > t } 
è misurabile, e cioè che per ogni R > O  sono misura bili gli insiemi Ff = F1 n I R . 

Sia dunque R > O, e per h E N si ponga (vedi fig. 6 .2) 

:F�h = {(x, y) E �: l xi <R , t <y < t + 1 /h}. 

L'insieme ��h è misurabile e limitato, e si ha 

F� X (t, t + 1 /h)" :JfF�h ":JF�+ l th X (t, t +  1 /h ). 

Ricordando le [ 5 . 1 0] e [ 5 . 1 1 ]  del capitolo 5 , si ottiene 

IDn (F�);;� h mn + l  (��h )�iiin (F�+ l th ) , 
e quindi, per ogni h E N, 

IDn (F��iiin (F�+ l th ) ; 

R 

Figura 6. 1 

y = f(x) 

[2 . 1 ] 
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Figura 6.2 

cosicché 

D'altra parte 

R 

l l l l l Ft• I Ih n /R 

e, per la proposizione 3.2 del capitolo 5 ,  

lim ffin (F:..,l lh ) = ffin (Ff ) . h -+-

Ne  segue che Ff =F, nJR è misurabile per ogni R e quindi F, è misurabile . 
(B) Sia ora f misurabile. Per ogni numero razionale r l' insieme 

F, X (- oo ,  r) 

203 

è misurabile . D'altra parte (x, y) E 1F  (cioè y < f(x)) se e solo se esiste un numero 
razionale r tale che y < r < f(x) . 

Allora 

1F= U F, X (-oo , r) 
rE  Q 

e quindi 1F è misurabile. • 

Possiamo a questo punto studiare le relazioni che intercorrono tra funzioni misu­
rabili e funzioni sommabili. Cominciamo con il dimostrare il seguente 

Teorema 2.3 Sia f(x) una funzione misurabile, limitata e nulla fuori di un com­
patto K. Allora f è sommabile. 
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Dimostrazione. Cominciamo dal caso in cui [(x) ;;> O. Sia P un intero tale che 
f(x) <P. 

Sia h E N, e per i = l, 2, . . . , hP si ponga 

Gli insiemi G1 sono misurabili e a due a due disgiunti. Se si pone 

hP i hP i - l 
IPh (x) =  1: -h cp0 . (x), 1/Jh (x) = 1: cp0. (x), 

i= l l i= l l 

si ha C.Oh E Y'+ (f) e 1/Jh E !/..(!). 
Inoltre 

l hP l j(cph - 1/Jh ) dx = h 
i
�l m(Gj)� h m(K), 

e per la proposizione 1 . 1 il teorema é dimostrato nel caso f ;;> O. 
Se ora f(x) é una funzione rnisurabile di segno variabile , le funzioni r+ ed[- sono 

misurabili, limitate, nulle fuori di K e positive . Per quanto appena visto f+ ed f- sa­

ranno sommabili e quindi anche f=r -r- sarà sommabile . • 
Sia ora f(x) una funzione sommabile limitata, nulla fuori di un compatto e non 

negativa. Consideriamo i due insiemi 

fFo = {(x,y)E Rn X R : O <y <f(x)}, 
JF� = {(x , y) E Rn X R : O <y �f(x)}, 

e insieme alle funzioni IPh e 1/Jh defmite nella proposizione l . l ,  gli insiemi 

«<>iz = {(x ,y)E R" X R : O <y ��h (x)}, 
'lth = {(x ,y)E Rn X R : O <y < 1/Jh (x)}. 

Si ha 

e quindi 

mn + l  ('l� h )� ffin + 1 (fFo ) �  ifin + 1 (JF� )� m,.+ 1 («<>iz ), 
mn + l ('lth )� !!!n + l (�o ) �  !!!n + l (�� ) � mn + 1 («<>iz ) . 

Per il teorema 5 . 1  del capitolo precedente 

m,.+ 1 ('l� h )= J 1/Jh d x, 

mn + l («<>ia ) = J c.oh dx , 

[2 .2] 

[2 .3]  

[2 .4] 
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e, per la proposizione 1 . 1 ,  

Dalle [2 .3 ) e [2 .4) segue allora il seguente 

Teorema 2 .4 Sia /(x) una funzione sommabile, limitata, nulla fuori di un com­
patto e non negativa. Allora gli znsiemi � ed �� sono misurabili e risulta 

[2 .5 ]  

D teorema 2 .4 sarà usato largamente nel seguito ; ce ne serviremo ora per  invertire 
il teorema 2 .3 . 

Sia f(x) una funzione limitata ,  nulla fuori di un compatto e sommabile . Supponiamo 
dapprima che f(x) sia non negativa . Per il teorema 2 .4 l 'insieme �o è misurabile , e 
quindi è misurabile anche il sottografico �di [, dato che si ha 

�= � U {R" X {- oo ,  0 ] ) . 

Applicando il teorema 2 . 2  si conclude che la funzione f è misura bile . 
In generale , se f è  di segno qualsiasi, le funzioni /+ ed [ - sono non negative e som­

mabili se lo è [ (vedi esercizio 1 . 1 ). Per quanto detto sopra, [+ ed [ - sono misurabili, 
e quindi è tale anche f. 

Ricordando la proposizione 2 . 1 , si ottiene così il seguente 

Teorema 2.5 Una funzione f(x) limitata e rwlla fuori di un compatto è somma bile 
se e solo se è misura bile . 

Esercizi 

2.1 Si dimostri che un insieme limitato E è misurabile se e solo se la sua funzione 
caratteristica .PE è misurabile . 

2.2 Dimostrare che la funzione 
se x< O  

f(x ) = 
{ l -x 
x + 3  se x ;;i!= O 

è misurabile . 

2.3  Dire se sono misurabili le seguenti funzioni : 
(a) ex -x 
(b) [x ] 

{x/ l x i se x E R - {O} 
(c) O se x = O. 
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2.4 Dimostrare che sono misurabili le funzioni semicontinue superiormente (infe­
riormente). 

3 Alcune estensioni deU'integrale 

Prima di sviluppue ulteriormente la teoria , sarà opportuno generalizzare il concetto 
di integrale , in analogia con quanto si è fatto per l'integrale di Riemann (vedi vol. l ,  
capp . 4 e 6). L'estensione avverrà essenzialmente in due direzioni : I )  integrale esteso 
a un insieme ; 2) integrale di funzioni non limitate. 

Definizione 3.1 Sia E un insieme limitato di Rn , e sia f(x) una funzione limitata, 
definita in E. Diremo che f è somma bile in E se la funzione {f(x) 

fE (x) =  0 se x EE 

se  x f!.E 

è somma bile. Quando ciò avviene, il numero reale J fE d x s i  chiama integrale della 
funzione f esteso a E, e si indica con uno dei simboli J fdx, 

E 
J [(x) dx , E f [(x) dx1 dx2 . . .  dxn . E [3 . 1 ] 

Per l 'integrale esteso a un insieme E valgono proprietà analoghe a quelle enunciate 
nell'esercizio 1 .2 .  In genere , l 'insieme E su cui si esegue l'integrazione si suppone misurabile . In tal 
caso si dice che f è misura bile in E se , per ogni t E R , è misura bile l'insieme 

F, = {x EE : [(x)>  t} .  

Per le  funzioni misurabili in E valgono, con i cambiamenti del caso, la proposizione 
2 . 1  e il teorema 2 . 1 . Vale inoltre l'analogo del teorema 2 .5 :  

Una funzione f defmita in un insieme E misurabile e limitato, e ivi limitata, è 
sommabile in E se e solo se è misurabile in E. 

Veniamo ora alla defmizione generale di integrale di una funzione qualun que 

( d u n q u e  anche non l imitata)  su un insieme arb it rario . Conve rrà trattare dapprima il 
caso di fu nzio n i  n o n  negat ive . 

Defmizione 3 .2 Sia E un insieme di Rn e sia f(x) una funzione definita in E e non 
negativa. Diremo che f è somma bile in E se : 

(a) per ogni t >  O, la funzione 

f, (x) = min {f(x) , t }  

è sommabile in E n /1 ;  
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(b) risulta 

lim J fr (x) d x <  + oo . r .... - En lr 

207 
[ 3 .2 ] 

D limite a primo membro della [ 3 .2 ]  si chiama ancora integrale della funzione f esteso 
a E, e si denota con uno dei simboli [3 . 1 ] .  Notiamo che , a causa della monotonia della 
funzione 

F(t)= J fr (x) dx ,  En ir 
tale limite. esiste sempre (finito o pari a + oo ). Per abuso di linguaggio , diremo che 
l'in tegrale di f su E è + oo quando , essendo verificata la condizione (a), risulta 

lim J ft d x =  + oo . 
t ..... - En it 

Osservazione 3.1 . Se E e f sono ambedue limitat i ,  la definizione 3 .2 è in accordo 

con la precedente definizione 3 . 1 .  Infatt i  in tale caso esiste un t0 > O  tale che 

Ne segue ,  per t > t0 ,  

F(t)= j f(x) d x ,  E 
cosicché le due defmizioni conducono allo stesso risultato . • 

Osservazione 3. 2 .  Se f � O è sommabile su E, risulta J f(x) d x = lim lim J fs (x) d x =  lim lim J fs (x) d x . [ 3 .3 ]  E r .... - s .... - En i, s .... - ,  ..... _ En i, 
Notiamo,  per dimostrare tale relazione , che la funzione di due variabili 

G{r , s )= J fs (x) d x  E n lr 
è crescente in r per ogni s fissato,  e in s per ogni r fissato .  Sia ora e >  O, e sia t0 
tale che Jt(x) dx - e <F(t) �  J f(x) dx  E E per ogni t �  t 0 • Se r e s sono maggiori di t 0 risulta , per la monotonia di G, 

J f(x) dx - e <F(t0 )= G(t0 , t0 )� G(r, s)� J f(x) dx .  E E 
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Passando al limite , prima per s -+ oo , e poi per r -+ oo ,  si ha 

Jf(x) dx - e =r;;; lirn lim G(r, s) =r;;; Jt(x) dx ,  
E r -+ oo a -+ oo  E 

Capitolo sesto 

e per l'arbitrarietà di e: si ottiene la prima delle uguaglianze [3 .3 ] . Un ragionamento 
analogo dimostra la seconda relazione . • 

Teorema 3. 1 Una funzione [(x), definita in un insieme E C R" e non negativa, è 
sommabile su E se e solo se gli insiemi 

�o = {(x ,y) EE X  R : O <y <[(x)} 

e 

�� = {(x ,y) EE X R : O <y =r;;;f(x)} 

sono misurabili in R11 +1 , e hanno misura finita. In tal caso risulta 

J fdx = mn + l (�o ) = mn + l (�� ). E 
Dimostrazione .  Si ponga 

� = {(x , y) EE X R : l x l < t , O <y <[, (x)}, 

�; = {(x ,y) EE X R : lx i  < t ,  O <y =r;;;[, (x)}. 

(3 .4]  

Per i l  teorema 2 .4 ,  la funzione [1 è somma bile su E rH, se e solo se gli insiemi §, e 
�; sono misurabili ; in tal caso si ha 

J [1 (x) dx = mn + l (�1) = mn + l (�;) . (3 .5 )  
En J1 

Se si fa tendere t all'infmito , i limiti delle tre espressioni nella [3 .5 ] saranno uguali 
(ed esisteranno perché si tratta di funzioni crescenti) .  Poiché 

.. 
�o = U �-/ '  

j= l 

.. 
�� = u �j. 

j= l 

risulterà 
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Veniamo ora alle funzioni di segno variabile . 

Defmizione 3.3 Diciamo che UM funzione f è sommabile su E se sono sommabili 
su E ambedue le funzioni non negative 

r(x) = max {f(x), O} e r (x) = max {-[(x), O}. 

In questo caso po"emo 

f r<x> dx = Jr<x) dx - f r - <x) dx . 
E E E 

[3 .6] 

Osservazione 3.3 .  Talvolta per semplicità di esposizione sarà comodo considerare l'integrale della funzione f anche quando questo assume il valore + - o - - .  Più pre­
cisamente , sia E un insieme misurabile e sia f una funzione JIÙiurabile in E . .Le due 
funzioni [+ ed r - sono integra bili su E, nel senso che esistono gli integrali 

Jt± d x = lim J fi (x) dx , 
E t -+-En lt 

i. quali possono assumere valori finiti o pari a + - . 
Se ambedue i limiti sono fmiti , la funzione f è sommabile e il suo integrale è dato 

dalla [3 .6 ) .  D'altra parte , perché la formula [3 .6] abbia senso è sufficiente che uno 
degli integrali a secondo membro sia fmito . In questo caso , diremo che la funzione f è integrabile su E, e il suo integrale (che può essere fmito o meno) è dato ancora dalla 
[3 .6 ) . E' inutile dire che quest 'ultima formula perde senso quando ambedue gli inte· 
grali a secondo membro sono infmiti . 

Ricapitolando , se E è un insieme misura bile , possiamo defmire tre classi di funzioni, 
ognuna contenuta nella precedente : 

l ) funzioni misura bili su E, 
2) funzioni in tegrabili su E, cioè quelle funzioni misurabili su E per cui almeno una 

delle funzioni r e  r - ha integrale fmito, 
3) funzioni somma bili su E, quando ambedue r+ e f - hanno integrale fmito . 

Per le ultime due classi l 'integrale di f è  definito dalla [ 3 .6 ] .  Non sarà inutile in questa 

occasione raccomandare una certa cautela quando si opera con i simboli ± 00 • Ad 

esempio , non sempre la somma di due funzioni integrabili è integrabile . • 
Le funzioni considerate in questo paragrafo e nei seguen ti ,  possono assumere , come 

si è de tto ,  anche i valori + oo e - oo . E' ragionevole pensare che una funzione somma· 

bile non possa vale re + oo o - oo in un insieme troppo grande . Questo è quanto si 

dimostra nel seguente 
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Teorema 3 .2 Sia [(x) una funzione sommabi!e su un insieme misurabile E. Se si 
pone 

si ha 

F_ = {x EE : [(x) = +  co}, 

F _ _ = {x EE : f(x) = - oo}, 

m (F_) = m (F _ _ ) = O .  

Dimostrazione .  Consideriamo a d  esempio F_. Si ha 

quindi F- è misurabile . 
Per r > O,  si indichi con ..Pr la funzione caratteristica dell 'insieme F_ rì lr ·  Si ha 

r(x) >j ..pr(x) per ogni j E N , 
per cui 

m(F_ rìlr )= J ..Pr dx � � J r d x. l E 
Passando al limite per j -+ 00 ,  si conclude che m ( F_ rì lr) = O  per ogni r > O ,  e dunque 
m ( F_) = O . In maniera analoga si procede per F __ ; la dimostrazione in questo caso viene la­
sciata per esercizio . • 

Se una proprietà è verificata per tutti gli x EE, tranne al più per quelli in un insie­
me di misura nulla, si dice che la proprietà in questione sussiste quasi o vunque in E (o 
anche per quasi ogni x EE) .  Cos ì ,  ad esempio,  il risultato appena dimostrato si può 
enunciare dicendo che una funzione sommabile su E è finita quasi ovunque in E. 

E' chiaro che se f(x) = O  q. o. in E, allora si ha 

J f(x) dx = O  
E 

(più in generale , se f=g q. o .  in E, allora J f d x =  J g d x).  
Questo risultato si può invertire : E E 
Proposizione 3 . 1  Se [(x)� O in E e se J f dx = O, allora f(x) = O  q. o. in E. 

Dimostrazione . Si ha 
-

F0 = {x EE : [(x) >O} =  U F1 1i . 
j= l 

E 
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Poiché f(x)> 1/j in F11; .  risulta 

� m (F1 1;)EO;  J f(x) dx = O, l E 

cosicché m(F1 1;) = 0 per ogni j e quindi m(F0 )= 0 .  • 
Esercizi 

21 1 

3 . 1  Sia f(t)  una funzione continua nell'intervallo (0, l )  e non limitata per t �  O ;  
supponiamo inoltre che [ sia non negativa. Si dimostri che 

l l J f(t) d t = lim f t(t) d t. o e -+o e 
3.2 Dimostrare che se g(x) è una funzione sommabile su E e se f(x) è una 

funzione misura bile in E, tale che 
l f(x)l EO; g(x) q. o. in �. 

allora f è somma bile in E. 

4 l teoremi di passaggio al limite sotto il segno di integrale 

In questo paragrafo ci porremo il seguente problema :  se la successione f; (x) tende 
puntualmente alla funzione f(x) in E, si può concludere che 

J f(x) dx = _lirn J f; (x) dx ?  
E J-+ a E 

E' chiaro che in generale la risposta è negativa (basti ricordare la successione del­
l'esempio 3 .3 del cap .  l , per p ;;.. 2) per cui se si vuole passare al limite sotto il segno 
di integrale occorrerà aggiungere qualche ipotesi supplementare . Un risultato di que­
sto tipo , per l'integrale di Riemann, è stato precedentemente dimostrato (vedi 
cap . l, § 3): se la successione {tj} converge uniformemente a f(x) nell'intervallo 
[a , b ], allora 

b b 

_lirn J t; dx = J fdx . 
J -+a a a 

Questo risultato è essenzialmente l'unico (e comunque il più naturale) che si possa 
dimostrare nell'ambito della teoria di Riemann; al contrario , se si considera l 'integrale 
secondo Lebesgue , si potrà passare al limite sotto condizioni estremamente generali, 
come vedremo in questo paragrafo. E' proprio questa grande flessibilità dell'integrale 
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di l.ebesgue nei rispetti del passaggio al limite che rende quest'ultima teoria di gran 
lunga preferibile alla più semplice teoria di Riemann. 

Ma veniamo ai risultati annunciati .  

Teorema 4. 1 (di Beppo Levi) Sia fi una successione di funzioni integrabili in E, 
con 

e sia 

f(x) =  .lim fj (x). 

Allora 

, ..... _ 
J f(x) d x =

,.
� J fj (x) d x. 

E E 

Dimostrazione . Se si pone 

�i = {(x , y)EEX  R :  O <y <.fj (x)}, 
� = {(x, y) EE X  R :  O <y <f(x)}, 

-
si ha �1 C �02 C . . .  e fFo = U �i . Per il teorema 4. 1 (cap. 5) risulta 

i = l 

mn + l (�o ) = .lim ffin + l  (�oi), , ..... _ 
e ricordando il teorema 3 . l  si ha la tesi .  • 

[4 . 1 ]  

Osservazione 4. 1 .  C i  si può chiedere se il teorema appena dimostrato valga anche 
senza supporre che le funzioni [; siano tutte positive. Si vede facilmente che questa 

ipotesi si può sostituire con la più debole J [1 (x) dx > -oo (o più in generale con 
E J fh (x) d x> -oo per qualche h E N): infatti in questo caso si può applicare il teorema 

E 

4. 1 alle funzioni positive g; =!; -ft ·  
Quest'ultima ipotesi è invece essenziale : infatti se si prende E = R e [; (x) =  - l /i, si 

ha f(x) =  .Hm [; (x) = O,  e dunque Jt(x) dx = O, mentre Jt; (x) dx = -oo .  • 
� �-

Un analogo del teorema 4 . 1  sussiste per successioni decrescenti di funzioni : 
[1 ;:;;. [2 ;:;;. • • • • L'enunciato e la dimostrazione di questo risultato vengono lasciati per 
esercizio . 
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Teorema 4.2 (lemma di Fatou) Sia {.fj} una successione di fUnzioni non negative, 

e integràbili su un insieme misurabile E. 
Allora 

f(min lim .fj) dx <; m� lim J .fj dx . E j-+• , ...... E 
Dimostrazione. Per k =  l, 2 , . . . si ponga 

Kk (x) = inf .fj(x). 
i > k 

Si ha O <;g1 <;g2 <; . . .  e inoltre se k <;j risulta gk (x) <;.tj (x). Ne segue 

I Kk (x) dx <;  I .fj(x) dx per ogni j � k. E E 
e quindi 

I Kk (x) dx <; �  lim J .fj (x) dx. E J -+•  E 
Alla successione Kk si può applicare il teorema di Levi, ottenendo 

Da quest 'ultima relazione si ottiene immediatamente la [ 4 .2 ]  ricordando che 

lim Kk (x) = min lim .fj(x). • k �- i-+• 

[4.2) 

[4.3) 

[4.4) 

Osservazione 4. 2 .  Nel lemma di Fatou si può sostituire l'ipotesi .fj � O  con .fj (x) � O q. o .  in E, o meglio con la più generale 

.fj (x) � IP(X) q. o .  in E, 

dove 1/'(x) è una funzione sommabile su E. 
Infatti basterà considerare la successione 

g1 (x) = .fj (x) - 1/'(x) � 0 q . o .  in E 

e applicare a questa il risultato  precedente . 

Analogam e n t e ,  se .P (x) è una funzione somma bi le  su E. e se la successione {.fj}  ve­

rifica la condizione 

.fj (x) <; .P (x) q. o. in E, 
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risulterà 

J (m�x lim fj) dx ;;o. m�x lim J fj d x.  • E J -+�  J -+ •  E 
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[4 .5 ]  

Teorema 4.3 (di Lebesgue o della convergenza dominata) Sia t/l (x) una funzione 
non negativa e sommabile su un insieme misurabile E, e sia {!; (x)} una successione di 
funzioni integrabili in E tali che 

e 

lfj (x) l � t/l (x) q. o. in E, 

�m fj (x) =f(x) q. o. in E. 
, -� 

In tal caso 

.lim Jfi dx = J tdx .  
, -� E E [4.6] 

Dimostrazione. Si ha - t/l (x) �fj (x) � t/l (x) quasi ovunque in E, cosicché sussi­
stono le [ 4.2] e [ 4 .5 ] .  Osservando che 

m�n lim fj (x) = m�x lim fj (x) =f(x) , 
J -+ • , .-... 

si ottiene 

J [(x) d x � m�n lim J fj (x) d x � m�x lim J fj (x) d x �  J f(x) d x .  E J -+ � E , .... E E 
e dunque la [4 .6] . • 

Esempio 4. 1 
Alla luce del teorema di Lebesgue, ritorniamo per un momento sugli esempi del 

capitolo l ( § 3). 
La successione di funzioni non negative 

converge alla funzione [(x) = O nell'intervallo [0 ,  l ] . Inoltre si ha 

l i fj dx =jP - 2  ( 1 - (j + l ) e -i ) , 



L 'integrale di Lebesgue in Ff' 
e quindi , se p <  2 ,  

1 1 

.lim ifj dx = O = /d x,  ] -+ - o 
mentre la [4.7] non sussiste per p � 2 .  

215 

[4.7] 

Se O �p <  l ,  la successione !j (x) converge a zero uniformemente, e quindi la [4.7] 
si  poteva dedurre dai risultati del capitolo 2 ( § 3). 

D'altra parte la [ 4. 7 ]  è vera anche per l �p < 2; per questi valori di p la conver­
genza della successione fj non è uniforme, e quindi il risultato sopra menzionato non 
è applicabile . 

E' invece applicabile il teorema di I..ebesgue. La funzione 

assume il valore massimo nel punto t0 =p/x ,  per cui risulta 

Per p < 2 la funzione x 1 -P  è sommabile in  (O , l ) , e quindi s i  può applicare il teore­
ma di l..ebesgue e concludere la validità della [4 .7 ] .  (Vedi anche cap . l, esercizio 3 .6). • 

Esempio 4. 2 

Sia f(x) una funzione definita in R ,  limitata e nulla fuori di un intervallo (a ,  b). 
Per k E N, si ponga3 

e 

Mk (x) =  sup f(t) 
I (x, l !k) 

f*(x) = lim Mk (x) = max lim f(t) Vf(x). 
k -+- t -+ x 

Osserviamo innanzitutto che Mk è una funzione misurabile . Infatti , indicato con 
Et l 'insieme dei punti in cui Mk supera t, avremo x EEt se e solo se esiste un punto z E/(x ,  1 /k) con f(z) > t  e cioè se e solo se la distanza di x da Ft = {z E R : f(z)> t} è 
minore di 1 /k . Ne segue che Et è aperto e dunque misurabile . Per il teorema 2 . 1  an­
che f * è nU.surabile. 

Come nell'esempio 1 . 1  , indichiamo con yel la classe delle funzioni semplici elemen-
tari (combinazioni lineari di funzioni caratteristiche di intervalli). Poniamo poi 3 f * (x )  si chiama la regolarizzata semicontinua mperiormente di f. Essa è la più piccola 
funzione semicontinua superiormente che sia maggiore o uguale a f. Analogamente f * (x ) è la più 
grande funzione semicontinua inferiormente che non superi f. E' evidente che f è continua in X 0  
s e  e solo se f * (x0 ) = [ . <x . ) .  
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Sia '{J E !/+el (f) e sia x0 un punto in cui '{J è continua. Poiché '{J è costante a tratti , 
esisterà un intorno /(x0 ,  r) in cui '{J è costante e siccome '{J è maggiorante di /, risulterà 

'{J(X o ) ;;a.  sup f(x) . 
J(x0 , r)  

Ne segue che f* (x0 ) or;;;;'{J(x0 )  in ogni punto in cui '{J è continua, e dunque in quasi 
tutti i punti di R .  Allora 

J f* (x) dx or;;; J lfJ(X) d x 

ft* (x) dx or;;;;L . [4.8] 

D'altra parte ,  se si divide l'intervallo (a , b) in intervalli /1 , /2 , • • •  , /N , ognuno di 
ampiezza minore di 1 /k ,  e si pone 

e 

"'A.h = sup f(x) . h = l ,  2 ,  . . . , N. I h 

risulterà 

Infatti ,  ogni x E (a ,  b) apparterrà a qualche /h , e dunque 

'{J(x) = "'A.h = sup f(x) or;;;; sup f(t) =Mk (x) 
Ih I(x , l lk) 

dato che /h C /(x , l l k ) . Si ha allora 

da cui, passando al limite per k -+ 00 ,  e ricordando la [4 .8 ] ,  si ottiene la relazione 

Analogamente , se si pone 

mk (x) =  inf /(t) , 
I(x , l tk) 

f. (x) = lim mk (x) = min lim f(t) l\f(x) , 
k --t> oo  t-+ x  

[4.9] 
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si ottiene 

sup d IJ! dx ; IJI E  !:l'_e1 (f)} = ft. (x) dx . 
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Ricordando la definizione di integrale di Riemann (vedi vol. l ,  cap . 4, defmizione 
3 . 1 )  si conclude che una funzione f(x) è integrabile secondo Riemann se e solo se 

J f* (x) dx = ft. (x) dx . [4 . 1 0) 

Poiché si ha sempre f* (x);;;;,f. (x), la [4 . 1 0) è verificata se e solo se f* (x) =f. (x) 
quasi ovunque (vedi proposizione 3 . 1 ) . D'altra parte f* (x) =f. (x) se e soltanto se la 
funzione f è continua nel punto x , per cui risulterà in conclusione che una funzione 
f(x), limitata e nulla fuori di un compatto, è integrabile secondo Riemann se e solo 
se è continua quasi ovunque (teorema di Vitali). • 

Osservazione 4. 3 .  Un insieme E è misurabile secondo Peano-Jordan se e solo se la 
sua funzione caratteristica ..PE è integrabile secondo Riemann, e dunque se e solo se 
..PE è continua quasi ovunque. Poiché i punti di discontinuità di ..PE sono i punti di 
frontiera di E, si ritrova per questa via che E è misurabile secondo Peano-Jordan se e 
solo se aE ha misura nulla ; un risultato già dimostrato nel capitolo 5 ,  osserva­
zione 2 .3 . • 

Esempio 4. 3 

Se a> O, risulta 
- n ( 

)n J e - x  xa. - 1  dx = nl�. J 1 - ; xa- 1 dx . o o 
La funzione 

g(x) =  (t - ; r ?  
è decrescente in [0, n ] , e quindi g(x) o&;;g(O) = l . 

Se si pone { (l x )n a- 1 Oo&;;x<n 
fn (x) =  

O 
- -; x 

x ;;o, n ,  
risulta 

e 
lim fn (x) =xa.- 1 e - x . n -+ • 

[4. 1 1 ]  
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Poiché per a: > O  la funzione xa - l e -x è sommabile in (0, + oo ) , la (4. 1 1 ]  segue 
immediatamente dal teorema di Lebesgue . • 

Se invece di successioni si considerano serie di funzioni ,  si possono applicare i ri­
sultati appena dimostrati alla successione delle somme parziali e ottenere così teoremi 
che consentono di scambiare tra loro le operazioni di somma della serie e di integra­
zione . 

Di particolare interesse è il caso di una serie di funzioni non negative . 
Sia {uk (x)} una successione di funzioni definite in un insieme misurabile E, non 

negative e misurabili . La successione {sn (x)} delle somme parziali della serie 

.. l; uk (x) , x E E, 
k = O 

sarà crescente ,  e dunque ad essa si potrà applicare il teorema di Lev i .  In conclu­

sione , se {uk (x)} è una successione di funzioni non negative e misura bili su E, ri­

sulta 

(4 . 1 2] 

In altre parole , nel caso di serie a termini positivi si possono sempre scambiare tra 
loro le operazioni di somma e di integrazione. 

Nel caso di serie a termini di segno qualsiasi, la [ 4 . 1 2] non è sempre valida; se però 
si ha 

j {k�o 
luk l}d x  < + oo 

(o , il che è equivalente , � J i uk l d x <  + 00 ), allora risulta 
k = O E 

� J uk (x) dx = J{ � uk (x)}dx . 
k = O E E k = O 

Per dimostrare la (4 . 1 3 ] ,  consideriamo la funzione 

[ 4. 1 3 ]  

Poiché J v (x) d x < + 00 ,  la serie i l uk (x)l  converge quasi ovunque (teorema 3 .2)  E k = O  

e dunque , per i l  teorema della convergenza assoluta ,  convergerà quasi ovunque anche 
.. 

la serie l; uk (x). 
k = O  
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Se si pone 

si ha 

m "' 
sm (x) = l: uk (x), s (x) = l: uk (x) , 

k = O  k = O  

lim sm (x) = s (x) q . o . in E, 
m -+oo 

e inoltre 
l sm (x) l � v (x) q. o . in E. 

Per il teorema di Lebesgue si avrà allora 

Js (x) dx = lim Jsm (x) dx =  lim i: Juk (x) d x =  i J uk dx ; 
E m -+ oo  E m -+oo  k =O  E k = O  E 

cioè la [4. 1 3 ] .  

Esempio 4. 4 
1 l "2 J 

l -x ln(l /x) dx = 6 . 
o 

Si ha, per O � x <  l ,  

l "' -- = l:  xk 
I -x k = o  

e quindi 
l "' 

I -x ln ( l /x) = 
k�o 

xk ln ( l /x) . O <x <  l .  

21 9 

Le funzioni xk ln( l /x) sono non negative e quindi sussiste la [4. 1 2] .  Si avrà allora 

f -2---m ( l /x) dx = f j xk ln( l /x) dx = i (k + l )-2 
O X k = O O k = O  

e la tesi segue ricordando l'esempio 5 .3 del capitolo 2 .  • 

(a) 

Esercizi 

4. 1 Dimostrare che 
1 xl' "' 

l: (p + kr2 , p > - 1 , x k = 1  
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(b) 

1 l tr2 J 1 + x  ln ( l /x) dx = }2 · o 
4.2 Si dimostri che 

l 
lim J n x  

dx = O, 
n -+• 0 l + n2 x2 

lì dx = o. li n3t2 x n!!. l + n2 x2 

Capitolo sesto 

4. 3 Sia E un insieme misurabile, con m (E ) < + oo ,  e sia {fk} una successione di 
funzioni misurabili in E tali che 

( l )  l fk (x) l os;;;M 
(2) lim fk (x) = /(x) 

k -+• 
Si dimostri che 

q . o. in E, 

q. o. in E. 

4.4 Sia fk (x ) = k/(x2 + k 2 ) . Si dimostri che o os;;;tk os;;;l ,  lim fk (x) = O  per ogni .. k -+ao 
x E R , e J fk (x) dx = tr. Perché questo non contraddice il risultato dell'esercizio 

precedente? 

4.5 Sia {Ek} una successione di insiemi misurabili, con E 1 C E2 C . . . , e sia 

E =  U Ek . 
k = l  

Sia /(x)  una funzione integrabile su E .  Dimostrare che 

J f(x) d x =  lim J f(x) dx .  
E k -+ oo  Ek 

4.6 (Assoluta continuità dell'integrale) Sia E misurabile e f(x) sommabile su E. 
Si dimostri che per ogni e >  O esiste un 6 > O  tale che, se F C E e m (F ) <  6, allora 

J l t l d x < e. F 
(in caso contrario esisterebbe un e0 > O  e per ogni k E  N un insieme Fk tale che 

m ( Fk ) < rk - t e J 1 / 1  dx ;;> e0 • Si ponga E1 = u. Fk ; si ha E1 -=> E2 :> . . .  , m (Ei) <  F k� 

. J k 
< r' e 1 / 1 d x ;;> eo . La successione gi = 1 / 1 V'E i è decrescente (g1 ;;>g2 ;;> . . . ) e tende 

Ej 
a zero quasi ovunque. Applicare il teorema di Lebesgue ). 
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4. 7 Sia E misurabile e limitato e sia /(x) � O in E;  allora 

J fdx = sup { Jtdx ; K  compatto , K C E}. E K 
4.8 Lo stesso risultato vale anche senza l'ipotesi che E sia limitato. 
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4.9 Si dimostri che la successione Un } dell'esempio 4 .3 converge a xa - t  e-x , uni­
formemente su ogni intervallo chiuso [a ,  + 00), a >  O. Si ricavi il risultato dell'esempio 
4.3 usando la [3 .3 ] del capitolo l .  

S D teorema di Fubini 

La teoria svolta finora non dà alcun metodo per il calcolo di integrali in Rn , 
tranne ovviamente che nel caso di una variabile (n =  l )  in cui, come abbiamo già os­
servato , resta valido il teorema fondamentale del calcolo integrale. ln questo paragrafo mostreremo come sia possibile calcolare un integrale n dimen­
sionale eseguendo successivamente n integrazioni in una variabile . Per semplificare 
le dimostrazioni considereremo in dettaglio il caso n =  2, lasciando per esercizio la 
generalizzazione dei risultati a integrali in un numero qualsiasi di variabili. 

Cominciamo col considerare il problema della misura di un insieme di R2 ; al 
solito tratteremo per primi i casi di insiemi aperti e compatti . 

y 

Lemma S . l  Sia A un aperto di R 2 (vedi fig . 6 . 3) ,  e per ogni x E R si ponga 

Ax = {y E R : (x , y) EA}. 

A 

x 
Figura 6.3 
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Si ha 

m2 (A ) =  I m 1 (Ax ) dx .  [5 . 1 ) 

Dimostrazione . La [5 . 1 ) è ovvia per intervalli, e quindi sussiste anche per plurin­

tervalli. 

e 

Sia {Y k} una successione di plurintervalli contenuti in A , e tali che 

.. Y1 C Y2 C  . . . e U Yk =A .  k = l  
Si avrà 

m2 (A) = lim m2 (Yk ) =  lim J m, (Yk,x ) dx .  k .....,.oo k -+oo 
D'altra parte per ogni x E R risulta 

Yl ,x C Y2,x C . . . 

cosicché 

e 

lim m, (Yk, x ) =m, (Ax) . k -+oo 
Dal teorema di Levi, si ottiene 

che, confrontata con la [5 .2 ] , dà la [5 . 1 ] .  • 

[5 .2) 

In maniera analoga (la dimostrazione viene lasciata per esercizio) si prova che per 

ogni compatto K C R2 si ha 

Teorema S.l Sia E C R2 un insieme misurabile; si ha 

m2 (E) =  I m1 (Ex) dx . 

[5 .3) 

[5 .4] 

Dimostrazione . Cominciamo col supporre che m 2  (E)<  + oo .  Siano {Ai} e {Ki} 
due successioni, la prima di aperti contenenti E, e la seconda di compatti contenuti 
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in E, tali che 

e 

A 1 :)A 2 :) • • .  , _Iim m2 (Ai) =m2 (E), � � -
K1 CK2 C . . .  , _lim m2 (Kj) =m2 (E) . � � -

Per ogni x E R , risulta 
Aj,x :)Ex :)Ki, x • 

cosicché 
_lim J {m1 (Aj, x ) -m1 (Kj,x )} dx = O. � � -

Se si pone 
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[5 .5 ) 

[5 .6) 

la successione {gj} è una successione decrescente , con Q ..;;gi (x) ..;;g1 (x). Poiché g1 
è sommabile , si può applicare il teorema di Levi ; si ha per la [ 5 .6) 

J{ _lim gi (x)} dx = O, J -+ -
e quindi , per la proposizione 3 . 1 , 

_lim m1 (Aj,x) = _lim m1 (Kj, x ) q . o . in R .  J -+ • J -+ • [5 .7] 

Quest 'ultima relazione , insieme alla [ 5 . 5 ] ,  implica che Ex è misurabile per quasi 
ogni x E R .  Inoltre si ha, per ogni intero j, 

-
m2 (Kj) = J m1 (Kj, x ) dx ..;;i m1 (Ex) dx ..;;J m1 (Ex ) dx ..;;Jm1 (Aj,x ) dx = 

=m2 (Ai) , 
e passando al limite per j-+oo si ottiene la [5 .4] .  

La [ 5 .4] vale anche se m2 (E) = + oo . Infatt i , posto ER =E n J  R , risulta 
m1 (Ex ) = sup m1 (E: ) R >O 

cosicché la funzione m 1 (Ex ) è misura bile . Inoltre 

e la ( 5 .4] si ottiene passando al limite per R -+ + oo .  • 
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Se si pone 
Ey = {x E R : (x , y) EE}, 

risulterà , con una dimostrazione del tutto analoga , 
m2 (E) = J m1 (Ey ) dy . 

In generale consideriamo lo spazio Rn +k = R" X Rk , e indichiamo con (x , y), 
x E R" , y E  Rk , un generico punto di Rn +k . Se E è un insieme misurab ile di Rn +k 
si ponga, per ogni x E R" , 

Ex = {yE  Rk : (x , y)EE} 
e per ogni y E Rk 

Ey = {x E R" : (x , y)EE} . 
Con una dimostrazione identica alla precedente si prova che 

mn + k (E) = i mk (Ex ) d x = J mn (Ey ) dy .  
R " R k 

Esempio 5. 1 

Sia E un insieme normale rispetto all'asse delle y (vedi fig . 6 .4) 

E= {(x , y)E R2 : a <x <b , a(x)<y<(3(x)}. 
Si .ha 

y 

a x 

Figun 6.4 

se a <x <b 
altrimenti , 

y = IJ(x) 
y = a(x) l l l l l l l l b x 

(5 .8] 
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e dunque 

b 

ml (E) =  J (Jj(x) - a(x)) dx . • a 
Esempio 5. 2. Volume dei solidi di rotazione 
Sia f(z) una funzione non negativa , defmita per a <z <b .  Nel piano xz (vedi fig. 

6.5) si consideri l'insieme 
F= {(x , z) : a <z <b ; O<:x<f(z)}, 

e sia E l'insieme ottenùto ruotando F attorno all'asse z : 
E= {(x , y , z) : a <z < b ; xl + y2 <{2 (z)}. 

Per il teorema 5 . 1  sarà b 
m3 (E) = J m2 (Ez ) dz , 

dove 
Ez = {(x , y)E R2 : (x , y , z)EE} 

è la proiezione sul piano xy dell'intersezione di E col piano orizzontale passante per z .  
Per a <z <b l'insieme Ez è un cerchio d i  raggio f(z) , e dunque 

a<z<b 
altrimenti . 

z 

Figura 6.5 
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In definitiva , b 

m3 (E) = 1r Jt2 (z) dz . a 
Consideriamo ad esempio il solido ottenuto a partire dalla funzione 

f(z) = sin z, O < z < 71'. 

Si ha 
71' 2 

m3 (E) = 1r J sin2 z dz = T · 
o 

Esempio 5. 3. Misura della palla n-dimensionale 
Indichiamo con I (vedi fig. 6 .6) la palla n-dimensionale di raggio l :  

I=  {x E Rn :  l x ln < 1 }. 

e sia 

Se si pone, per O < t <  I ,  

I(t) =J n (  {t } X  Rn- 1 ) 

Cllpitolo sesto 

l'insieme /(t ) è una palla n-l dimensionale, di raggio r(t ) = (I - t2 )1 12 (vedi ftg. 6.7). 

Figura 6.6 
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r( t) = �  

Figura 6.7 

Se si indica con 11 la proiezione di /(t) sull'iperpiano di equazione x1 = O, si ha 
mn (I) = I mn _ 1 (/1) d t . 

D'altra parte , /, è una palla a n- l  dimensioni di raggio r(t ). e dunque 
n - 1 

ffin - 1 (I,) = wn- 1 ( 1 - t 2 ) 2 
In definitiva 

1 n - 1 Tr/2 
Wn = wn_ 1 J dt = 2wn- l I cosn u du . 

- 1 o 

Ricordando la [ 5 .4] del capitolo 5 (vol . l )  si ha 
Tr/2 l Tr/2 I f cos"-2 u du . 
o o 

Se n è pari (n = 2 k ) , si ottiene 
"s'2 2 k (2k - 1 ) (2 k - 3) . . .  3 7r (2k - l ) ! !  7r cos u du = 2 2 ' 
o 2k(2k - 2) . . .  2 (2 k) ! !  

mentre , se n è dispari (n = 2 k  + l ) , 
Tr/2 (2k)" I 2 k + 1  . . cos udu = . 
o (2k + l ) ! !  

In conclusione , 
(2k - l )! !  W - 7rW2 k- 1 • 2 k - (2k ) ! !  

(2k ) ! !  
w - 2 w2k , 2 k + 1 - (2k + l ) ! !  
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cosicché 
(2 k - l ) ! ! 2 11' 

211' = --
(2 k + l ) ! !  2k + 1 ' 

(2 k- 2)! ! 11' 
= 2 11' -

(2 k) ! ! k . 

Ricordando che w1 = 2 e che w2 = 11', si ricava infine 
11'k w2 k =kf 

2
k + l 11'k w = • 2 k+ l  (2k + 1 )! ! . 

Teorema S.2 (di Fubini) Sia f(x , y ) una funzione sommabile in R2 . Allora 

( l ) per quasi tutti gli x E R la funzione y � f(x , y )  è sommabile in R ;  
(2) la funzione g(x)= J f(x , y) dy 

R 

è sommabile in R ;  
(3) risulta 

J f(x , y) dxdy = J ( J f(x , y) dy) dx 
R2 R R 

Analogamente, per quasi ogni y E R, esiste l'integrale 

e si ha 

J f(x , y) dx =h (y), 
R 

J f(x , y) dxdy = J < J f(x , y) dx) dy . 
R2 R R 

(5 .9] 

( 5  . lO] 

Dimostrazione . Supponiamo dapprima che sia f(x , y );;;..o. Per il teorema 3 . 1 , 
l'insieme 

� = {(x , y , z) E R3 : O<z<f(x , y)} 
è misurabile e si ha 

m3(.�o)= f f(x , y) dx dy . 
R2  

( 5 . 1 1 ] 

Dal teorema 5 . 1  segue che l'insieme 
�.x = {(y , z) E  R2 : (x , y ,  z) E .�0}= {(y , z) E R2 : O<z <f(x , y)} 
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è misurabile per quasi ogni x E R e risulta 

m3 (§o) =  J m, (§o,x ) dx .  
R 

D'altra parte , sempre per il teorema 3 . 1 , 

m, (§o,x ) = It(x , y) dy , 
R 

e dalla (5 . 1 1 )  si ottiene immediatamente la (5 .9) . 
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La dimostrazione della [5 . 1 0) è identica alla precedente e viene lasciata per eser­
cizio . 

lnfme se la funzione f(x , y ) è di segno variabile , basterà considerare le funzioni 
r er . • 

Anche il teorema di Fubini ammette una generalizzazione a Rn+k : se (x , y), x E Rn , 
yE Rk , è un generico punto di Rn+k e /(x , y) è una funzione sommabile in Rn+k , si 
ha I f(x , y) dxdy = J. dx J f(x , y) dy = J dy J f(x , y) dx . (5 . 1 2)  

Rn+lc R n R k R k R n 

Esempio 5.4. Integrale esteso a un insieme normale 
Sia 

E= {(x , y) E R2 : a <x< b , a(x)<y<t3(x)} 
e sia f(x , y) una funzione inte�rabile in E. Se indichiamo al solito con fE la funzione { f(x , y) IE (x, y) = 0 
si ha , per il teorema di Fubini, 

se (x , y)EE 
se (x , y) ftE, 

I f(x , y) dxdy = J fE (x, y) dx dy =  J dx J fE (x , y) dy . 
E R 2 R R 

Se x ft (a , b) risulta f E (x , y) = O per ogni y , cosicché 
b I dx J fE(x , y) dy = J dx I fE(x , y) dy . 

R R a R 

D'altra parte , per ogni x E (a ,  b) la funzione fE (x, y) è nulla se y ft(a(x), t3(x)) e 
coincide conf(x, y ) se y E(a(x), (j(x)). Allora IJ(x) 

J fE (x , y) dy =  I f(x , y) dy . 
R Q (x) 
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In conclusione 

b P(x) J f(x , y) dxdy = J dx J f(x , y) dy .  E a O< (x) 

Esempio 5.5 
Si calcoli (vedi fig . 6 .8) J xydxdy , E 

dove 
E= {(x ,y )E R2 : O <x < I , x2 <y <v'X}. 

Si ha 
l .J"; l [ l � y = .,f;  J xydxdy = J dx J xydy = J dx 2 xy2 = E o x2 O - y=x2 

= .!_ Jl (x2 -xs ) d x = .!_ ( .!_ - l) = • 
2 2 3 6 1 2  . o 

Se l'insieme E è normale rispetto all'asse delle x , 
E= {(x , y) E  R2 : c<y<d, 'Y(Y)<x <6 (y)}, 

si ha l'analoga della (5 . 1 3 ) :  

y 1 

d 6 (y) I t<x . y) dxdy = J dy t(x , y) dx . E c 
Figura 6.8 

x 

Capitolo sesto 

(5 . 1 3 ) 
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Esempio 5. 6 

Sia A l'insieme in figura 6.9 ; si calcoli 

J x( l -y) dxdy . A 
Si ha 

A =  {(x ,y) : O <y < }, 

e dunque 

t t..f2 � Jx( I -y) dx dy = J dy j x( l -y) dx = A ò Y 

l . ,..;;; v'2 l 
= - j [( I  -y2 ) -y2 ] ( 1 -y) dy = - - -2 6 1 6 . 

Si osservi che l'insieme A è normale anche rispetto all'asse delle y 

A =  {(x ,y) E R2 : O <x < l ,  O <y <q (x)}, 

dove 

q (x) = { x se O <x <. l /v'2 

se l /v'2 < x <  l .  

x 
Figura 6.9 
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Si ha dunque l q (x) 1,..f2 x Jx(I -y) dx'dy ,;. J dx I x (l -y) dy = J dx Jx(l -y) dy + E o o O l 
+ J dx x( l -y) dy . 

1 /� 

II calcolo degli ultimi due integrali viene lasciato per esercizio ; è evidente che il 
risultato dovrà essere lo stesso nei due casi. • 

I metodi degli esempi precedenti si estendono al caso di più variabili ; ad esempio , 
se F è un insieme di R2 e se 

E = {(x ,y ,  z) E R3 : (x , y) EF, Ck(x ,y)< z < {3(x , y)}, 

risulterà tl(x y) J f(x, y , z) dx dy dz = J dx dy J f(x, y , z) dz ,  E F a(x,y) 
cosicché il calcolo di un integrale triplo è ridotto a quello di un integrale semplice e, 
successivamente , di uno doppio. 

Esempio 5. 7 

Sia (vedi fig. 6 . 10) 

T= {(x , y , z) : x > O, y > O, z > O, x +y + z < I }. 

z 

y 

Figura 6. 1 0  
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Si calcoli J<x + z) dxdydz . T 
Si vede facihnente che 

T= {(x , y , z) :  (x , y)EA , O<z< 1 -x -y}, 
dove 

A = {(x , y) : x > O, y> O, x +y<  l }= {{x ,y) :  O<x< l ,  O<y < 1 -x}. 
Si ha allora 
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J <x +z) dx dy dz = J dx dy 
1 -ry

(X + z) dz = J = T A o A z • O  
= t J ( 1 -y. +x) ( l -y -x) dxdy =  

A 1 1 - x  
=�J dx J [( 1 -y)2 -xl ) dy = o o 

1 

= .!. (.!.-xl + lx3 ) 3 3 1 2 " 
Osserviamo che si sarebbe ottenuto lo stesso risultato integrando prima rispetto 

a y : 

dove 

1 - x - z  J <x + z) dxdydz = J dxdz J (x +z) dy =  J <x + z) ( l -x -z) dx dz . T B O B 
B = {(x , z)E Rl : O<x< l , O<z< l -x}, 

o anche eseguendo in primo luogo l'integrazione rispetto a x .  Lasciamo per esercizio 
l'esecuzione dei calcoli in questi casi. 

Esercizi 

S . l  Calcolare i seguenti integrali, nei quali gli insiemi A sono dati in figura 6. 1 1 : 

(a) J (xl + y ) dx dy A 
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- 1  
(a )  

A rr 2 ( c ) ,  (d) 

(g) 
Figura 6. 1 1  

(b) J xy dx dy 
A 

(c) I e:x+y dx dy 
A 

(d) J xy cos(x +y) dx dy 
A 

(e) I x2 �Y dx dy 
A 

(0 Ix (y + sin 11'y) dx dy 
A 

Capitolo sesto 

(b)  

(e ) ' (f) 

2 (h ) 
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(g) Jo + x +y)-2 dx dy 
A 

(h) J (x2 + y2 ) dx dy 
A 
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5 .2 Si disegnino schematicamente gli insiemi sotto indicati, e se ne trovi la misura: 

A = {(x , y , z ) E R3 : x ;;;..o, y ;;;,o, oo.;;;;y o.;;;;4 -x2 -z2 } 
B = {(x , y) E R2 : - l <x < 2 ; x2 <y<x + 2} 

C = {(x , y ,  z) E R3 : x2 + y2 ..;;;; 1 /2 ,  +y2 -y2 } D = {(x , y) E R2 : - l ..;;;;y ..;;;; l ,  ly l - l o.;;;;x o.;;;;v'l=;l } E =  {(x , y , z) E R3 : lx i + I Y I  + l z l <  2, lx i <  l , l y l  < 1 }. 

5 .3 ·  Se A è un insieme di R" si chiama baricen tro di A il punto di coordinate 

- l J x; = -- x; d x .  
m (A )  A 

Trovare il baricentro degli insiemi considerati negli esercizi 5 . l  e 5 .  2. 
5 .4 Si disegnino schematicamente i solidi ottenuti ruotando intorno all'asse z gli 

insiemi che seguono, e se ne calcoli il volume: 

(a) F= {(x , z ) E  R2 : O < z  < l , O < x  < -v'z } (paraboloide di rotazione) 
(b) F = {(x , z ) E R2 : l < z < 2 , 0 < x < ln z} 
(c) F = {(x , z ) E R2 : O < z < l , l + z < x < ez } 

(d) F = {(x , z ) E R2 : O < z < 2 , 0 < x < min (z , �)}. 

S. S  Si trovino i volumi dei solidi ottenuti ruotando intorno all'asse verticale gli 
insiemi dell'esercizio 5 . 1 . 

5 .6 Il momento d'inerzia di un solido omogeneo E C R3 rispetto a una retta r è 

I, = f [dist (x , r) )2 d x ,  È 
dove dist (x , r) indica la distanza del punto x dalla retta r. 

Dimostrare che il momento d'inerzia di E rispetto all'asse z è 

lz = J (x2 + y2 ) d x dy dz . 
E 

Trovare le analoghe espressioni dei momenti lx e ly . 

S. 7 Sia E un solido di rotazione , ottenuto ruotando intorno all'asse z l'insieme 

F= {(x , z ) E  R2 : a < z  < b , o < x <[(z)}. 



236 Capitolo .esto 

Dimostrare che 

5.8  Si trovino i momenti d'inerzia rispetto all'asse z dei solidi degli esercizi S .4 
e S . S .  

6 Cambiamento della misura per diffeomorfismi 

Siano A e B due aperti di R" . Un 'applicazione g : A  -+ B si dice un diffeomorfismo 
di classe C1 (o brevemente un diffeomor(ìsmo) �p · 

( l )  g è iniettiva ; 

(2) g(A ) =B; 

(3)  g e la  sua inversa g- 1 : B-+ A sono di classe C1 (e  cioè sono differenziabili con 

derivate continue). 

Se g è un diffeomorfismo e x0 EA, sia y0 =g(x0) EB.  Indichiamo con lg (x0 ) e 

lg- •  (y0 ) le matrici jacobiane di g e g-1 nei punti x0 e y0 rispettivamente (vedi cap .  4, 
[4.6] ). 

Si ha g- 1 a g(x) = x  e quindi per la [4. 1 2) del capitolo 4 . 

dove si è indicata con I la matrice unità di ordine n , di elementi 

se i =j 

se i #:.j. 

Dalla [6 . 1 ) segue che 

[lg (xo )r 1 =Jg- t (Yo ) 
e quindi la matrice jacobiana di g non è mai singolare, da che si ha 

det lg (x) #:. O  in A ,  det lg_ 1 (y) #:. O  in B. 

[6. 1 ]  

[6.2] 

Ciò premesso, sia E un insieme misurabile contenuto in A .  Lo scopo di questo pa· 

ragrafo è di calcolare la misura dell'insieme g(E), immagine di E tramite il diffeomor­

fismo g. 

Dimostreremo il seguente 

Teorema 6 . 1  Se E è misurabile, g(E) è misurabile e risulta 

m{g(E)) = J l det lg(x)l dx .  
E 

[6 .3) 
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La dimostrazione del teorema 6. 1 verrà fatta per gradi, e prenderà tutto il paragrafo. 

Cominciamo dal caso particolare in cui g è un'applicazione lineare . In questo caso 

esiste una matrice L tale che 

g(x) =L x, 

o in maniera esplicita n 
g; (x) = _1: L;ixi, i = I , 2 ,  . . .  , n . J = l  

Se g è lineare si ha ovviamente 

lg =L .  [6 .4) 

Lemma 6. 1 Sia g(x) = L x  un 'applicazione lineare non singolare di R" in R" , e sia 
K un compatto di R" . In tal caso 

m(g(K)) = l det L l m(K ) .  [6.5) 

Dimostrazione . Cominciamo col dimostrare la (6.5) nel caso di applicazioni lineari 

di tipo speciale . 

(a) g è l'applicazione che scambia tra loro le componenti x; e xk 

Kk (x) =xi ' 
j =l= i, k .  

Una tale trasformazione manda intervalli in intervalli ( e  quindi plurintervalli in 

plurintervalli) !asciandone inalterata la misura. Si vede allora facilmente che 

m(g(K)) =m(K), 

per ogni compatto K. D'altra parte, per una trasformazione g del tipo descritto , risulta 

l det L l = l e dunque sussiste la (6.5] .  

(b) La matrice L è diagonale , cioè s i  ha 

g; (x) = À;x; ,  i = I , 2 , . . .  , n . 

Se I è un intervallo (e quindi anche se I è un plurirettangolo) risulta (vedi fig. 6. 1 2) 

(6.6) 

e quindi la [6 .6) sarà valida anche per i compatti. Poiché 

la (6.5) è verificata anche in questo caso. 
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a b x 
Figura 6. 1 2  

(c) La trasfonnazione g è del tipo seguente : 

{gk (x) =xk + Xxi 

g; (x) =x; i ':l= k 

o in fonna vettoriale , 

g(x) = x + Xxiek .  

g(l) x 
Possiamo supporre j ':l= k  (altrimenti si ricade nel caso precedente) ;  per fissare le idee 
supporremo j = l .  Sia Q =g(K ) (vedi fig. 6 . 1 3), e per ogni u E R , sia 

Qu = {x' E Rn -1  : (u , x') E Q}, 

Ku = {x' E Rn -1 : (u , x') EK}. 

Per ogni u ,  Qu coincide con l'insieme Ku traslato di Xu nella direzione ek : 

e dunque (vedi cap. 5 ,  esercizio 2.8) 

mn -1  (Qu ) = IDn- 1  (Ku). 

Ma allora 

mn (Q) = J mn - t (Qu ) du = J mn -1  (Ku) du = ffin (K), 

e ,  dato che det L =  l ,  la [6 .5]  è dimostrata anche in questo caso. 
Abbiamo così dimostrato la [6 .5 ]  nel caso di trasformazioni elementari, cioè di 

uno dei tre tipi descritti. 
Osserviamo ora che se la [ 6 .5]  vale per due trasfonnazioni linearig e h , vale anche per 

la loro composizione . Infatti, se L ed M sono le matrici di g e h , LM sarà la matrice di 
g o  h, e dunque 

m (g o  h (K)) = l  det L l m (h (K )) =  l det L Il det M i m (K ) =  l det LMI m (K) .  
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K u u 
Figura 6. 1 3  

Per concludere la prova del lemma sarà allora sufficiente dimostrare il seguente 

Lemma 6.2 Ogni trasformazione lineare non singolare è prodotto di trasforma­
zioni elementari. 

Dimostrazione. Dimostreremo questa affermazione per induzione sulla dimensione 
n dello spazio . L'esempio 6 . 1  che segue mostra che essa sussiste per n = 2. Supponiamo 
ora che sia vera per n - l e dimostriamola per n . 

Sia L =  {aii}  una matrice n X n non singolare . Poiché non può essere ain L in = O  per 
ogni i (Lin è il determinante della matrice ottenuta eliminando la riga i·esima e l'ul­
tima colonna), potremo supporre, scambiando eventualmente due variabili che sia 
an n Lnn -:�= o. Dato un vettore x E Rn , indicheremo con x il vettore di Rn - l di com­
ponenti (x l > x2 ,  • • •  , Xn _ 1 ), e porremo L=Lnn . Per induzione, la trasformazione 
x� Lx, e dunque anche quella che manda x = (x, xn ) in (Lx, xn ) si può scrivere come 
prodotto di trasformazioni elementari. 

Moltiplicando X n successivamente per a l n , a2n , . . .  , an _ 1 , n e sommando rispettiva­
mente alla prima, seconda (n - I ) -esima riga (tipo (c)) si passa a (Lx +  iixn , Xn ). dove 
si è indicato con ii il vettore di Rn - 1 di componenti (a 1n , a2n , . . .  , an _ 1 , n ) . Abbiamo 
così sistemato le prime n - l  righe ; resta da trasformare l'ultima. 

Con una trasformazione di tipo (b) si giunge a (Lx + iixn , bxn ) , dove b è un nu­
mero che sceglieremo più tardi . Osserviamo ora che la matrice L non è singolare ; sia 
M= L - l la sua inversa, e sia w = Lx + iixn . Si ha 

n - 1 
(M w)i = xi + xn � mijajn 

J =  l 
n - 1 

e quindi moltiplicando la riga i-esima per :E an k mki e sommando i risultati all'ul­
tima , questa diventa : 

k = l  
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Scegliendo b in modo che il termine tra parentesi sia uguale ad On n  si ottiene la tra­
sformazione L come prodotto di trasformazioni elementari. • 

Abbiamo così dimostrato la [6 .5 ]  per ogni trasformazione lineare . Osserviamo ora 
che la misura è invariante per traslazioni (vedi cap . 5 ,  esercizio 2 .8 )  e quindi , se G(x) 
è una trasformazione affine 

G{x) =Lx + y0 ,  
si avrà ancora 

m(G{K)) =  l det L I  m(K). (6 .7] 

Esempio 6. 1 

La generica trasformazione lineare di R2 in sé è data da 

Se g è non singolare deve essere det A =a 1 1 a22 -a 12 a21 :#: 0, per cui dovrà essere 

a 1 1  :#: 0, oppure a21 :#: 0. Supponiamo per fissare le idee che sia a 1 1 :#: 0. Allora g si 
scrive come composizione di quattro trasformazioni elementari nel modo seguente : 

Si verifichi che ognuna delle trasformazioni Kt > . . .  , g4 è di tipo elementare e per 
ognuna di esse si calcoli la matrice associata . • 

Esempio 6. 2. Misura di un para/lelepipedo in n dimensioni 
Dati in Rn n vettori v1 , v2 , . . .  , V  n linearmente indipendenti , l 'insieme 

n 
P =  {y E  Rn : y = � X t Vi , O E;;; xi E;; l }  

i= l 
è un parallelepipedo in Rn , generato da v1 , v2 , • • •  , V  n . 

Se si indica con L la matrice le cui colonne sono formate dai vettori v 1 , v2 , • • •  , V  n , 
e si pone 

g(x) =L x , 

si ha 

P=g(/o ), 



L 'integrale di Lebesgue in Fi' 241 
dove I0 è un cubo n-dimensionale di lato l :  

Io = {x E Rn :  O EO;xi EO; 1 }. 

Si ha allora 

m(P) = l det L I . 

In particolare,  se n = 3, indichiamo i tre vettori linearmente indipendenti con u , v e w (vedi f1g .  6 . 14). 

Si ha (u l 
m(P) = det u2  

u3 
:: ::) = l (u, v A w)l ,  
v3 w3 

dove si indica con v A w il prodotto vettoriale o prodotto esterno dei vettori v e w e 

cioè il vettore di componenti 

Torniamo alla dimostrazione del teorema 6 . 1 . Il secondo passo consiste nel dimo­

strare la [6.3) nel caso in cui E è un intervallo. 

Stabiliamo dapprima alcune notazioni. Indichiamo con Q il cubo in Rn di centro 

x0 e lato 2p (vedi fig. 6 . 1 5) 

Q = Q(xo , p) = {x E Rn : lxi -x0d E0;p ; i = l , 2 , . . .  , n}, 

Figura 6.1 4  

- - - - - - - - - � ,' ", , ' , ', , ) , , l ' , ' / ', , - - - - - - - - - - -M 
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- 2p ----+ 

Q 
Figura 6. 1 5  

e per O<; r< l siano QT e Q_T i cubi, concentrici a Q, di  lato 2(1  + r)p e 2( 1 - r)p 
rispettivamente : {QT =�x E R" � �x ; -�0; 1 <; (1 +:)p ; � �

-

1 , 2 , . .. , n} 

Q_ T - {x E R  . !x 1 x0 , ! E0; ( 1 r)p , l - 1 , 2, . . .  , n}. 

Dato un diffeomorfismo g : A -+  B, indichiamo con G l'applicazione affme 

G(x) =g(xo ) + dg(xo) (x - x0 ). 

Si ha 

G(x) = y0 + L x, 

dove 

e 
Yo =g(xo ) -L xo . 

Se K è un compatto contenuto in A ,  poniamo 

4d = dist (K,  R" -A)  

(se A = R"  si pone d= l ) .  L'insieme 

Kd = {x E R" : dist(x, K) EO;d } 

è anch'esso un compatto contenuto in A .  

[6.8] 

[6.9) 

Lemma 6.2 Esistono due costanti positive v e N tali che, per ogni x, x 1 EK, risulta 

Dimostrazione . Se l x- xJ I ;>d, allora 

lg(x)-g(xt) I E0; 2  sup lg(y) I E0; 2  sup lg(y) l · l x- xt l/d =Nt l x - xt l ·  y eK y eK 

[6. 1 0) 
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Supponiamo ora che l x - x1 l <d .  In questo caso il segmento di estremi x e x1 è 

interamente contenuto in Kd . Ricordando la formula di Taylor (vedi cap . 4 ,  (3 .7 ] 
con k = O) si ottiene 

K;{x) =g; (x 1 ) + (Dg; (�; ) , x - x ! ), i = l , . . .  , n ,  [6. 1 1 ]  

dove E; è un punto del segmento di estremi x e x 1 , e quindi in definitiva un punto di 
Kd . Si ha allora 

IK; (x) -g; (xt) l os;;; sup 1 Dg; (Y) I I x - x1 1 ,  i = l ,  . . .  , n ,  
y EKd e dunque 

lg(x) -g{xt ) l os;;;N2 1 x-x t l .  

da cui segue la seconda delle disuguaglianze [6. 1 0) , con N=max{N1 , N2 ) . 
Per dimostrare l'altra disuguaglianza , sia y =g(x) e y 1  =g(x t ) .  Si ha x =g-

1 (y) e 
x1 =g- 1 (y1 ) ;  con lo stesso ragionamento di prima (si osservi che y e y1 appartengono 
al compatto g (K) C B) si ricava 

e tornando a x, X t .  si ottiene la prima delle (6. 1 0) con v =P- 1 • • 

In maniera del tutto analoga si dimostra che esistono due costanti positive p. e M 
tali che, per ogni x0 EK e per ogni x, x1 E Rn : 

[6. 1 2] 

Lemma 6.3 Per ogni T> O, esiste un 6 ,  O <  6 <d, tale che, se x0 EK e diam Q =  

= 2p ..J; < 6,  allora 

[6. 1 3 )  

Dimostrazione . Dalla [ 6 . 1 1 ] ,  scritta con x0  al posto d i  x 1 ,  segue 
per ogni x tale che il segmento di estremi x e x0 sia interamente contenuto in A ,  �i 
essendo un punto di tale segmento . 

Poiché Dg; è continuo , per ogni e > O  esiste un 6 ,  0 < 6 <d, tale che se x0 EK e 
l x - xo l < 6 ,  allora 

lg; (x) - G; {x) l < e l x - x0 1/..J;, 

e dunque 
lg(x) - G {x) l < e l x - xo l .  (6 . 1 4] 

Ciò premesso , cominciamo col dimostrare la seconda delle inclusioni (6. 1 3 ) .  Per 
questo prenderemo e = e1 = p.  T/..;;, e indicheremo con 6 1  il 6  corrispondente . 
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Sia y Eg(Q) e x1 = G  - l (y). Occorrerà far vedere che x1 E QT .  Poniamo x =g-1 (y).  

Si avrà x E Q  e quindi, per la [6. 1 2] , 

l xl -x l os;;;;ll-1 1 G(x1) - G (x)l = ll-1 1g(x) - G(x) l .  

Se  diam Q < 6 1 si avrà l x - x0 1 < 6 1 e quindi, per la [6 . 1 4) ,  

Ma allora, per ogni i=  l ,  2,  . . .  , n ,  s i  ha 

lx l ; -xo ; l os;;;; lx l i -x ; l  + lx; -xot l < Tp +p =( l  + T} p, 

cosicché x1 E QT e la seconda inclusione è dimostrata. 
In modo simile si dimostra la prima inclusione. Sia y E G (Q_T), e siano x = G -1 (y), 

x1 =g- 1 (y) . l punti x e x1 appartengono all'insieme compatto 

Kd ug- 1 (G(Kd)). 

Per il lemma 6.2 esisterà una costante positiva v tale che 

lx -xl i or;;; v- 1 lg(x) -g(xl ) l  = v- 1 lg(x) - G(x) l .  

Si  prenda e2 = T v l ...r,;. Se l x -x0 l < 6 2 risulterà 

e ragionando come sopra si conclude che x1 E Q, e quindi la prima inclusione [ 6. 1 3] .  
I l  teorema è così dimostrato con 6 = min{l> � o  cS2 ) .  • 

Siamo ora pronti a dimostrare che se l è un intervallo contenuto in A ,  allora 

m(g(l)) = f 1 detJ1(x)l dx . [6. 1 5 ]  I 
Usiamo il lemma precedente con K =l; se T> O e Q è un cubo con centro Xo E/ e 

diametro inferiore a 6 , risulta 

m(G(Q_ T)} os;;;;m{g(Q)) os;;;;m{G(QT)) 

e , poiché G è una trasformazione affine, 

( 1 - Tf l detJ1(xo) l m(Q) os;;;;m(g(Q)) os;;;;{ I + Tf l det J1 (x0 )l m(Q). [6. 16)  

D'altra parte la funzione l det J1(x) l è continua in l (e quindi uniformemente 
continua) ; ne segue che esiste un numero positivo 6' tale che, se diam Q< l> ' , si ha 

max l detJ1 {x)l - min . l detJ1 {x) I < T . 
x E Q x E Q 

[6. 1 7) 
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Supponiamo ora che I abbia lati razionali. Si può allora dividere I in un numero 

fmito in cubi Q h Q2 , • • •  , QN , di centri xl > x2 ,  . . .  , xN , e tutti di diametro minore del 
minimo tra 6 e 6 ' . 

Dalle [6 . 1 6] e [6 . 1 7) ,  scritte per il cubo Q; , si ottiene 

(1 - r'f (M1 - r) m(Q1 ) EO: m(g(Q;)) EO: (I + r'f (m; + r) m(Q;) , 

dove si è posto 

m; = min l detlg (x) l ,  
Qj 

M; = max l detlg (x) l .  
Qj 

Sommando da l a N, 
N 

(1 - r'f � M; m(Q1) - r(l - r'f m(/) EO: m(g(/)) EO:  
i= l 

N 
<; (l + r'f � m;m(Q1) + r (l + r'f m (/). 

i= l  

D'altra parte , per la defmizione stessa di integrale, si ha 

e dunque 

( 1 - r'f { J l det lg (x) l  dx - rm(/)}EO: m(g(/)) EO: I 
EO: (l + r'f { J l det lg (x) l dx + rm(J)}, I 

e la [6 .1 5 )  si ottiene passando al limite per r-+ 0. 
Se poi I non ha lati razionali basterà approssimare I con una successione I k di in­

tervalli con lati razionali, e passare al limite per k -+  oo . • 
Una volta provata la [6. 1 5 ) si può senz'altro passare alla dimostrazione del teo­

rema 6 . 1 . Cominciamo con l'osservare che la [6.3) vale per i plurintervalli. Come 
ormai è usuale, dimostreremo la [6.3) prima per insiemi aperti e compatti, per poi 
estenderla a insiemi misurabili qualsiasi. 

( l )  Sia K un compatto contenuto in A .  Esiste una successione di plurintervalli Yi , con 
-

A :J Yt :J Y2 :J . . . ; n Yi =K.  
i= l  

Gli insiemi g( Yj) sono compatti, e risulta 
-

B :Jg(Yt) :Jg(Y2 )  :J . . . ; n g(Yi) =g(K),  j= 1 
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per cui (vedi cap . 5 ,  esercizio 3 .4): 

m(g(K)) = _lim m(g(Y;)) . J-+ -
D'altra parte, per il teorema di Levi (si tenga presente che l det lg l è continua, e 

dunque limitata in Y 1 )  

_lim m(g(Y;)) = _lim J i detJg (x)i dx = J i detlg (x) l dx ,  J -+- J -+ • �  K 
cosicché la [6.3) vale anche per insiemi compatti. 
(2) Con un procedimento del tutto analogo,  che viene lasciato per esercizio , si dimo­
stra la [6.3) per insiemi aperti. 
(3) Sia ora E un insieme misurabile e limitato, con E C A ,  e siano A; e K; due succes­
sioni, la prima di aperti contenenti E e la seconda di compatti contenuti in E, tali che 

A 1 � A2 � • • •  ; _lim m(A; ) =m(E), J -+ -
K1 C K2 C . . . ; _lim m(K; ) =m(E) . J -+-

Poiché E è limitato ed  E C A ,  si potrà supporre che anche A 1  sia limitato, e che 
Al C A .  

Si ha ,  per ogni j, 

m(g(A; )) � m(g(E)) � m (g(E)) � m(g(K; )) . 

D'altra parte 

O :e>;;m(g(A; )) - m(g(K; )) =  J l det lg (x) l dx :e>;;m(A; -K; ) s_!!p l det lg l 
A; - K; 

A ,  

e , poiché lim m(A; -K;) = O, i � -
_lim {m(g (A;)) - m(g(Ki ))} = 0 . J -+ -

In conclusione, g(E ) è misurabile e si ha 

m (g(E)) = _lim m(g(A; )) = _lim m(g(K; )). , ..... - J -+-
Si osservi ora che la [6.3] è valida per gli insiemi A; e K; per cui 

m(g(K; )) = J l det lg (x) l d x :e;;; J l detlg (x)l d x :e>;; J l det lg (x) l d x =  Kj E Aj 
= m(g(A;)), 

[6 . 1 8] 
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e per la [6. 1 8) 

m(g(E)) = J ! det Jg (x) l  dx .  [6 . 1 9) 
E 

(4) Infine ,  se E non è limitato ,  o se E non è contenuto in A ,  posto A, = {x E A : : dist (x, ò A) > 1 /r }, basterà scrivere la [ 6 . 1 9 ] per E n I, n A, e passare al limite per 

Il teorema 6. 1  è così completamente dimostrato. • 
Osservazione 6. 1 .  Se si pone g(E) =F, la [6.3) diventa 

m(F ) =  J l det lg (x) l  d x ; 
g - • (F ) 

questa forma è in genere più utile per il calcolo della misura di un insieme . 

[6.20) 

Dato un insieme F, si tratterà di trovare un diffeomorfismo g tale che l'integrale 
a secondo membro della [6 .20] sia calcolabile con relativa facilità .  

In  genere ciò dipenderà dall'insieme g-1  ( F) ; s i  cercherà allora di scegliere l'ap­
plicazione g in  modo che g-1 ( F) sia un insieme il più semplice possibile (ad esempio 
un intervallo, o comunque un insieme normale). In pratica, SI cerca un diffeomorflSJDo 'Y di F in  Rn tale che 'Y( F) sia il più semplice 
possibile , e poi si prende g = 'Y- l .  • 

Esempio 6. 3 
Si calcoli l 'area dell'insieme E raffigurato nella figura 6 . 1 6 .  
Si ha 

E = {(x , y)E R2 : O <x <y < 2x ;  l <xy < 2}. 

La trasformazione { u =xy 
'Y ' 

v =yjx 

manda E nel quadrato 

Q = 'Y(E) =  {(u , v) E R2 : l < u < 2 ; l < v < 2}. 

La trasformazione inversa g = 'Y- 1  è data da { x = Vri/V 
g : 

y = ..ru; 
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y \ 

/ / / / 
' , ,  

/ / / 
/ Y = X 

l .......... l / ..... .... .... l / ..... - -/ ........ - - x y= 2  l - -/ - -1/ - - - -x y= 1  
Figura 6. 1 6  

e s i  ha 

Allora 

l detlg = 2V  > O , 

e quindi 

f 1 l J2 J2 dv 1 m(E) = - du dv = - ·  du - = - In 2  2v  2 v 2 · 

Esercizi 

Q l l 

JC 
Cllpitolo sesto 

6 . 1 Dimostrare che le trasformazioni di tipo (a) si possono ottenere come compo­
sizione di trasformazioni di tipo (b) e (c) .  

7 Cambiamento di variabili negli integrali 

Teorema 7 .l Siano A e B due aperti di R" e sia g un diffeomorfismo tra A e B. 

Sia E un insieme misurabile contenuto in B e sia f(y) una funzione integrabile in E. 
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La funzione composta F(x) =f(g(x)) è integrabile in g- 1 (E) e si ha 

J f(y) dy =  J f(g(x)) l det lg (x) l dx . E g- 1 (E) 
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[7 . 1 )  

La [ 7  . l ]  contiene come caso particolare (con f= l )  i risultati del paragrafo prece­
dente e in particolare la [6 .20) . Come abbiamo osservato in precedenza, la [7 . 1 )  può 
essere usata per calcolare l'integrale a primo membro. Infatti, se si sceglie opportuna­
mente il diffeomorfismo g, l'insieme g- 1 (E) può essere notevolmente più semplice 
dell'insieme di partenza E, e l'integrale a secondo membro della [7 . 1 )  può risultare 
più facile da calcolare di quello a primo membro . 

Esempio 7. 1  

Si calcoli l'integrale 

J (x +y) dxdy E 
dove E è l'insieme dell'esempio 6.3 . 

Si ha J<x +y) dxdy =  J (v'U/V + YUV )/2vdudv = E Q 

Esempio 7. 2 

Si calcoli f dxdy 
E xy , 

dove E è l'insieme della figura 6. 1 7 . 
Se si pone {u =x +y 

v =yfx , 

l'applicazione 1 :  (x , y ) � (u ,  v) manda E nel rettangolo 
R = 1(E) = {(u ,  v) E R2 : l <u < 3 ,  l < v < 2}. 

Il diffeomorfismo inverso è { x =u/(1 + v) 
g = 1 -1 = 

y =u vf( I + v), 
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J Y= 2x y / y=x / ' l ' l ', l 

' l , ,  

Figura 6. 1 7  

e si ha ( 1 /( 1  + v) 
J -g - v/( I + v) 

Risulta 

e dunque 

/ / / / / / / / / ' ' ' ' ' ' ' ',x + y= 3  ' 

-u/(1  + v)2 ) 
u/( 1 + v)2 . 

Capitolo sesto 

x 

f dx dy 
= J ( I  

3
d 2 d du d v = J -,i-J--;- = In 2 In 3 .  • 

E 
xy R u2 v ( I + v)2 l l 

Veniamo ora alla dimostrazione del teorema 7 . 1 . Come al solito, cominceremo col 
supporre f(y) ;;o. o. 

Consideriamo gli aperti 

d= {(x , u) E Rn X R :  x EA ,  u E  R}=A X R ,  

al =  {(y, t )  E Rn X R : y E B, t E R} =B X R . 

L'applicazione 

G =d-+al, 
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di componenti { y =g(x) 

t =u ,  

è un diffeomorfismo tra .91 e PÀ, e si ha 

cosicché 

detJG (x, u) = detlg (x). 

Se si pone 
�= {(y , t) E R

" 
X R ; y EE, O < t <f(y)}, 

risulta 

G -1 (�) =  {(x , u) E R
" 

X R :  x eg-1 (E), O < u <f(g(x))}. 

Per il teorema 6. 1 , 

mn + t (�) =  J l detlg (x) l dx du .  
G- s ('l 

D'altra parte 

mn + t (� = J f(y) dy, E 
mentre per il teorema di Fubini 

f(g(x)) J l det lg (x) l dxdu = J l det lg (x) l dx du = 
G - 1 <Jr)  g- 1 (E ) 

= J f(g(x)) l detlg (x) l  d x . 
g- 1  (E ) 
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n teorema è così dimostrato per funzioni positive ; in generale basterà scrivere 
f = r-f- ' scrivere la [7 . l 1 per r ed f - ' e infine sottrarre . •  
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Esercizi 

7. 1 Si calcoli (vedi fig. 6. 1 8 ) 

J<x + y2 ) dx dy . E 

Figura 6. 1 8  

1 ,, ' 

Capitolo aesto 

2 ...... x 
7.2 Si confronti la [7 . 1 ]  con la fonnula di cambiamento di variabili per gli integrali 

in R (vedi vol. l ,  cap . 5 ,  (6. 2] ). 

b �- · (b) J f(x) dx = J /(l{'(t)) l{''( t) d t . 
a �- · (a) 

8 Coordinate polari 

Un caso speciale di cambiamento di variabili, di particolare interesse nelle applica· 
zioni, è quello che conduce alle coordinate polari. Specialmente nel caso di integrali 
doppi o tripli, l'introduzione delle coordinate polari può portare a notevoli semplifi· 
cazioni nei calcoli quando il dominio d'integrazione presenta simmetrie rispetto a 

rotazioni. 
Cominciamo dal caso di due variabili. Un punto P di R2 , di coordinate (x ,  y ), 

può essere individuato assegnando la distanza di P dall'origine O 

e l'angolo 8 che il segmento di estremi O e P fonna con l'asse delle x (vedi fig . 6 . 1 9) . 
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Figura 6. 1 9  

Le relazioni tra l e  coordinate polari p ,  8 e le coordinate cartesiane x , y  sono date da { x = p cos 8 
y = p sin 8 .  

L'applicazione [8. 1 ] manda la striscia 
S = {(p, 8 )  E R2 : O EO; p < + oo, O EO; 8 < 2 1T} 

[ 8 . 1 ] 

nel piano R2 • Essa è surgettiva , ma non iniettiva , dato che se p =  O si ha x =  y = O per 
ogni valore di 8 . Se però si fanno variare p e 8 nell'insieme aperto 

A = {(p ,  8 ) E R2 : O < p < + oo , 0 < 8 < 2 7T}, 
l'applicazione g defmita dalla [ 8 . 1 ] è un diffeomorfismo tra A e il piano R2 privato 
della semiretta 

Si ha 
o = {(x , y) E R

2 
: y = o , x ;;o..o}. 

(cos 8 
J6 (p, 8 ) =  . sm 6 

- p sin 8 ) 
p cos 6 

e dunque 
detlg = p .  

Se E è un insieme misurabile , contenuto in R
2

- o ,  si ha per l a  [ 7  . l ] J f(x , y) dx dy =  J f(p cos 8 , p  sin 6 ) pd pd 8 .  [8 .2)  
E g- 1 (E) 

D'altra parte , se E è un insieme misurabile qualsiasi, risulterà J f(x , y) dxdy =  J f(x ,y) dx dy,  
E E- a 

dato che o è di misura nulla. Ne segue che la [8 .2] è valida per un arbitrario insieme 
misurabile del piano. 
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Esempio 8. 1 

Si calcoli l'integrale 

dove E è l ' insieme in figura 6 .20 .  

Figura 6.20 

Quando il punto P, di coordinate cartesiane (x, y), varia in E, le sue coordinate 
polari descrivono l 'insieme 

Q =  {(p ,  8 ) E R2 : l < p < 2 ,  O <  8 < ?T/2} . 
Si ha allora 

J 2 fr/2 7 1 5 (x +y2 ) dxdy =  J d p f p2 (cos 8 + p sin2 8 ) d8 = - + - 1T. • E 1 0 3 1 6  

Esempio 8. 2 

Trovare la misura dell'insieme (vedi fig. �.2 1 )  

Introducendo coordinate polari si ha 

p sin 8 > O, 
p (sin 8 + cos O ) > O ,  
p2 < 3p( l - cos 8 ), 
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Fipra 6.2 1 

e quindi 

\ l \. l ' , _ _  .... 
O <  8 < 3 7r/4 
O < p < 3( 1 - cos 8) ,  

cosicché 
g- 1 (E) = {(p, fJ ) E  R2 : O < 8 < 37r/4, O < p < 3 (1 - cos 8 )} 

Si ottiene dunque 
3 3 ( 1 - cos 8) 9 3 '11'/4 m(E) =  J p d p d 8  = d 8 J p dp = 2 J ( 1 - cos 8 )2 dfJ  = g- 1 (E) O O 0 

Veniamo ora alle coordinate polari in tre dimensioni, dette anche coordinate sfe­
riche (vedi fig. 6.22). 

Se P è un punto di R3 , di coordinate cartesiane (x , y , z ) ,  si indica con p la distanza 
tra P e  0: 

+y2 + z2 , 
con 8 l'angolo che il segmento OP forma con l'asse z, e con .p l 'angolo tra l'asse x e il 
segmento OQ, proiezione di OP sul piano x y. 

Si ha {x = p sin (J cos 'P 

y =p sin 8 sin .p 
z = p  cos (J 
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z 

Figura 6.22 

...... ...... ...... 

Copitolo sesto 

P = (x, y, z) 

y 
"'4 Q = (x, y, O) 

e l'applicazione g : (p ,  9 ,  'P)� (x , y ,  z) è un diffeomorfismo tra l'aperto 

e R3 privato del semipiano 

� = {(x , y , z) E R3 : y = O, x ;;i!> O}. 

La matrice jacobiana dell'applicazione g è 

8 COS !p 
J 8 = sin 8 sin 'P 

cos 8 

e dunque 

p COS 8 COS !p 
p cos 8 sin �P 

- p sin 8 

Si ha allora, dato che � ha misura nulla, 

J f(x ,y , z) dx dy dz = 
E 

- p  sin 8 sin 'P) 
p sin 8 COS !p 
o 

= J [(p sin 8 cos !p, p sin 8 sin !p, p cos 8 ) p2 sin 8 dp d 8 d !p . [8 .3) g- l (E) 
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Esempio 8. 3 

Si trovi il volume dell'intersezione tra il cono 

x2 +y2 <z2 

e la sfera 

x2 +y2 + z2 < 2az .  

Introducendo coordinate polari si ha 

p2 sin2 8 < p2 cos2 8 

p2 < 2a p cos 8 , 

e quindi 

g- 1 (E) = {(p ,  8, cp) E R3 : O < cp < 21T, O <  8 < 1T/4 , O < p < 2a cos 8 }. 

Per la [8.3) 

1 6  3 ff/4 
= J cos3 8 sin 8 d 8 = 1ra3 • • o 

Esempio 8. 4 

25 7 

Trovare il momento d 'inerzia di un cono C di altezza h e raggio della base a ,  rispetto 
a una retta passante per il vertice e perpendicolare all'asse del cono. 

Scegliamo l'origine come vertice, l'asse z come asse del cono, e l'asse delle x come 
asse rispetto al quale si deve calcolare il momento d'inerzia. Si ha 

I=  J (y2 +z2 ) dxdy dz .  c 
Se si indica con cr l'apertura del cono 

cr = arctg(a/h) 

si ha, passando a coordinate polari , 

g- 1 (C) = {(p, 8 , cp) E R3 :  O < cp < 2 1T, 0 < 8 < cr, O < p < hjcos 8 }, 

e quindi 

I= J p4 sin 8 (sin2 8 sin2 cp + cos2 8 ) dp d 8 dcp = g- I (C) 



258 Capitolo sesto O! h/cos 9 211' = J sin 8 d 8  J p4 dp J (sin2 8 sin2 �P + cos2 8) d iP = o o o O! h/cos fJ 1rh5 O! sin 8 ( 1 + cos2 8 ) sin 8 (1 + cos2 8 ) d 8  J 5 d8 = o o cos 8 
= [i ( Q - 1) + t Q - 1 ) l 

Ricordando che tg Q =a/h , e quindi cos2 Q=h2 /(h2 +a2 ) , si ottiene , in conclusione , 
I= (4h2 +a2 ) . • 

Per finire questo paragrafo, sarà il caso di menzionare le coordinate cilindriche in 
R3 , legate alle coordinate cartesiane dalle relazioni : {x =r cos 8 

y =r sin 8 
z =z, 

In sostanza le coordinate cilindriche si limitano a operare un cambiamento di va­riabili nel piano xy , nel quale vengono introdotte coordinate polari, lasciando inalte­rata la terza coordinata . Per questa trasformazione la matrice jacobiana è çB -r sin 8 D lg = :in 8 r cos 8 

o 

cosicché 
detlg =r, 

e quindi J f(x ,y , z) dxdy dz =  J f(r cos 8 , r  sin 8 ,  z)rdrd 8 dz . • E r � �> 
Esempio 8. 5 Si calcoli 

J +y2 dxdydz , E 
dove E è l'insieme 

[8 .4] 
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Passando a coordinate cilindriche si ottiene 

g- 1 (E) = {(r , 8 , z)E  R3 : - % < 8  < %• O < r <a cos 8 , - r < z < r}, 

e dunque 1r12 a cos () r 'lr/2 a cos () 
J +y2 dxdydz = J d 8 J r 2 dr J dz = 2  J d 8  J r 3 dr = 
E - 1r12 O - r - 'lr/2 O 

Esempio 8. 6 
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Sia A un insieme misura bile del piano x z ,  contenuto nel semipiano x ;;;;. O, e sia E l'insieme di R3 ottenuto facendo ruotare A attorno all'asse z (vedi esempio 5 .2) . Per calcolare il volume di E si possono usare coordinate cilindriche ; si ha 
g- 1 (E) = {(r, 8 , z) : Q EO; 8 < 211', (r , z) EA } 

e dunque 
m(E) = 271' J rdrdz . 

A 

Se poi , invece di far ruotare A di 271' , si esegue solo una rotazione di un angolo 8 0 ,  indicando ancora con E il solido così ottenuto, si ottiene 
m(E) = 8 0  J rdrdz . • A [8 . 5 ]  

Ricordando la definizione di baricentro di una figura (vedi esercizio 5 .3) s i ottiene 
il seguente teorema (di Pappo-Guldino) :  

Il volume di un solido di rotazione è uguale al prodotto del/ 'area della figura ruo­
tante per il cammino percorso dal suo baricentro . 

Infatti sia x la prima coordinata del baricentro di A 
l . x=  m(A )  J xdxdz . 

Il cammino percorso dal baricentro di A nella rotazione di un angolo 80 sarà 8 0x, che moltiplicato per m(A )  dà 
80 J xdxdz , A 

cioè la misura di E. • 
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Esercizi 

8 . 1  Trovare l 'area delle seguenti regioni del piano : 

E = {(x , y) :  9 <x2 +y2 < By} 
F = {(x , y) : O <y < 8, y2/4 <x < 2y} 
G = {(x , y) : (x2 +y2 )3 < 1 6 x2 }. 

8.2 Trovare il volume delle seguenti regioni dello spazio R3 : 
E1 = {(x , y , z )  : x2 + y2 < 4, x2 +y2 + z2 < 1 6} 
E2 = {(x , y, z) : z2 >x2 +y2 , x2 +y2 + z2 < a2 }  
E3 = {(x , y , z) : 0 < 2z <x2 +y2 < 2y} 
E4 = {(x , y , z) : z > O, x2 +y2 <z2 , x - 2z + 2 > 0} 
E5 = {(x , y ,  z ) : x2 + y2 + z2 < 2az ,  x2 +y2 < az} 
E6 = {(x , Y, z ) : z > O, x2 + y2 < z2 , x2  +y2 + z2 < 2ax}. 

8 .3  Trovare l'area dell'asteroide 

A = {(x , y) : x2l3 + y2/3 < a2 '3 }  

(si operi il cambiamento di variabili 

x = r cos3 ..p 
y = r sin3 ..p). 

8.4 Si calcoli l'area del dominio 

Ah = {(x , y) : x2 t(2 h - 1 ) + y21(2h - 1) < a21(2 h - 1 ) }. 
Che cosa succede quando h -+ + oo? 

8.5 Calcolare i seguenti integrali : 

4 
f d x J x2 + y2 dy ,  o 

8.6 Calcolare l'integrale f 2 2 e - x  - Y  dx dy . 
R 2 

t ../x J dx J (x2 +y2 ) -1 /2 dy , o x 

Usare il risultato precedente per dimostrare che 

Capitolo sesto 
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8. 7 Calcolare gli integrali delle funzioni che seguono, negli insiemi indicati a fianco: 

J xyz dx dydz ,  E E =  {il tetraedro limitato dai piani coordinati e dal 
piano di equazione x + y + z = l }  J z2 dx dy dz ,  E E =  {(x , y, z) : x2 + y2 > a2 ' x2 + y2 + z2 < 4a2 } 

J + y2 dx dy dz E 
+y2 dxdy dz E 

E =  {(x , y , z) : x2 +y2 < 2z < 4x} 

8.8 Calcolare il volume del solido generato ruotando la f1g11ra dell'esercizio 7 . l  at­
torno all'asse y (e attorno all'asse x). 

9 Derivazione sotto il segno eli integrale 

Sia E un insieme misurabile di R" , A un aperto di Rk , e sia 

E X  A =  {(x, t) : x EE, t EA}  

il loro prodotto cartesiano. 
Se f(x, t) è una funzione definita in E X A ,  e integrabile in x per ogni t EA , po­

niamo 

F(t) = J f(x, t) dx . (9 . 1 ]  E 
In questo paragrafo studieremo il problema della continuità e della differenziabilità 

della funzione F(t). In particolare ci interesserà stabilire la validità di formule che 
permettono di derivare sotto il segno di integrale (vedi teorema 9 . 1 ) . 

Cominciamo con lo stabilire un semplice risultato . 

Lemma 9.1  Sia f(x, t) una funzione integrabile in x per ogni t in A e continua in 
t per quasi ogni x in E. Supponiamo che esista una funzione g(x) sommabile in E e 
tale che 

lf(x, t) l  �g(x) (9 .2] 

per ogni t EA e per quasi tutti gli x EE. Allora la funzione F(t) è continua in A . 

Dimostrazione . Sia t0 un punto di A , e sia {th } una successione a valori in A , con­
vergente a t0 • Poiché f(x, t) è continua in t per quasi ogni x EE, risulterà 

lim f(x, th ) =f(x, t0 ) q . o . in E. 
h -+-
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Per la [9.2) risulterà inoltre 1 /(x, th ) I :EO;g(x) e quindi si può applicare il teorema 
4 .3 (di Lebesgue) : 

lim J [(x, th ) dx = Jt(x, t0) dx.  h -+oo E E 

Ricordando la definizione di F(t), quest 'ultima relazione si scrive 

lim F(th ) = F(to ),  h -+oo 

e poiché la [9 .3 ) vale per ogni successione th  � t0 ,  s i  può concludere che 

lim F(t) =F(t0)  t -+ t0 
e dunque la continuità della funzione F(t) . • 

[9.3) 

Osservazione 9. 1 . Se vien meno l'ipotesi [9 .2] ,  il teorema cessa di valere in generale . 
Ad esempio , se si prende A =E= A ,  e { l t l - lx l 

se lx i < l t i 
[(x,  t) = t 2 

O se lx l ;;;,.l t l , 

risulta F(t )=  l per t #: O, e F(O) =O ,  e dunque F non è continua in O. • 

Veniamo ora alle proprietà di differenziabilità della funzione F. 

Teorema 9 . 1  Sia [(x, t) una funzione sommabile in E per ogni t EA,  e di classe 
C 1 (A) per quasi ogni x E E.  Supponiamo che esistano k funzioni sommabili in E, 
g1 (x) , . . .  , gk (x), tali che, per ogni t E  A e per quasi ogni x E E, risulti 

<x. o j...:;gj (x) . j = 1 , 2 , . . . . k .  

In tal caso F(t) è di classe C1 in A ,  e risulta 

aF J at t) d x .  

[9 .4) 

[9.5) 

Ricordando la definizione della funzione F, la [9 .5) si  può mettere nella forma 

a f f ar 
a t - [(x, t) d x =  (x , t) d x, l E E 

che prende il nome di [ormula di derivazione sotto il segno di integrale . 
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Dimostrazione . Cominciamo col supporre che A sia un aperto di R ,  cosicché F 

risulta funzione di una sola variabile reale . 
Fissato t0 E A , sia r > O  tale che /(t 0 ,  r) C A , e sia {tk } una successione a valori in 

l(t0 , r) e convergente a t 0 .  Risulta 

Poniamo 

per il teorema del valor medio , per quasi ogni x EE esisterà un punto � E/(t0 , r) tale 
che 

e dunque per la [9 .4 ] : 

i l/l h (x) l <.g1 (x) ,  q .  o .  in E. 

D'altra parte per quasi ogni x E E  la successione Wh converge a ò f(x, t0 )/ò t ;  per il 
teorema di  Lebesgue :  

. F(th ) - F(to ) f a[ 
hm = -a (x , t0 ) d x .  

h -+ � th - to t E [9 .6]  

Poiché la [ 9  .6 ] vale per ogni successione t h -+ t0 , la funzione F risulta der ivabile in t0 , 

e dunque il teorema è dimostrato nel caso k = l .  

Per dimostrare il teorema 9 . 1  nel caso generale , si fissino le variabili t � o  t2 , . . .  , 
ti _ 1 , ti+ t , . . . , tk e si faccia variare la sola ti . Per quanto detto sopra si avrà 

òF J ò f  -a (x , t) d x ,  t ·  E 7 j = ! ,  2 ,  . . . , k .  

Applicando il lemma 9 . 1  alla funzione at!a ti , s i  trova che a F /ò ti è continua, 

quindi che F è di classe C 1 in A . • 

Un caso interessante si ha quando E è un intervallo della retta reale : E = [a ,  b ) .  
Supponiamo che f(x ,  t )  e o t/a ti siano funzioni continue in [a , b )  X A .  

La funzione w 
F(t , u , w) = rf(x , t) dx ù 
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è defmita in A X [a , b ]  X [a , b ] ,  è di classe C1 e risulta 

iJF WJ iJf 
a 1 . (t , u , w) = iJ t · (x , t) dx l u l 
iJF 
au (t, u ,  w) = -f(u , t) , iJF -a (t , u ,  w) =f(w, t) . w [9 .7] 

Se ora a(t) e t3(t) sono funzioni di classe C1 (A ), a valori in [a , b) ,  si può porre 

G(t) =  f(x , t) dx =F(t ,  a( t), t3(t)). 

Dalla fonnula di derivazione delle funzioni composte e dalla [9 .7) segue allora 

iJ G iJt3 aa  P"> at 
iJ t · (t) =/(t3(t) ,  t) iJ t · (t)-f(a(t} , t) iJ t · (t} + f iJ t · (x, t) dx.  [9 .8) 1 l l a (t)  l 

In particolare , se A C R la funzione G (t) dipende da una sola variabile reale , e 
risulta 

Jt ) iJf 
G '(t) =f(t3(t), t) t3 '(t) -f(a(t), t) a' (t) + at(x, t) dx .  t ) 

Esempio 9. 1 

Si calcoli l'integrale 

-
F(t) =  J exp(-x2 - t 2/x2 ) dx .  o 

[9 .9) 

Si ha F(- t )=F(t )  e F(O) = v'i/2 (vedi esercizio 8 .6). Sarà dunque sufficiente 
considerare il caso t > O. 

Si fissi r > O e sia A = (r, + oo), E = (O, + oo) . l..a funzione 

f(x , t) = exp(-x2 - t 2/x2 ) 

è continua in E X  A e inoltre, ricordando che per y > O  risulta ye-y �;;;).: e 

( t) _ 2e- t _ 1 21x2 2e-l iJf l x2 2 x2 

- x - -- - e -- . iJ t ' t x2 re 

Si può dunque applicare il teorema di derivazione sotto il segno di integrale . Risulta 
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per ogni t >r; per l'arbitrarietà di r questa formula vale per ogni t >  O. Eseguendo il 

cambiamento di variabile y = t  /x , si trova 

F '(t) = - 2  J exp (- r 2/y2 -y 2 ) dy = - 2 F (t) , o 
e quindi ,  per t > O, 

F (t) = F (O) e - u = e -:2 1 

In definitiva , tenendo conto del fatto che F (t ) = F (- t ) , si trova 

- ..;; I exp(-xl - t l/xl ) dx = -f e -l l t l .  • o 
Esercizi 

9. 1 Trovare F '( t )  se 

1 

F (t) =J ln (x2 + t 2 ) dx ,  o 11 • etx dx .  o 
9.2 Sia 1 

F (t) =  J ln ( 2-x2 t 2 ) dx o 
Si dimostri che F '(O) = O e che F (t ) è concava nell'intervallo ( - l ,  l ). 

9.3  Sia -
g(x) =  l e - ' 2 

cos tx d t . o 
Dimostrare che g'(x ) = - x g(x)/ 2 e quindi trovare g(x) .  

9.4 Sia 

- 2 
F(t) = J ( e - tx dx.  o 

Si calcolino F'(t) e F"(t), e a partire da quest 'ultima si ricavi una formula espli­
cita per F(t) ( si tenga conto del fatto che lim F(t) = lim F' (t) = 0). Si dimostri che 

t -t- +ao t-+ +ao 
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Notizie storiche 

(A) La teoria dell 'integrazione da Riemann a Lebesgue4 

Abbiamo visto come la prima definizione moderna di integrale sia stata data espli­
citamente da Cauchy, nel suo Résumé des leçons données à l 'École Polytechnique. 
Cauchy si limita al caso di funzioni continue , o con un numero fmito di punti di 
discontinuità . Quando una funzione f ha un punto di discontinuità c ,  nelle vicinanze 
del quale può o meno essere limitata, egli introduce la nozione di integrale improprio 
o generalizzato (vedi vol. l ,  cap . 6 ,  § 8), nozione che si estende al caso di un numero 
finito di punti di discontinuità .  

Sempre nel Résumé, Cauchy prova l'integrabilità delle funzioni continue, un risul­
tato che Dirichlet, nella sua celebre memoria del 1 829 sulle serie di Fourier, dice 
facile da dimostrare . Non è chiaro qui se Dirichlet alluda alla dimostrazione di Cauchy, 
oppure se ha già in mente la dimostrazione che poi esporrà nelle sue lezioni del 1 854 
all'Università di Berlino (pubblicate però solo nel 1 904) . A noi comunque interessa 
più l'ultima parte del lavoro , in cui Dirichlet si pone il problema dell' integrabilità 
delle funzioni con infiniti punti di discontinuità :  

Quando le soluzioni d i  continuità sono in numero infinito - egli dice - è nec.essario 
che la funzione cp(x)  sia tale che, se si indicano con a e b due quantità comprese tra 
[gli estremi di integr�fone] - 1T e 1T, sia sempre possibile inserire tra a e b due altre 
quantità r e  s in modo che la funzione sia continua nell'intervallo da r a s .  

In altre parole, Dirichlet sembra affermare che condizione necessaria per l'integra­
bilità di una funzione cp sia che l'insieme dei suoi punti di discontinuità sia "rado" 
(nowhere dense) cioè che la sua chiusura non abbia punti interni. Per corroborare la 
sua affermazione egli introduce la celebre funzione di Dirichlet : 

cp(x) = {� se x è razionale 
se x è irrazionale , 

dicendo che una tale funzione non può essere integrabile . 
La condizione sopra descritta non è né necessaria né sufficiente ; comunque l'inte­

resse della memoria di Dirichlet sta nell'aver legato esplicitamente l'integrabilità di 
una funzione all'insieme dei punti di discontinuità, dando così inizio a uno studio 
che si protrarrà fmo all'apparire della teoria di Lebesgue . 

Nello stesso lavoro Dirichlet promette di tornare sulla questione dell'integrazione 
delle funzioni discontinue , senza peraltro dare seguito al proposito. 

Possiamo però farci un'idea delle sue ricerche da quanto pubblicato da Rudolph 
Lipschitz ( 1 832-1 903) nel 1 864. Questi considera il caso in cui il derivato ç} D dell'in­
sieme D dei punti di discontinuità è fmito, ad esempio è costituito dal solo primo 
estremo a . In (a + e, b) cade allora un numero fmito di punti di discontinuità, e si 
può usare la defmizione di Cauchy. L'integrale tra a e b sarà così il limite per e -+ 0  
dell'integrale tra a + e e b . 4 Gran parte del materiale per questo paragrafo mi è stato fornito da G. Letta. 
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Siamo dunque davanti a una sorta di integrale improprio ripetuto ; è evidente come si possa generalizzare questo risultato al caso in cui il derivato n-esimo di D sia fmito (e dunque l'(n + I )-esimo sia vuoto). Nel seguito chiameremo insieme di prima specie un insieme con derivato n-esimo vuoto , per qualche intero n . E' chiaro che un insieme di prima specie è rado ; in realtà Lipschitz pensa che sia vero il viceversa, e addirittura afferma che un insieme rado ha derivato fmito , credendo così di aver dimostrato la sufficienza della condizione di Dirichlet . Questo errore non deve stupire poiché i concetti topologici erano all 'epoca in una fase estremamente primitiva. Possiamo anzi dire che la storia dell'integrazione , tra la memoria di Riemann e quella di Lebesgue , è in gran parte la storia della preci­sazione graduale , non priva di errori e circoli viziosi, dei concetti topo logici di insieme 

rado e insieme di prima specie e delle loro relazioni con gli insiemi di misura nulla. 
La memoria di Riemann, presentata come tesi di abilitazione alla libera docenza 

all'Università di Gottinga nel 1 854, resta praticamente sconosCiuta fino al 1 867 ,  quando viene pubblicata a cura di Dedekind. In essa, dopo aver introdotto l'integrale che porta il suo nome, Riemann si pone il problema di caratterizzare la classe delle funzioni integrabili. Il risultato fmale è il seguente : 
Condizione necessaria e sufficiente affinché una funzione limitata f(x) sia integra­
bile è che per ogni a, 5 > O esista una suddivisione dell 'intervallo (a , b) in un numero 
finito di intervalli tale che la somma delle lunghezze di quelli nei quali l 'oscillazione 
della funzione supera a risulti minore di 5 . 5  5 Per comodità del lettore riportiamo l a  dimostrazione della sufficienza della condizione. Dati 
a e lì ,  sia D la suddivisione in questione, e indichiamo con Jh (h = l , 2, . . . , n)  quegli intervalli in 
cui l'oscillazione della funzione supera a (che hanno misura totale minore di lì ) e con lk (k = l ,  
2,  . . .  , N )  gli altri. 

Sia al solito 

e sia 

L = sup f, 
(a , b) 

l = inf f. 
(a , b)  

Le funzioni N n .p (x) = � Mk.Plk + L � .Pjh ' 
k = l  h = l  N n 1/1 (x) = � mk.P/k + l � .Pjh 
k = l  h = l  

sono rispettivamente una maggiorante e una minorante di f, e si ha 

b N n f [.p (x) - 1/i(.�) ] dx = � (Mk - mk) m (lk) + (L - 1 ) � m (Jh) .;;; 

a k = l  h = l N 
<; a � m (lk) + (L - l) lì  <; a (b - a) + (L - l) lì . 

k = l  

Per l'arbitrarietà di a e lì la funzione f sarà dunque integrabile (vol. l ,  cap. 4 ,  teorema 4.2) .  
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Riemann mostra la generalità di tale condizione costruendo una funzione che la 
soddisfa, e per la quale i punti di discontinuità formano un insieme denso (non verifi­
cante dunque la condizione ritenuta necessaria da Dirichlet). 

Non riporteremo qui l'esempio di Riemann, limitandoci a osservare come lo stesso 
comportamento sia esibito dalla funzione 

x irrazionale 

��) = G m . . l x =- , m e n pruru tra oro , n 
che è integrabile in [0, l ] e discontinua in ogni punto razionale (vedi vol. l ,  cap . 4, 
esercizio 5 .2). 

La pubblicazione della memoria di Riemann diede origine a una notevole serie di 
ricerche , soprattutto in Germania e in Italia, volte a estendere e chiarificare le idee 
contenute in essa, e in principal modo a legare l'integrabilità delle funzioni all'insieme 
dei loro punti di discontinuità. 

Tali ricerche, oltre a consentire la chiarificazione delle proprietà topologiche degli 
insiemi della retta e delle loro mutue relazioni, condurranno Cantor a fondare la teoria 
degli insiemi, e sfoceranno nella costruzione di una teoria della misura e inime nell'in­
tegrale di Lebesgue . Gli anni 1 870-90 vedono la pubblicazione di un considerevole 
numero di lavori, la maggior parte nella direzione indicata. Il primo di questi è dovuto 
ad Hermann Hankel ( 1 839- 1 873) ,  che in un lavoro del 1 870, introdotto il salto della 
funzione f nel punto x , 6 

s1 (x) =max lim lf(y)-[(x) l , 
y -+x 

dimostra, o meglio crede di dimostrare, che "condizione necessaria e sufficiente affm­
ché una funzione limitata f (x) sia integrabile secondo Riemann è che per ogni a> O 
l'insieme degli x in cui s 1(x) > a sia rado" .  

Il risultato non è esatto, e la condizione d i  Hankel è necessaria ma non sufficiente ; 
d'altra parte, il lavoro ha il merito di avere svincolato la condizione d'integrabilità 
dalla considerazione dell'oscillazione su intervalli, e aver introdotto , anche se non 
esplicitamente ,  il salto s1 . 

L'errore della dimostrazione di sufficienza di Hankel consiste essenzialmente nel 
ritenere che un insieme rado sia trascurabile , cioè racchiudibile in un numero fmito 
di intervalli di lunghezza totale arbitrariamente piccola . Quest'ultima nozione era già 
suggerita dalla condizione di Riemann, nella quale però , per così dire , mancava il sog­
getto (cioè l'insieme che doveva essere trascurabile) in quanto essa era espressa in ter­
mini dell'oscillazione di f su intervalli . 

Un passo decisivo in questa direzione è compiuto da Ascoli, che nel 1 87 5 introduce 
l'oscillazione della / in un punto (vedi esempio 4.2) 

w1(x) =f* (x)-f . (x) 
e dimostra il seguente teorema: 

Condizione necessaria e sufficiente affinché una funzione limitata f sia integrabile è 
che per ogni a> O l 'insieme degli x in cui w1(x)> a  sia trascurabile , 
facendo vedere l'equivalenza di questa condizione a quella di Riemann. 6 Più che introdune esplicitamente il salto, Hankel si limita a defmire la nozione di salto mag· 
giore di a. 
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La questione della relazione tra insiemi radi e trascurabili è risolta nello stesso anno 

da Henry J .  S. Smith ( 1 826- 1 883), che costruisce un esempio di insieme rado non tra­
scurabile . 

Né la memoria di Ascoli né quella di Smith ebbero la diffusione che avrebbero 
meritato .  La prima rimase praticamente sconosciuta, e tale resta anche oggi ad alcuni 
storici della teoria dell'integrazione , i quali, forse appoggiandosi su un'analoga affer­
mazione di Lebesgue , attribuiscono il risultato di Ascoli a Du Bois-Raymond, che lo 
ritrova nel 1 882. La seconda venne anch'essa ignorata per lungo tempo, e non contri­
buì, come avrebbe potuto, a far chiarezza sulle relazioni tra insiemi di prima specie , 
radi e trascurabili. 

In questo campo continua a dominare una certa confusione : Ascoli, come abbiamo 
visto , sostituisce un suo criterio a quello di Hankel (data la sostanziale equivalenza tra 
il salto s1 e l'oscillazione w1 , la condizione di Ascoli si può ottenere da quella di Han­
kel semplicemente sostituendo "rado" con "trascurabile") senza pronunciarsi sulla 
validità di questo , cioè in ultima analisi sull'equivalenza tra i due concetti. 

Du Bois-Raymond nel 1 875 e poi più esplicitamente A. Harnack ( 1 85 1 - 1 888) nel 
1 880 sembrano confondere addirittura i tre concetti ;  se il primo nel 1 882 si corregge 
e dà addirittura un esempio di insieme rado non trascurabile (nello stesso libro compare 
la definizione esplicita di insieme trascurabile , o integrirbare Punktmenge), Harnack 
nel 1 88 1 riconosce la differenza tra insiemi di prima specie e insiemi trascurabili (di­
skrete Menge) e cita l' insieme di Cantar (vedi cap . 5 ,  esempio 3 .3) come esempio di 
un insieme non di prima specie e trascurabile ,  ma persiste nel confondere questi ultimi 
con gli insiemi radi, errore che correggerà l'anno successivo fornendo anch'egli un 
esempio . 

Un esempio di insieme rado non trascurabile era peraltro apparso nel 1 88 1 ,  ad 
opera di Volterra, che ovviamente come gli altri ignorava l'articolo di Smith. 

Esente da queste confusioni è invece l'opera di Ulisse Dini ( 1 845-1 91 8) del 1 878,  
Fondamenti per la teorica delle funzioni di variabili reali, la prima esposizione siste­
matica delle ricerche originate dal lavoro di Riemann. lnnanzitutto Dini ha ben pre­
sente la dist inzione tra insiemi di prima specie e insiemi trascurabili ;  egli prova che 
ogni insieme di prima specie è rado e trascurabile , e anche se non arriva a dimostrare 
la non coincidenza di queste due nozioni si premura di tenerle sempre distinte . In 
particolare fa rilevare l'inconsistenza della dimostrazione di Hankel. 

D'altra parte , egli non riconosce probabilmente l'importanza del concetto di in­
sieme trascurabile ; tali insiemi non hanno una definizione esplicita (né l'hanno in 
Volterra, che del Dini era allievo alla Scuola Normale di Pisa) e dunque necessaria­
mente non occupano il posto che ci si aspetterebbe di trovare . 

E' probabilmente proprio a causa di questa mancata intuizione che Dini enuncia la 
maggior parte dei suoi risultati per insiemi di prima specie , salvo poi usare questa 
ipotesi unicamente per dedurre che l'insieme in questione è trascurabile . 

Gli anni intorno al 1 885 segnano comunque l 'abbandono defmitivo delle nozioni 
topologiche (insiemi di prima specie , insiemi radi) ; d 'altra parte la condizione di Vitali, 
che si afferma però solo in seguito alla riscoperta da parte di Du Bois-Raymond, sug­
gerisce quasi naturalmente l'idea di una "misura" ,  rispetto alla quale gli insiemi tra­
scurabili appaiano come insiemi di misura nulla. 

Nel 1 884 Otto Stolz ( 1 842- 1 905) e l'anno dopo Harnack definiscono il contenuto 
(Inhalt) di un insieme A nel modo seguente : incluso A nell'unione di un numero fmito 
di intervalli si prende la somma delle lunghezze di questi ; l'estremo inferiore di tali 
numeri è appunto il contenuto dell 'insieme. 
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Più o meno nello stesso periodo ,  Cantar considera per un insieme E di Rn l'invo­
lucro esterno di E, di raggio p :  

E p =  {xE Rn : dist (x , E)< p}, 

e defmisce il contenuto di E come l'estremo inferiore del volume di E p .  Che cosa sia 
poi questo volume Cantor non lo dice, limitandosi ad affermare che può essere calco­
lato con un integrale multiplo. 

Ambedue queste definizioni hanno l'importante difetto di non essere additive : il 
contenuto dell'unione di due insiemi disgiunti può essere strettamente minore della 
somma dei contenuti. Ad esempio l'insieme dei punti razionali e quello degli irrazio­nali dell'intervallo [0, l ]  hanno ambedue contenuto l .  

Per ovviare a questo inconveniente Giuseppe Peano ( 1 858-1 932) defmisce nel l 887 
una "lunghezza" per gli insiemi della retta, poi generalizzata da Camille Jordan ( 1 838-
1 922) nel l 893 a insiemi di Rn .  Questa misura, nota sotto il nome di misura di Peano­
Jordan , è defmita tramite i plurintervalli: si defmisce misura interna di un insieme E 
l'estremo superiore delle misure dei plurintervalli contenuti in E, e misura esterna 
l'estremo inferiore delle misure di quelli che contengono E. Un insieme si dirà poi mi· 
surabile (secondo Peano-Jordan) se coincidono le misure interna ed esterna : come si 
vede, una misura più rozza di quella di Lebesgue (vedi cap . 5 ,  osservazione 2 .3) ma 
un notevole miglioramento rispetto alle concezioni primitive di Stolz , Harnack e 
Cantor. In particolare la misura di Peano-Jordan è additiva (gli insiemi "patologici" 
non risultano misurabili) , ma non numerabilmente additiva . 

La questione dell'additività numerabile era già apparsa in precedenza : nel suo la­
voro del 1 885 Harnack si era chiesto se la somma delle misure di un'infmità numera­
bile di intervalli a due a due disgiunti, la cui unione è l'intervallo (a, b) , fosse uguale 
a b -a .  La risposta , come si deduce dal teorema 3 . l , è affermativa , ma Harnack aveva 
creduto di potere rispondere negativamente, e probabilmente per questo aveva definito 
il contenuto di un insieme tramite sistemi fmiti di intervalli. 

Il problema viene ripreso da un punto di vista nettamente differente da Emile 
Borel ( 1 87 1 -1 956) nel 1 898.  Egli dimostra il risultato che Harnack aveva ritenuto 
falso , e se ne serve come punto di partenza per una definizione "assiomatica" della 
misura, enucleando alcune proprietà che gli sembrano essenziali. Queste sono : 
(a) la misura di un intervallo (aperto o chiuso) è la differenza degli estremi; 
(b) la misura della differenza di due insiemi misurabili A e B, A -::JB, è la differenza 
delle misure ; 
(c) la misura dell'unione di un'infmità numerabile di insiemi misurabili e disgiunti è 
la somma delle misure .  

Nella sua memoria, Borel indica molto brevemente come costruire una classe di 
insiemi misurabili, chiamati poi insiemi boreliani ;  questi sono la minima classe che 
contenga gli intervalli e che sia stabile per differenza e unione misurabile (tale cioè 
che la differenza di due insiemi della classe , e l 'unione di un'infmità numerabile di 
insiemi di essa sia ancora un insieme della classe) .  

La teoria di Bore) rappresenta un enorme passo avanti rispetto alle idee di Peano e 
Jordan, soprattutto a causa dell'additività numera bile che si rivelerà una delle proprietà 
più feconde. D'altra parte, essa appariva nel lavoro di Borel soprattutto come un 
mezzo tecnico in vista dello studio di altre questioni , ed era dunque trattata in modo 
incompleto e quasi marginale . Spetterà a Henri Lebesgue ( 1 875- 1 94 1 )  il merito di 
aver compreso l'importanza delle nuove idee e di averle rielaborate ponendole alla 
base della sua trattazione dell'integrale . 
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(B) L 'integrale di Lebesgue 

Le idee di Lebesgue sono già elaborate nella sua tesi: Intégrale, longueur, aire del 1 902 e poi in forma definitiva nelle Leçons sur l Yntegra tion et la recherche d es func­
tions primitives del 1 904 . Per quello che riguarda la misura , egli mette insieme le 
nuove idee di Borel con quelle di Peano , definendo dapprima la misura esterna di un 
insieme E come l'estremo inferiore delle misure degli aperti che contengono E (vedi 
cap . 5 ,  definizione 2.3) ; quindi, nel caso in cui E sia limitato , e dunque contenuto in 
un intervallo Q, la sua misura interna come la differenza tra la misura di Q e quella 
esterna di Q -E, definizione equivalente a quella da noi introdotta per mezzo dei 
compatti (vedi cap . 5 ,  osservazione 2.2) . 

Chiamato misurabile un insieme la cui misura interna coincide con l'esterna, Le­
besgue dimostra che la differenza di due insiemi misurabili è misurabile , e che tale è 
anche l 'unione di un'infmità numerabile di insiemi rnisurabili, ritrovando così le con­
dizioni (b) e (c) di Bore l. Il contributo più importante di Lebesgue è tuttavia l'applicazione di queste idee 
alla teoria dell 'integrazione . Egli non si pone più il problema di caratterizzare le di­
scontinùità delle funzioni integrabili secondo Riemann, ma estende decisamente la 
classe delle funzioni integrabili dando dell 'integrale una nuova e più efficiente defini­
zione . 

La differenza tra i due modi (di Riemann e di Lebesgue) di vedere l'integrazione è 
descritta dallo stesso Lebesgue nel suo articolo divùlgativo Sur le development de la 
notion d 'intégrale del 1 926. 

Seguendo Riemann, per definire l'integrale di una funzione f in un intervallo [a , b] 
si divide [a , b] in un numero fmito di intervalli I k (k = l ,  . . .  , N) e si costruiscono le 
somme N 

� =  1; mk m(Ik), k = l  
dove Mk e mk denotano rispettivamente l'estremo superiore e inferiore della[ in Ik . Una funzione sarà integrabile secondo Riemann se si può rendere arbitrariamente 
piccola la differenza s-� raffmando opportunamente la suddivisione, cioè prendendo 
un numero sempre più elevato di intervalli sempre più piccoli. 

Poiché si ha 

è chiaro che il prendere intervalli di misura sempre più piccola renderà sempre più piccole le differenze Mk - mk (e dunque S-�)  se la funzione f è continua, o anche se 
ha poche discontinuità. Quando però la funzione in esame è discontinua dappertutto , 
non c 'è nessuna ragione perché il divenire gli intervalli h sempre più piccoli debba 
rendere sempre più piccole le differenze Mk - mk (cioè l 'oscillazione della funzione nell'intervallo Ik ) . 

Per queste funzioni discontinue , conclude Lebesgue , il metodo di Riemann non 
funziona quasi mai, e quando funziona è, per così dire , un caso . Di fronte a tale dif­ficoltà , Lebesgue ricorda che lo scopo era di ottenere degli intervalli in cui l'oscilla­
zione della f fosse piccola , e per questo si divideva l'intervallo (a , b ]  in intervalli sem­
pre più piccoli, sperando che tale piccolezza si ripercuotesse sull'oscillazione della [. 
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Ora è chiaro che se si vogliono ottenere insiemi in cui f varia poco, non si deve divi­
dere l 'in tervallo [a ,  b] dove la f è definita, ma l 'intervallo [c ,  d ) = [inf [, sup f ), imma­
gine di [a , b ]  tramite f. 

Dividiamo dunque [c ,  d ]  in N part i mediante i punti c =y0 <y 1 < ,  . . .  , <yN =d,  e 
definiamo 

Gk = {x E (a ,  b ) : yk - t  E:;;f(x) <yk } , k = l ,  . . .  , N. 

Se si pone 
N N 

;p(x) =  � Yk iPEk (x) ,  1/l (x) = :E Yk- t <Pck(x) 
k = l k = l 

le due funzioni .,o e 1/1 sono una maggiorante e una minorante di [, e risulta N l (.,o) - 1 (1/1) = � (Yk -yk _ t ) m (Gk ) 
k = l 

quantità che può esser resa piccola a piacere raffinando la suddivisione di [c, d) (teo­
rema 2 .3) . 

Naturalmente ,  agendo in questo modo si sono sostituiti agli intervalli Jk , la cui 
misura è nota elementarmente ,  degli insiemi Gk che possono essere anche molto com­
plicat i ;  di qui la necessità di avere una misura abbastanza generale da applicarsi al 
maggior numero possibile di insiemi.  

La differenza tra l'integrale di Riemann e di Lebesgue è illustrata chiaramente da 
Lebesgue , nell'articolo summenzionato , per mezzo di un'analogia . Vediamola nelle 
sue stesse parole : 

I geometri del diciaSsettesimo secolo consideravano l 'integrale di f(x) - la parola 
"integrale" non era aqcotll, stata inventata, m a  non importa - come la somma di 
un 'infmità di in divisibili, ognuno dei quali era l'ordinata, positiva o negativa, di 
f(x) .  Benissimo !  Noi abbiamo semplicemente raggruppato insieme gli indivisibili 
di grandezza vicina. Abbiamo, come si dice in algebra, riunito termini simili. Si po­
trebbe dire che , secondo il procedimento di Riemann, si cerca di sommare gli indi­
visibili prendendoli nell'ordine nel quale ci sono fomiti dalla variazione di x ,  come 
un commerciante confusionario che conta m onete e biglietti a caso, nell'ordine in 
cui gli vengono dati, men tre noi operiamo come un commerciante metodico, che dice : 

ho m (G t )  monete da 

ho m (G2 )  monete da 

ho m (G3 ) biglietti da 

Tutto insieme, ho 

1 00 , che valgono 

500,  che valgono 

1 000 , che valgono 

1 00 m (G 1 ) 

5 00 m (G2 ) 

1 000 m (G3 ) . 

S = l 00 m (G 1 ) + 500 m (G2 ) + 1 000 m (G3 ) + · · ·  
due procedimenti porteranno d i  certo il commerciante allo stesso risultato poiché 

per quanti soldi abbia c 'è solo un numero finito di m onete e di biglietti da contare . 
Ma per noi che dobbiamo sommare un numero infinito di indivisibili la differenza dei 
due metodi è di capitale importanza. 

Con la nuova definizione di integrale si veniva così ad ampliare notevolmente il 
campo delle funzioni suscettibili di integrazione. Ma non è questo il solo né forse il 
più importante dei risultati che derivano da essa . 
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Di molto maggiore momento è infatti l 'introduzione di una misura numerabilmente 

additiva che è determinata dalla necessità di misurare il più gran numero possibile di 
insiemi, ma che porta con sé analoghe proprietà per l'integrale , in primo luogo il 
teorema di passaggio al limite sotto il segno di integrale (teorema 4 .3 )  che è una delle 
pietre angolari della teoria . 

Non è possibile descrivere qui neanche sommariamente tutti i progressi che l 'intro­
duzione dell 'integrale di Lebesgue ha fatto compiere all'analisi infmitesimale , anche 
perché sarebbe indispensabile nella maggior parte dei casi un linguaggio notevolmente 
tecnico. 7 Ci limiteremo invece alla discussione di alcuni punti .  

Integrazione e primitive x 
Sia f(x) una funzione sommabile , e sia F (x) = J f(t ) d t la sua funzione int egrale . a 

E' vero che F ' (x) =f(x) ,  cioè che F è una primitiva di f? E viceversa , se G è una 
b 

primitiva di f :  G '  = f, si può affermare che J f(x) dx = G(b) - G(a)? a 
Il teorema fondamentale del calcolo integrale dà una risposta affermativa nel caso 

in cui f(x) sia continua ; quando però cade questa ipotesi i risultati sono tutt 'altro che 
evidenti, e anzi la risposta può essere negativa. 

Nel suo libro Leçons sur l 'in tégration et la recherche des functions primitives con 
un'analisi molto sottile che combina i risultati più riposti della teoria dell 'integra­
zione con la teoria dei numeri derivati introdotti da Dini ,  Lebesgue dimostra i seguenti 
teoremi : 

(a) Se f è integrabile, F è continua, e risulta F ' (x) = f(x) per quasi ogni x .  

(b) Viceversa, se G è derivabile, e la sua derivata è limitata, allora G '  è integrabile e 
vale la formula x G(x) -G (a ) = J G '(t) d t .  a [ l ]  

Se G '  non è limitata può non essere integrabile (come ad esempio la funzione 
x sin 1 /x) . In questo caso Lebesgue dimostra che G ' è integrabile se e solo se G è a 
variazione limitata. 

Infine, questa ipotesi non è ancora sufficiente per la validità della relazione [ l ]  
(vedi esempio 3 .4) ; per questa è necessario e sufficiente che la G sia "assolutamente 
continua" , nozione introdotta e studiata da Giuseppe Vitali ( 1 87 5 - 1 932) .  

Spazi funzionali 

Cauchy aveva limitato la definizione dell'integrale alle funzioni continue , o al mas­
simo a quelle con un numero fmito di punti di discontinuità. Successivamente ,  so-7 Maggiori dettagli si potranno trovare nel capitolo " Integrazione" degli Elementi di storia 
della Materruztica di N. Bourbaki ( F eltrinelli, Milano 1 96 3) ,  come pure nella voce "Misura" del­
l'Enciclopedia Europea , 1 2  voli. (Garzanti, Milano 1 976) .  
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prattutto ad opera di Riemann, la teoria dell'integrazione viene estesa a funzioni più 
generali, anche con infmiti punti di discontinuità.  Tuttavia, a causa del meccanismo 
messo così bene in luce dal passo di Lebesgue riportato più sopra, l'integrale di Cauchy­
Riemann si muove completamente sotto il segno della continuità, sia in positivo, 
come nel teorema dell'integrabilità delle funzioni continue , sia in negativo , l'integrabi­
lità di una funzione essendo determinata dalla struttura dei suoi punti di discontinuità. 

Il quadro cambia radicalmente con la teoria di Lebesgue , nella quale le funzioni 
continue svolgono un ruolo marginale, e anche le funzioni più bizzarre vengono assog­
gettate alle regole del calcolo.8 Corrispondentemente , vengono introdotti e studiati 
spazi funzionali nei quali la continuità gioca un ruolo minore se non nullo : le funzioni 
a variazione limitata, le funzioni assolutamente continue . In questo panorama occupano un posto di rilievo i cosiddetti spazi LP (n), i cui 
elementi sono funzioni f(x) tali che l f(x) I P  è sommabile nell'aperto n di R" . 

Se si introduce in LP (n) (1 <.p<oo) la norma 

1 1 / llp ={ J lf iP dx)1 'P , n 
gli spazi LP (n) sono completi, e dunque spazi di Banach. 

L'importanza degli spazi LP è andata sempre crescendo via via che se ne scopriva 
l'estrema versatilità nelle applicazioni, al punto che si può dire che essi in molti casi 
hanno preso il posto tradizionalmente occupato dalle funzioni continue . Una trasfor­
mazione analoga hanno subìto gli spazi C1 (e più in generale ck), che sono stati sosti­
tuiti in molte applicazioni dagli spazi H1· P (e H" ·P ), delle funzioni con derivate in LP ,  una generalizzazione al caso di più variabili della nozione di funzione assoluta­
mente continua. 

Già considerati nei loro lavori da Beppo Levi ( 1 875 - 1 96 1 )  e Leonida Tonelli, 
questi  spazi sono stati poi studiati a fondo da C. B. Morrey e da S. L. Sobolev (sono 
noti appunto come spazi di Sobo/ev ) ; essi sono alla base delle teorie moderne del cal­
colo delle variazioni e delle equazioni alle derivate parziali . 

8 Esempi di funzioni non integra bili (o, il che è equivalente, di insiemi non misura bili) secondo 
Lebesgue vengono trovati più tardi (in particolare nel 1 905 da Vitali, vedi anche esempio 3 .4) :  
tutti fanno uso dell'assioma della scelta nella sua forma più generale; un assioma che solo di  re­
cente, dopo aver provocato non poche controversie, è diventato di uso comune (vedi il capitolo 
"Fondamenti della matematica" del già citato Elementi di storia della matematica di Bourbaki). 


