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ESERCIZIO 1. Identificare e classificare i punti critici delle seguenti funzioni definite in tutto �
2

f(x1, x2) = x1x2(x1− 1) g(x1, x2) = x2
1 − x4

2 h(x1, x2) = (1− x2
1 )x2

2e−x2
2

ESERCIZIO 2. Date le seguenti funzioni

g(x1, x2, x3) = x2
1 − 2x1 + x2

2 + ln(1 + x2
3) h(x1, x2, x3) = (x2

1 + x2
2)2− x1x2 + x2

3

f(x1, x2, x3) = 1
x1

+ 1
x2

+ 1
x3

+ x1x2x3

calcolarne il gradiente e la matrice hessiana. Usare le informazioni trovate per identificare e classificare i punti critici.

ESERCIZIO 3. Trovare e classificare i punti critici di

f(x1, x2) = x3
1 x2− 2x2

2 + 3x2
1 x2

Successivamente calcolare massimo e minimo assoluto di f(x) in Q = {x : |x1| ≤ 1, |x2| ≤ 1}.

ESERCIZIO 4. Si trovino estremi relativi e assoluti della funzione
f(x1, x2) = ex2

1−x2
2 (x4

1 − x4
2)

nel cerchio di centro l’origine e raggio 2.

ESERCIZIO 5. Scrivere il polinomio di Taylor di grado 2 e punto iniziale (0,0) delle funzioni
f(x1, x2) = ex1 cos(x2) g(x1, x2) = cos(x1 + x2)

h(x1, x2) = sin(x2
1 + x2

2) k(x1, x2) = sin(2x1 + x2 + 5x2
1 + 4x1x2 + 3x2

2)

ESERCIZIO 6. Determinare gli eventuali punti di massimo e minimo relativo delle seguenti funzioni

f(x1, x2) = x1|x1|x2 g(x1, x2) = x4
1 −4x2

1 x2 + x2
2 h(x1, x2) = x2

1 ln(1 + x2) + x2
1 x2

2

ESERCIZIO 7. Determinare, se esistono, massimo e minimo in D =
{
(x1, x2) ∈�

2 : x2
1 + x2

2 ≤ x1
}

della funzione

f(x1, x2) = x1x2
2 + x2

1 x2− x1x2− x2
1 x2

2
Determinare l’estremo superiore e inferiore di f.

ESERCIZIO 8. Determinare e classificare i punti critici della funzione

f(x1, x2, x3) = (x2
1 + x2

2)(1− x2
3) + x2

3
1
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ESERCIZIO 9. Determinare e classificare i punti critici della funzione

f(x1, x2, x3) = 1
x1

+ x2
2 + 1

x3
+ x1x3

nell’aperto A = {x1, x3 > 0} ⊆�
3.

ESERCIZIO 10. Determinare massimo e minimo assoluti (se esistono) della funzione
f(x1, x2) = (x1− x2)2− x2

1 x2
2

nel dominio D = {x2
1 + x2

2 ≤ 1} ⊆�
2.

ESERCIZIO 11. Determinare massimo e minimo assoluti (spiegando perché esistono) della funzione

f(x1, x2, x3) = x2
1 + x2

2 + x2
3

nell’insieme E =

g(x1, x2, x3) =
x2

1
2 +

x2
2

3 +
x2

3
4 ≤ 1

⊆�
3.

ESERCIZIO 12. Determinare gli eventuali punti di estremo locale di
f(x1, x2) = (|x1| + x2)e−x1x2

ESERCIZIO 13. Determinare gli eventuali punti di estremo locale e globale della funzione

f(x1, x2) = 4x2
2−4x2

1 x2
2− x4

2

ESERCIZIO 14. Determinare inf e sup della funzione

f(x1, x2) =
[
x2

1 − (x2 + 1)2]x2e−x2

nell’insieme D = {(x1, x2) ∈�
2 : x2 ≥ 0, |x1| ≤ x2 + 1} e specificare se sono minimo e massimo di f in D.

SVOLGIMENTI

ESERCIZIO 1. Identificare e classificare i punti critici delle seguenti funzioni definite in tutto �
2

f(x1, x2) = x1x2(x1− 1) g(x1, x2) = x2
1 − x4

2 h(x1, x2) = (1− x2
1 )x2

2e−x2
2

DISCUSSIONE. Procediamo con ordine iniziando dallo studio della funzone f, per la quale abbiamo che

∇f(x1, x2) =
(
2x1x2− x2, x2

1 − x1
)

x = (x1, x2) è critico se e solo se
{

(2x1− 1)x2 = 0
x2

1 − x1 = x1(x1− 1) = 0
per cui troviamo due soli punti critici A = (1,0) e O = (0,0). La matrice hessiana nei punti critici vale

Hf(x1, x2) =
(

2x2 (2x1− 1)
(2x1− 1) 0

)
da cui Hf(O) =

(
0 −1
−1 0

)
e Hf(A) =

(
0 1
1 0

)
Poiché det[Hf(O)] = det[Hf(A)] = −1 < 0 possiamo dire che i due autovalori delle matrici sono discordi e non
nulli, quindi i due punti critici sono dei punti di sella.
Consideriamo ora g per cui vale

∇g(x1, x2) =
(
2x1,−4x3

2
)

e Hg(x) =
(

2 0
0 −12x2

)
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È facile verificare che l’unico punto critico è O, per tale punto la matrice hessiana risulta diagonale con un
autovalore positivo ed uno nullo, quindi non possiamo concludere nulla sulla natura del punto stazionario.
Però possiamo osservare che

φ(t) = g(O + te1) = t2 e ψ(t) = g(O + te2) =−t4

questo significa che esistono punti arbitrariamente vicino ad O, del tipo pk = (1/k,0), tali che g(pk) > 0 e punti
del tipo qk = (0, 1/k) dove g(qk) < 0, questo implica che l’origine non può essere né un massimo locale né un
minimo locale, quindi O è un punto di sella.
Infine interessiamoci di h, infatti abbiamo

∇h(x1, x2) =
(
−2x1x2

2e−x2
2 ,2(1− x2

1 )x2(1− x2
2)e−x2

2

)
da cui

{
x1x2

2 = 0
(1− x2

1 )x2(1− x2
2) = 0

si noti che nelle equazioni del sistema che identifica i punti critici sono stati rimossi i fattori che non possono
essere nulli. Dunque i punti critici della funzione h sono

A = (0, 1) B(0,−1) e Ps = (s,0) per ogni s ∈�

La matrice hessiana della funzione vale

Hh(x1, x2) =
 −2x2

2e−x2
2 −4x1x2(1− x2

2)e−x2
2

−4x1x2(1− x2
2)e−x2

2 2(1− x2
1 )[1− 5x2

2 + 2x2
2]e−x2

2


e ne ricaviamo

Hh(A) = Hh(B) =
(
−2/e 0

0 −4/e

)
e Hh(Ps) =

(
0 0
0 2(1− s2)

)
notiamo che i punti A e B sono dei massimi, visto che la matrice hessiana ha autovalori negativi, mentre non
possiamo dedurre nulla sulla natura dei punti Ps da Hh(Ps), per cui dobbiamo proseguire nel nostro studio. Rap-
presentiamo con un disegno lo studio del segno della funzione h, dopo aver capito che gli zeri della funzione
si trovano esclusivamente sulle rette {x2 = 0} e {x1 =±1}

A

B

Ps

+ +

+ +

− −

− −

Il disegno, o meglio lo studio del segno, prova che i punti Ps sono dei punti di massimo locale per |s| > 1, dei
punti di minimo locale quando |s|< 1 e dei punti di sella per |s| = 1.

ESERCIZIO 2. Date le seguenti funzioni

g(x1, x2, x3) = x2
1 − 2x1 + x2

2 + ln(1 + x2
3) h(x1, x2, x3) = (x2

1 + x2
2)2− x1x2 + x2

3

f(x1, x2, x3) = 1
x1

+ 1
x2

+ 1
x3

+ x1x2x3

calcolarne il gradiente e la matrice hessiana. Usare le informazioni trovate per identificare e classificare i punti critici.
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DISCUSSIONE. Seguiamo alla lettera le disposizioni del testo scrivendo

g(x1, x2, x3) = x2
1 − 2x1 + x2

2 + ln(1 + x2
3) ∇g(x1, x2, x3) =

2(x1− 1),2x2, 2x3
1 + x2

3


Hg(x1, x2, x3) =


2 0 0
0 2 0

0 0
2(1− x2

3)
(1 + x2

3)2


l’unico punto critico della funzione, cioè l’unica soluzione del sistema∇g(x1, x2, x3) = O, è il punto e1 = (1,0,0),
inoltre abbiamo che

Hg(e1) =


2 0 0
0 2 0
0 0 −2


quindi il punto critico in questione è un punto di sella, visto che la matrice risulta non definita, in quanto ha un
autovalore negativo e due positivi.
Per la funzione h possiamo scrivere

h(x1, x2, x3) = (x2
1 + x2

2)2− x1x2 + x2
3 ∇h(x1, x2, x3) =

(
4x1(x2

1 + x2
2)− x2,4x2(x2

1 + x2
2)− x1,2x3

)
Hh(x1, x2, x3) =


12x2

1 + 4x2
2 8x1x2− 1 0

8x1x2− 1 4x2
1 + 12x2

2 0
0 0 2


Per identificare i punti critici della funzione dobbiamo risolvere il sistema{

4x1(x2
1 + x2

2) = x2
4x2(x2

1 + x2
2) = x1

sostituendo troviamo x2[16(x2
1 + x2

2)2− 1] = 0

la soluzione x2 = 0 ci permette di ottenere x1 = 0, cioè il punto critico O = (0,0), mentre la parentesi quadra è
nulla se e solo se (x1, x2) = (cos(θ)/2, sin(θ)/2), quindi x2

1 + x2
2) = 1/4 e abbiamo che il sistema si riduce a

cos(θ) = sin(θ) da cui otteniamo A = 1
4 (
√

2,
√

2,0) e B =− 1
4 (
√

2,
√

2,0)

Scriviamo la matrice hessiana nei tre punti critici trovati

Hh(O) =


0 −1 0
−1 0 0
0 0 2

 Hh(A) =


2 0 0
0 2 0
0 0 2

 Hh(B) =


2 0 0
0 2 0
0 0 2


Osserviamo che, in tutti e tre i casi e3 è un autovettore con autovalore 2. Gli altri due autovalori sono legati al
minore di ordine 2 in alto a sinistra, perché è possibile suddividere la matrice in due blocchi legati ai sottospazi
vettoriali generati da [e1, e2] e da e3.
Il fatto che det[Hh(O)] =−2< 0 ci permette di concludere subito che O è un punto di sella perché deve avere
un autovalore negativo e due positivi.
Naturalmente il fatto che Hh(A) = Hh(B) indica che i due punti critici avranno la stessa natura, come suggerisce
la simmetria dell’espressione della funzione, il minore in alto a sinistra è tale che

det
[(

2 −7/8
−7/8 2

)]
= 207

64 > 0 Tr
[(

2 −7/8
−7/8 2

)]
= 4> 0

quindi il blocco ha due autovalori positivi, per cui i punti critici A e B sono due punti di minimo locale.
Per concludere l’esercizio interessiamoci alla terza funzione

f(x1, x2, x3) = 1
x1

+ 1
x2

+ 1
x3

+ x1x2x3 ∇f(x1, x2, x3) =
x2

1 x2x3− 1
x2

1
,
x1x2

2x3− 1
x2

2
,
x1x2x2

3− 1
x2

3


Hf(x1, x2, x3) =


2/x3

1 x3 x2
x3 2/x3

2 x1
x2 x1 2/x3

3


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Poiché la funzione ha dominio massimale {x1x2x3 , 0} possiamo studiare il rapporto tra i numeratori delle
derivate parziali ottenendo che

x1
x2

= x2
x3

= x3
x1

= 1 da cui A = (1, 1, 1) e B = (−1,−1,−1)

A questo punto troviamo che

Hf(A) =


2 1 1
1 2 1
1 1 2

 e Hf(B) =


−2 −1 −1
−1 −2 −1
−1 −1 −2


con alcuni calcoli troviamo che

p(c) = det[Hf(A)− cI] =−c3 + 6c2−9c + 4 = (c− 1)2(4− c)

quindi la matrice A ha tre autovalori positivi, per cui possiamo affermare cheA è un minimo locale di f. Calcoli
analoghi ci permettono di ottenere

p(c) = det[Hf(B)− cI] =−c3−6c2−9c−4 =−(c + 1)2(c + 4)

cioè B è un massimo locale, essendo tutti gli autovalri della sua matrice hessiana negativi.

ESERCIZIO 3. Trovare e classificare i punti critici di

f(x1, x2) = x3
1 x2− 2x2

2 + 3x2
1 x2

Successivamente calcolare massimo e minimo assoluto di f(x) in Q = {x : |x1| ≤ 1, |x2| ≤ 1}.

DISCUSSIONE. Per definizione i punti critici di una funzione sono i punti p tali che∇f(p) = 0, quindi scriviamo
il sistema di equazioni da discutere{

∂1f(x1, x2) = 3x2
1 x2 + 6x1x2 = 3x1x2[x1 + 2] = 0

∂2f(x1, x2) = x3
1 + 3x2

1 −4x2 = 0

la prima equazione ci fornisce le informazioni che affinché sia nulla la derivata ∂1f(x1, x2) deve valere x1 = 0,
x2 = 0 o x1 = −2, la seconda equazione ci permette di completare le precedenti informazioni per identificare i
punti critici

se x1 = 0 allora x2 = 0
se x1 =−2 allora x2 = 1
se x2 = 0 allora x1 = 0 o x1 =−3

riassumendo abbiamo identificato i seguenti punti critici di f

O = (0,0) A = (−2, 1) B = (−3,0)

per la loro classificazione ricorriamo allo studio della matrice hessiana

Hf(x1, x2) =
(
∂11f(x1, x2) ∂12f(x1, x2)
∂21f(x1, x2) ∂22f(x1, x2)

)
=
(

6x2(x1 + 1) 3x1(x1 + 2)
3x1(x1 + 2) −4

)
da cui otteniamo che

Hf(O) =
(

0 0
0 −4

)
Hf(A) =

(
−6 6
6 −4

)
Hf(B) =

(
0 9
9 −4

)
Dalla teoria sappiamo che il segno degli autovalori della matrice hessiana ci indica la natura del punto critico, e
siccome il determinante della matrice è uguale al prodotto degli autovalori possiamo osservare che

det[Hf(A)] =−12< 0 quindi λ1 < 0< λ2
det[Hf(B)] =−81< 0 quindi λ1 < 0< λ2
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cioè A e B sono due punti di sella. La matrice hessiana Hf(O) è diagonale ed ha un autovalore nullo e l’altro
negativo, quindi la matrice è semidefinita negativa, cioè il punto critico può essere o un punto di sella o un
punto di massimo locale, poiché vale

f
(
0,e−k) =−2e−2k < 0 = f(0,0) f

(
e−k, e−3k) = 3e−5k− e−6k > 0 = f(0,0)

il punto risulta essere una sella. Il punto chiave della precedente osservazione risiede nel fatto che vicino ad O
lo studio del segno della funzione produce il seguente disegno

O

+
+

− −

−

visto che la funzione può essere fattorizzata nel seguente modo

f(x1, x2) = 2x2

(
−x2 + 1

2 x3
1 + 3

2 x2
1

)
il che suggerisce che il punto critico sia una sella.

ESERCIZIO 4. Si trovino estremi relativi e assoluti della funzione
f(x1, x2) = ex2

1−x2
2 (x4

1 − x4
2)

nel cerchio di centro l’origine e raggio 2.

DISCUSSIONE. La funzione f è regolare, precisamente di classe C∞, in tutto il piano, e quindi in particolare
nel dominio in cui dobbiamo studiarla, cioè D = {x ∈ �

2 : ∥x∥2 ≤ 2}. L’esistenza del massimo e del minimo
dell’applicazione è garantito dal teorema di Weierstrass, visto che f è continua e D compatto, perché chiuso e
limitato. I punti di massimo e mnimo assoluti della funzione devono essere cercati tra i punti critici di f, cioè tra
gli zeri del gradiente, e tra i punti del bordo di D. Iniziamo scrivendo le derivate parziali della nostra protagonista
e il sistema che individua i punti critici dell’applicazione ∂1f(x1, x2) = 2x1[x4

1 + 2x2
1 − x4

2]ex2
1−x2

2 = 0
∂2f(x1, x2) = 2x2[x4

2 + 2x2
2− x4

1 ]ex2
1−x2

2 = 0
che equivale a

{
2x1[x4

1 + 2x2
1 − x4

2] = 0
2x2[x4

2 + 2x2
2− x4

1 ] = 0

L’ultimo sistema scritto possiede chiaramente la soluzione O = (0,0), che corrisponde ad aver annullato i primi
due fattori nelle due equazioni, se vogliamo che siano nulle le due parentesi quadre, sommando otteniamo
che 2x2

1 + 2x2
2 = 0 che ha come soluzione solo x1 = x2 = 0, quindi possiamo concludere che O è l’unico punto

critico interno a D. Notiamo che
f(0,0) = 0 f(t,0) = t4et2

> 0 = f(0,0) f(0, t) =−t4e−t2
< 0 = f(0,0)

quindi O è un punto di sella.
Per studiare la funzione lungo il bordo di D ricorriamo alla seguente parametrizzazione,∂D = {2(cos(θ), sin(θ)),θ ∈
[0,2π]}, da cui ricaviamo

φ(θ) = f(2cos(θ),2sin(θ)) = 16[cos4(θ)− sin4(θ)]e4[cos2(θ)−sin2(θ)]

= 16[cos2(θ)(1− sin2(θ))− sin2(θ)(1− cos2(θ))]e4 cos(2θ)

= 16[cos2(θ)− sin2(θ)]e4 cos(2θ) = 16cos(2θ)e4 cos(2θ) θ ∈ [0,2π]
poiché vale

φ′(θ) = 16[−2sin(2θ) + 8sin(2θ)cos(2θ)]e4 cos(2θ) = 32sin(2θ)[4cos(2θ)− 1]e4 cos(2θ) = 0
solo se

θ = 0,π/2,π,3π/2,2π θ = α,π−α,π +α,2π−α dove α = 1
2 arccos(1/4)
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otteniamo i seguenti candidati come valori di massimo e minimo

f(±2,0) = 16e4 f(0,±2) =−16e−4 f(2(cos(α), sin(α)) = 4e

il confronto diretto tra i valori calcolati ci permette di concludere che max(f) = f(±2,0) = 16e4 mentre vale che
min(f) = f(0,±2) =−16e−4.

ESERCIZIO 5. Scrivere il polinomio di Taylor di grado 2 e punto iniziale (0,0) delle funzioni

f(x1, x2) = ex1 cos(x2) g(x1, x2) = cos(x1 + x2)

h(x1, x2) = sin(x2
1 + x2

2) k(x1, x2) = sin(2x1 + x2 + 5x2
1 + 4x1x2 + 3x2

2)

DISCUSSIONE. Ricordiamo che il polinomio di Taylor del secondo ordine della funzione f, rispetto al punto p,
ha la seguente espressione

T2,f(p,x) = f(p) +∇f(p) · x + 1
2 Hf(p)x · x

nel primo caso abbiamo che

f(x1, x2) = ex1 cos(x2) ∇f(x1, x2) = (cos(x2)ex1 ,−sin(x2)ex1
)

HF(x1, x2) =
(

cos(x2)ex1 −sin(x2)ex1

−sin(x2)ex1 −cos(x2)ex1

)
e in particolare vale

f(O) = 1 ∇f(O) = (1,0) HF(O) =
(

1 0
0 −1

)
e possiamo scrivere il polinomio

T2,f(O,x) = f(O) +∇f(O) · x + 1
2 Hf(O)x · x = 1 + (1,0) · (x1, x2) + 1

2

(
1 0
0 −1

)
(x1, x2)t · (x1, x2)

= 1 + x1 + 1
2 (x1,−x2) · (x1, x2) = 1 + x1 + 1

2 x2
1 −

1
2 x2

2

ESERCIZIO 6. Determinare gli eventuali punti di massimo e minimo relativo delle seguenti funzioni

f(x1, x2) = x1|x1|x2 g(x1, x2) = x4
1 −4x2

1 x2 + x2
2 h(x1, x2) = x2

1 ln(1 + x2) + x2
1 x2

2

DISCUSSIONE. Cerchiamo gli eventuali punti di massimo e minimo relativo tra i punti di non derivabilità della
funzione (se esistono) e tra i punti critici cioè tra i punti che annullano il gradiente.
i. Notiamo subito che ∂2f esiste in tutto il piano, mentre ∂1f è definita sicuramente in �

2 \{(0,x0,2), x0,2 ∈�}.
Studiamo l’esistenza della derivata rispetto a x1 nei punti della forma (0,x0,2), per i quali si ha

∂1f(0,x0,2) = lim
h−→0

f(h,x0,2)− f(0,x0,2)
h = x0,2 lim

h−→0

h|h|
h = 0

quindi f è derivabile in tutto il piano �
2.

Gli estremi relativi si cercano tra le soluzioni del sistema{
∂1f(x1, x2) = 2|x1|x2 = 0
∂2f(x1, x2) = x1|x1| = 0 e segue che (0,x0,2) è punto critico per ogni x0,2 ∈�

Non possiamo costruire la matrice hessiana perché in tali punti critici non esiste ∂11f. Si può concludere fa-
cilmente che i punti critici sono punti di sella dato che f(0,x0,2) = 0 e f(x1, x0,2) = x1|x2|x0,2 cambia segno a
seconda che x1 sia positivo o negativo.
ii. Poiché g ∈ C∞(�2), possiamo trovare i punti critici risolvendo il sistema{

∂1g(x1, x2) = 4x1(x1− 2x2) = 0
∂2g(x1, x2) =−4x2

1 + 2x2 = 0 da cui otteniamo che (0,0) è punto critico
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Costruiamo, derivando, la matrice hessiana

Hg(x1, x2) =
(

8(x1− x2) −8x1
−8x1 2

)
Hg(0,0) =

(
0 0
0 2

)
e otteniamo che Hg(0,0) è semidefinita positiva (ha un autovalore nullo e uno positivo), quindi il test dell’hes-
siano non ci permette di concludere alcunché. Però possiamo notare che lungo l’asse x1 si ha g(x1,0) = x4

1 >

0 = g(0,0), mentre sulla parabola x2 = x2
1 si ha g(x1, x2

1 ) =−2x4
1 < 0 = g(0,0), quindi l’origine non può essere un

punto di massimo o minimo relativo, per cui deve essere un punto di sella.
iii. La funzione h(x1, x2) è definita nell’insieme aperto A = {(x1, x2) : x2 > −1} ⊆ �

2 ed è C∞(A). Come prima,
per trovare i punti critici, cerchiamo le soluzioni del sistema

∂1h(x1, x2) = 2x1
(
ln(1 + x2) + x2

2
)

= 0

∂2h(x1, x2) = x2
1

(
1

1 + x2
+ 2x2

)
= 0

La prima equazione è verificata se x1 = 0 oppure se ln(1+x2)+x2
2 = 0. Nel primo caso anche la seconda equazione

è verificata per ogni x2, quindi tutti i punti nella forma (0,x0,2) ∈ A, cioè (0,x0,2) con x0,2 > −1, sono punti
stazionari, nel secondo caso si ha x2 = 0 da cui segue che x1 = 0. Scriviamo la matrice hessiana

Hh(x1, x2) =


2
(
x2

2 + ln(x2 + 1)
)

2x1

(
2x2 + 1

x2 + 1

)
2x1

(
2x2 + 1

x2 + 1

)
x2

1

(
2− 1

(x2 + 1)2

)


che nei punti stazionari vale

Hh(0,x0,2) =
(

2
(
x2

0,2 + ln(x0,2 + 1)
)

0
0 0

)
Hh(0,x0,2) è semidefinita, avendo almeno un autovalore nullo, e il test dell’hessiano non ci permette di con-
cludere. Studiamo, in un intorno di (0,x0,2), la differenza h(x1, x2)− h(0,x0,2) = h(x1, x2). Osservando che

ln(1 + s) + s2 < 0 se e solo se s ∈ (−1,0)
ln(1 + s) + s2 = 0 se e solo se s = 0
ln(1 + s) + s2 > 0 se e solo se s ∈ (0,+∞)

possiamo concludere che

se x0,2 ∈ (0,+∞) allora (0,x0,2) è un punto di minimo relativo
se x0,2 = 0 allora (0,x0,2) è un punto di sella

se x0,2 ∈ (−1,0) allora (0,x0,2) è un punto di massimo relativo

il che termina l’esercizio.

ESERCIZIO 7. Determinare, se esistono, massimo e minimo in D =
{
(x1, x2) ∈�

2 : x2
1 + x2

2 ≤ x1
}

della funzione

f(x1, x2) = x1x2
2 + x2

1 x2− x1x2− x2
1 x2

2

Determinare l’estremo superiore e inferiore di f.

DISCUSSIONE. L’insieme D rappresenta un disco di centro (1/2,0) e raggio 1/2 dato che

D =
{
(x1, x2) : (x1− 1/2)2 + x2

2 ≤ 1/4
}

quindi D è un insieme chiuso e limitato, la funzione f è continua in D (essendo un polinomio) e per il teorema
di Weierstrass abbiamo che esistono

max
D

(f) min
D

(f)
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Dobbiamo cercare i punti di massimo e minimo assoluti della funzione tra i punti di non derivabilità (che in
questo caso non ci sono), tra i punti critici liberi, cioè appartenenti all’interno di D e tra i punti di massimo o
minimo relativo appartenenti alla frontiera di D.
I punti stazionari liberi sono soluzioni del sistema{

∂1f(x1, x2) = x2(x2− 1)(1− 2x1) = 0
∂2f(x1, x2) = x1(x1− 1)(1− 2x2) = 0

che, con alcuni calcoli, sono i seguenti cinque punti
(1/2, 1/2) (1, 1) (0,0) (0, 1) (1,0)

notiamo che nessuno di questi punti è interno a D, quindi non possiamo tenerne conto.
Studiamo la funzione sulla frontiera ∂D = {(x1, x2) : x2

1 +x2
2 = x1} tramite un sistema di coordinate polari. La scelta

più immediata è, forse, la seguente

∂D =
{(x1(θ), x2(θ)) = 1

2 (1 + cos(θ), sin(θ)) : θ ∈ [0,2π]
}

che trasforma la funzione nel seguente modo

f(x1(θ), x2(θ)) = 1
8 [1 + cos(θ)] sin2(θ) + 1

8 [1 + cos(θ)]2 sin(θ)− 1
4 [1 + cos(θ)] sin(θ)− 1

16 [1 + cos(θ)]2 sin2(θ)

= ... = 1
16 sin3(θ) [2− sin(θ)] := h(θ)

Poiché

h′(θ) = 1
8 cos(θ) sin2(θ)[3− 2sin(θ)]

abbiamo conque valori critici per la variabile angolare: 0,π/2,π,3π/2,2π, che corrispondo ai punti (1,0), (1/2, 1/2),
(0,0) e (1/2,−1/2) da cui

f(1,0) = f(0,0) = 0 f
(

1
2 , 1

2

)
=− 1

16 = min
D

(f) f
(

1
2 ,− 1

2

)
= 3

16 = max
D

(f)

In alternativa è possibile anche usare la seguente parametrizzazione di ∂D
∂D = {(ρ,θ) : ρ(θ) = cos(θ),θ ∈ [−π/2,π/2]}

e poiché vale f(x1, x2) =−x1x2(1− x1)(1− x2) otteniamo

f(x1(θ), x2(θ)) = f(ρ(θ)cos(θ),ρ(θ) sin(θ)) =−cos2(θ) · sin(θ)cos(θ)
(
1− cos2(θ)

)
(1− sin(θ)cos(θ))

= sin3(θ)cos3(θ) [sin(θ)cos(θ)− 1] = 1
8 sin3(2θ)

[
1
2 sin(2θ)− 1

]
=: g(θ)

Per studiare il problema possiamo ricondurci allo studio della funzione g, per la quale vale

g′(θ) = 1
4 sin2(2θ)cos(2θ)[2sin(θ)− 3] = 0 se e solo se θ = 0,±π4 ,±π2

In corrispondenza di questi valori (legati ai precedenti) si trova

g(0) = g(±π/2) = 0 g(π/4) =− 1
16 g(−π/4) = 3

16
e concludiamo nuovamente che

max
D

(f) = f(1/2,−1/2) = 3
16 min

D
(f) = f(1/2, 1/2) =− 1

16
Volendo utilizzare la tecnica dei moltiplicatori di Lagrange dobbiamo cercare i punti critici liberi della funzione
di Lagrange

L(x1, x2, c) =−x1x2 + x2
1 x2 + x1x2

2− x2
1 x2

2− c(x2
1 + x2

2− x1)
quindi studiare il seguente sistema

∂1L =−x2 + 2x1x2 + x2
2− 2x1x2

2− 2cx1 + c = 0
∂1L =−x1 + x2

1 + 2x1x2− 2x2
1 x2− 2cx2 = 0

∂3L = x2
1 + x2

2− x1 = 0
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che si rivela un po’ più ostico dello studio della derivata delle funzioni precedenti. Osserviamo che se c = 0
allora si ottengono i punti critici liberi dei quali abbiamo già osservato che (0,0), (1/2, 1/2) e (1,0) appartengo-
no al vincolo ∂D, se invece c , 0 possiamo verificare (per sostituzione diretta) che il punto (1/2,−1/2,−7/8) è
soluzione del sistema, ma è difficile provare che non ce ne sono altri, come abbiamo ottenuto dallo studio pre-
cedente. Osserviamo che, in questo caso, il metodo di parametrizzazione del vincolo si è rivelato più efficacie
del metodo dei moltiplicatori di Lagrange...
Per concludere osserviamo che la funzione f è illimitata inferiormente nel piano �

2 dato che

f(s, s) =−(1− s)2s2 e quindi lim
s−→+∞

f(s, s) =−∞

ma è anche illimitata inferiormente in quanto

f(s, 1/4) = 3
16 (s− 1)s da cui lim

s−→+∞
f(s, 1/4) = +∞

e possiamo affermare che l’immagine della funzione deve essere tutto l’asse reale.

ESERCIZIO 8. Determinare e classificare i punti critici della funzione

f(x1, x2, x3) = (x2
1 + x2

2)(1− x2
3) + x2

3

DISCUSSIONE. Cerchiamo i punti critici di f ∈ C∞(�3) risolvendo il sistema
∂1f = 2x1(1− x2

3) = 0
∂2f = 2x2(1− x2

3) = 0
∂3f = 2x3(1− x2

1 − x2
2) = 0

Per la terza equazione deve essere x3 = 0 oppure x2
1 + x2

2 = 1. Se x3 = 0 allora x1 = x2 = 0. Se x2
1 + x2

2 = 1 allora,
dalle prime due equazioni, non potendo essere x1 e x2 entrambi nulli, deve essere x3 = 1 oppure x3 = −1. In
conclusione l’origine è un punto critico; inoltre tutti i punti delle circonferenze {x2

1 + x2
2 = 1,x3 = 1} e {x2

1 + x2
2 =

1,x3 =−1} sono punti critici.
Costruiamo la matrice hessiana

Hf(x1, x2, x3) =


2(1− x2

3) 0 −4x1x3
0 2(1− x2

3) −4x2x3
−4x1x3 −4x2x3 2(1− x2

1 − x2
2)


Nell’origine abbiamo

Hf(0,0,0) =


2 0 0
0 2 0
0 0 2


la matrice hessiana è definita positiva (gli elementi sulla diagonale principale sono gli autovalori della matrice),
quindi per il test dell’hessiano (0,0,0) è un punto di minimo relativo.
Nei punti della circonferenza {x2

1 + x2
2 = 1,x3 = 1} si ha

Hf(x1, x2, 1) =


0 0 −4x1
0 0 −4x2
−4x1 −4x2 0


Si trova facilmente che Hf(x1, x2, 1) ha autovalori−4,0,4. Pertanto Hf(x1, x2, 1) è indefinita e, per il test dell’hes-
siano, tutti i punti della circonferenza {x2

1 + x2
2 = 1,x3 = 1} sono punti di sella. Stessa conclusione vale per la

circonferenza {x2
1 + x2

2 = 1,x3 =−1}.

ESERCIZIO 9. Determinare e classificare i punti critici della funzione

f(x1, x2, x3) = 1
x1

+ x2
2 + 1

x3
+ x1x3

nell’aperto A = {x1, x3 > 0} ⊆�
3.
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DISCUSSIONE. La funzione f, nell’aperto A è di classe C∞, in particolare i suoi punti critici sono riconoscibili
dallo studio del vettore gradiente

∇f(x1, x2, x3) = (
∂1f(x1, x2, x3),∂2f(x1, x2, x3),∂3f(x1, x2, x3)) =

x3−
1

x2
1

,2x2, x1−
1

x2
3


il sistema∇f = O possiede, in A le seguenti soluzionix3−

1
x2

1
,2x2, x1−

1
x2

3

 = (0,0,0) se e solo se


x3 = 1/x2

1
2x2 = 0
x1 = 1/x2

3 = x4
1

cioè il solo punto critico è P = (1,0, 1). Proseguiamo con lo studio della matrice hessiana per classificare P

∂11f(x1, x2, x3) = 2
x3

1
∂12f(x1, x2, x3) = 0 ∂22f(x1, x2, x3) = 2

f23(x1, x2, x3) = 0 ∂33f(x1, x2, x3) = 2
x3

3
∂13f(x1, x2, x3) = 1

da cui segue

Hf(P) =


2 0 1
0 2 0
1 0 2

 p(λ) = λ3−6λ2 + 12λ−6 = 0

avendo il polinomio caratteristico i segni alternati le sue radici sono tutte positive (per il teorema di Carte-
sio), quindi la matrice Hf(P) è definita positiva e possiamo concludere che il punto critico è un punto di mini-
mo locale. In realtà possiamo dire qualcosa di più: osserviamo che la funzione diventa molto grande quando
l’argomento tende la bordo di A. Infatti avvicinandosi a ∂A vale

lim
x1−→0+

f(x1, x2, x3) = +∞ lim
x3−→0+

f(x1, x2, x3) = +∞

mentre se |(x1, x2, x3)| −→ +∞, cioè se x2
1 + x2

2 + x2
3 −→ +∞, segue che

lim
|(x1,x2,x3)|−→0+

f(x1, x2, x3) = +∞

perché vale l’alternativa o esplode x2
2 oppure esplode il prodotto x1x3 o una delle frazioni rimanenti (questo

perché almeno una delle tre variabili deve tendere a +∞). Quanto provato implica che la funzione è coercitiva
in A, e quindi possiede un minimo assoluto che deve essere necessariamente P, visto che non ci sono altri punti
critici.

ESERCIZIO 10. Determinare massimo e minimo assoluti (se esistono) della funzione

f(x1, x2) = (x1− x2)2− x2
1 x2

2

nel dominio D = {x2
1 + x2

2 ≤ 1} ⊆�
2.

DISCUSSIONE. La funzione f è di classe C∞(�2) e, in particolare, continua in D (insieme chiuso e limitato,
quindi compatto), quindi per il teorema di Weierstrass abbiamo che f possiede massimo e minimo assoluti.
Cerchiamo i suoi punti critici studiando il sistema∇f(x1, x2) = (0,0){

2(x1− x2)− 2x1x2
2 = 0

−2(x1− x2) + 2x2
1 x2 = 0 e sommando

{
x1x2(x1− x2) = 0
2(x1− x2) = 2x2

1 x2

Partendo dalla prima equazione, se x1 = 0 abbiamo che x2 = 0, se x2 = 0 segue che x1 = 0 e infine se x1 = x2
troviamo 2x3

1 = 0, insomma in tutti i casi segue che l’unico punto critico interno è O = (0,0) in cui l’hessiana
vale

Hf(0,0) =
(

2 −2
−2 2

)
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tale matrice ha determinante nullo, quindi non è d’aiuto per determinare la natura del punto critico. In ogni
caso è sufficiente osservare che

f(s, s) =−s4 f(s,−s) = 4s2− s4

per poter concludere che (0,0) è una sella.
A questo punto possaimo studiare il comportamente della funzione sul bordo di D parametrizzando la circon-
ferenza e componendo le equazioni con la funzione, in modo da ottenere la seguente funzione di una variabile
reale

F(t) = f(cos(t), sin(t)) = (cos(t)− sin(t))2− sin2(t)cos2(t)

= 1− sin(2t)− 1
4 sin2(2t) t ∈ [0,2π]

e siccome l’equazione

F′(t) =−2cos(2t)− sin(2t)cos(2t) =−cos(2t)[2 + sin(2t)] = 0

ha soluzione per t = π/4,3π/4,5π/4,7π/4, abbiamo identificato 4 punti critici

A = (
√

2/2,
√

2/2) B = (−
√

2/2,
√

2/2)
C = (−

√
2/2,−

√
2/2) D = (

√
2/2,−

√
2/2)

e vale

f(A) = f(C) =− 1
4 f(B) = f(D) = 7

4
da cui segue che max(f) = 7/4 e min(f) =−1/4.

ESERCIZIO 11. Determinare massimo e minimo assoluti (spiegando perché esistono) della funzione

f(x1, x2, x3) = x2
1 + x2

2 + x2
3

nell’insieme E =

g(x1, x2, x3) =
x2

1
2 +

x2
2

3 +
x2

3
4 ≤ 1

⊆�
3.

DISCUSSIONE. Cominciamo osservando che l’insieme E è chiuso, perché g è continua in �
3 ed E è la contro-

immagine della semiretta chiusa (−∞, 1], inoltre l’insieme e anche limitato, infatti valex2
1

2 +
x2

2
3 +

x2
3

4 ≤ 1

⊆
x2

1
4 +

x2
2

4 +
x2

3
4 ≤ 1


cioè E ⊆ B(O,2) ⊆ �

3. Questo significa che E è un insieme compatto ed essendo f continua, per il teorema
di Weierstrass, possiamo essere sicuri dell’esistenza di massimo e minimo assoluti, come richiesto dal testo
dell’esercizio.
Sappiamo che gli evenutali punti critici di f interni ad E sono riconoscibili perché hanno vettore gradiente nullo,
quindi partiamo dallo studio delle componenti di∇f

∂1f(x1, x2, x3) = 2x1 ∂2f(x1, x2, x3) = 2x2 ∂3f(x1, x2, x3) = 2x3

tale vettore è nullo se e soltanto se (x1, x2, x3) = (0,0,0) = O, e f(O) = f(0,0,0) = 0 quindi tale punto è un punto
di minimo assoluto della funzione, che è composta da una somma di quadrati, quindi sempre non negativa.
Tale punto è l’unico punto di minimo assoluto della funzione, mentre (per forza di cose) il massimo assoluto
deve essere assunto sulla frontiera del dominio, cioè sull’insieme

∂E =

x2
1

2 +
x2

2
3 +

x2
3

4 = 1


Possiamo descrivere l’ellissoide nel seguente modo(x1(u,v),x2(u,v),x3(u,v)) =

(√
2sin(u)cos(v),

√
3sin(u)sin(v),2cos(u)

)
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con (u,v) ∈ [0,π]× [0,2π], ”deformando” la descrizione della sfera data dalle coordinate sferiche standard in
�

3. Componendo le due applicazioni abbiamo
Ð(u,v) = f(x1(u,v),x2(u,v),x3(u,v))

= 2sin2(u)cos2(v) + 3sin2(u)sin2(v) + 4cos2(u)

= 2 + sin2(u)sin2(v) + 2cos2(u)
da cui segue

Ðu(u,v) = 2sin(u)cos(u)sin2(v)−4sin(u)cos(u) = sin(2u)[sin2(v)− 2] = 0

Ðv(u,v) = 2sin2(u)sin(v)cos(v) = sin2(u)sin(2v) = 0
(u,v) ∈ [0,π]× [0,2π]

i punti critici della funzione composta Ð sono (0,v) e (π, v), per ogni v ∈ [0,2π], (π/2,0), (π/2,π/2), (π/2,π),
(π/2,3π/2) e (π/2,2π), e tornando alle coordinate cartesiane nello spazio otteniamo (rispettivamente) i punti

N = (0,0,2) S = (0,0,−2) A = (
√

2,0,0)

B = (0,
√

3,0), C = (−
√

2,0,0) D = (0,−
√

3,0)
sostituendo nella funzione f otteniamo

f(N) = f(S) = 4 f(A) = f(C) = 2 f(B) = f(D) = 3
e possiamo concludere che il massimo e il minimo assoluti della funzione sono i seguenti

max
E

(f) = 4 min
E

(f) = 0

Volendo usare il metodo dei moltiplicatori di Lagrange dobbiamo cercare i punti critici liberi della funzione
lagrangiana

L(x1, x2, x3,p) = x2
1 + x2

2 + x2
3−p

x2
1

2 +
x2

2
3 +

x2
3

4 − 1


cioè le soluzioni del sistema
∂1L(x1, x2, x3,p) = 2x1−px1 = (2−p)x1 = 0
∂2L(x1, x2, x3,p) = 2x2− 2px2/3 = 2(1−p/3)x2 = 0
∂3L(x1, x2, x3,p) = 2x3− 2px3 = 2(1−p)x3 = 0
∂4L(x1, x2, x3,p) = x2

1 /2 + x2
2/3 + x2

3/4− 1 = 0
le prime tre equazioni impongono che o una delle variabili spaziali sia nulla o che p assuma un preciso valore
diverso da 0, analizziamo le alternative che ne scaturiscono:
i. se p = 2 allora segue che x2 = x3 = 0 e la quarta equazione impone il valore x1 =±

√
2, quindi ritroviamo i punti

A ed C,
ii.p = 3 allora segue che x1 = x3 = 0 la quarta equazione ci dice che x2 =±

√
3, quindi abbiamo i punti B ed D,

iii. p = 4 allora segue che x1 = x2 = 0 la quarta equazione ci dice che x3 =±1, quindi abbiamo i punti N ed S,
iv. se p , 2,3,4 allora x1 = x2 = x3 = 0, ma il punto O non soddisfa la quarta equazione (quella del vincolo).
In questo modo abbiamo ritrovato i risultati della precedente analisi, confermando che metodi diversi (applicati
correttamente) portano sempre ai risultati corretti! Da un punto di vista geometrico il metodo dei moltiplicatori
di Lagrange mostra che i punti critici vincolati P sono punti in cui i vettori ∇f(P) e ∇g(P) sono paralleli, ed
entrambi risultano ortogonali a tutte e due le superfici di livello {g(x,y,z) = 0} e {f(x,y,z)− f(P) = 0} cioè le due
superfici di livello hanno lo stesso piano tangente, cioè (in ultima analisi) sono tangenti tra di loro...

ESERCIZIO 12. Determinare gli eventuali punti di estremo locale di
f(x1, x2) = (|x1| + x2)e−x1x2

DISCUSSIONE. Per x1 , 0, cioè per (x1, x2) ∈�
2 \{x1 = 0}, la funzione f è derivabile essendo composizione di

funzioni derivabili, quindi possiamo calcolarne il gradiente. Essendo

f(x1, x2) =
{

(x1 + x2)e−x1x2 se x1 > 0
(−x1 + x2)e−x1x2 se x1 < 0
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abbiamo che

∇f(x1, x2) =
{

e−x1x2 (1− x1x2− x2
2, 1− x1x2− x2

1 ) se x1 > 0
e−x1x2 (−1 + x1x2− x2

2, 1− x1x2 + x2
1 ) se x1 < 0

Quindi il gradiente si annulla nei punti che risolvono uno dei seguenti sistemi:
x1 > 0
1− x1x2− x2

2 = 0
1− x1x2− x2

1 = 0
oppure


x1 < 0
−1 + x1x2− x2

2 = 0
1− x1x2 + x2

1 = 0

Il primo sistema ha come unica soluzione il punto (1/
√

2, 1/
√

2), mentre il secondo non ammette soluzioni,
quindi possiamo limitarci allora a calcoare la matrice Hessiana di f solo per x1 > 0:

Hf(x1, x2) =
(

e−x1x2 (−2x2 + x1x2
2 + x3

2) e−x1x2 (−2x1− 2x2 + x2
1 x2 + x1x2

2)
e−x1x2 (−2x1− 2x2 + x2

1 x2 + x1x2
2) e−x1x2 (−2x1 + x2

1 x2 + x3
1 )

)
da cui

Hf
(

1√
2

, 1√
2

)
=


−

3
2 e−1/2 −

3
2 e−1/2

−
3
2 e−1/2 −

1
2 e−1/2

 det
[
Hf

(
1/
√

2, 1/
√

2
)]

=−3/2e< 0

perciò (1/
√

2, 1/
√

2) è un punto di sella.
Resta da verificare se f ammette eventuali punti di estremo locale sull’asse x2, per fare ciò definiamo la restri-
zione di f all’asse x2:

g(x2) = f(0,x2) = x2

ma questa è una funzione crescente, quindi f non ammette né massimi né minimi locali.

ESERCIZIO 13. Determinare gli eventuali punti di estremo locale e globale della funzione

f(x1, x2) = 4x2
2−4x2

1 x2
2− x4

2

DISCUSSIONE. Osserviamo innanzitutto che la funzione, essendo un polinomio, è ovunque derivabile, quindi
i punti di estremo locale e globale sono punti dove il gradiente si annulla.
Quindi essendo∇f(x1, x2) = (−8x1x2

2,8x2−8x2
1 x2−4x3

2), abbiamo che i punti critici di f sono i seguenti:

(0,
√

2) (0,−
√

2) e (s,0) per ogni s ∈�

Calcoliamo ora la matrice Hessiana di f

Hf(x1, x2) =
(
−8x2

2 −16x1x2
−16x1x2 8−8x2

1 − 12x2
2

)
perciò

Hf(0,
√

2) = Hf(0,−
√

2) =
(
−16 0

0 −16

)
e dunque (0,

√
2) e (0,−

√
2) sono punti di massimo relativo per f. Invece

Hf(s,0) =
(

0 0
0 8−8s2

)
quindi per tutti i valori di s dobbiamo fare un’analisi ulteriore.
In questo caso studiando globalmente il segno della funzione vediamo facilmente che, essendo

f(x1, x2) = x2
2(4−4x2

1 − x2
2)

f si annulla se x2 = 0 o se (x1, x2) appartiene all’ellisse {4x2
1 +x2

2 = 4} (curve in blu nella figura), mentre f è positiva
all’interno dell’ellisse per y , 0 (regione in arancione nella figura) e negativa altrove.
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Dallo studio del segno possiamo quindi concludere direttamente che i punti (s,0) sono di massimo locale se
|s|> 1, di minimo locale se |s|< 1 e di sella se |s| = 1.
Determiniamo ora estemo inferiore e superiore di f in �

2 e vediamo se sono assunti, cioè se si tratta di minimo
e/o massimo globale.
Abbiamo che

f(x1, x2) = x2
2(4−4x2

1 − x2
2)≤ x2

2(4− (x2
1 + x2

2))−→−∞ per ∥(x1, x2)∥2 −→ +∞

quindi inf
�

2 (f) =−∞ e poiché la funzione−f è coercitiva (oltre che continua) ammette massimo assoluto per
il teorema di Weierstrass per funzioni coercitive. Quindi f possiede massimo assoluto e il massimo assoluto
(essendo f ∈ C1(�2)) è assunto in un punto critico di f. Confrontando il valore di f nei punti critici (f(0,

√
2) =

f(0,−
√

2) = 4> 0 = f(s,0)) otteniamo che il massimo globale (o massimo assoluto) è 4.

ESERCIZIO 14. Determinare inf e sup della funzione

f(x1, x2) =
[
x2

1 − (x2 + 1)2]x2e−x2

nell’insieme D = {(x1, x2) ∈�
2 : x2 ≥ 0, |x1| ≤ x2 + 1} e specificare se sono minimo e massimo di f in D.

DISCUSSIONE. La funzione f è di classe C∞ quindi possiamo calcolare

∇f(x1, x2) =
(
2x1x2e−x2 , e−x2 (x2

1 (1− x2) + x3
2− x2

2− 3x2− 1)
)

da cui abbiamo che i punti critici di f sono le soluzioni del sistema{
x1x2 = 0
x2

1 (1− x2) + x3
2− x2

2− 3x2− 1 = 0

Quindi i punti critici di f sono

P(0, 1 +
√

2) Q(0, 1−
√

2) R(0,−1) S(1,0) T(−1,0)

ma solo il primo è interno a D, mentre T,S ∈ ∂D, come suggerito dalla figura che segue

D
P

ST

x2 = x1− 1

Inoltre si vede facilmente che sul bordo di D, poiché o y = 0 o x2
1 = (x2 + 1)2, f è identicamente nulla.

D’altronde osservando che in D x2
1 ≤ (x2 + 1)2 si vede facilmente che f(x1, x2)≤ 0 in D, quindi 0 è un massimo

assoluto di f in D (e quindi anche supD(f)). Analizziamo il comportamento di f per (x1, x2) ∈ D quando |(x,y)| −→
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+∞
lim

D∋x:∥x∥−→+∞
|f(x,y)| = lim

D∋x:∥x∥−→+∞

∣∣∣(x2
1 − (x2 + 1)2)x2e−x2

∣∣∣
= lim

D∋x:∥x∥−→+∞
((x2 + 1)2− x2

1 )x2e−x2 ≤ lim
x2−→+∞

(x2 + 1)2x2e−x2 = 0

Abbiamo quindi dimostrato che
lim

D∋x:∥x∥−→+∞
f(x1, x2) = 0

Per definizione di limite, dalla precedente relazione segue che, fissato m = f(0,−1 +
√

2) = 2(1−
√

2)e1−
√

2 < 0,
esiste Rm > 0 tale che

f(x1, x2)>m per ogni (x,y) ∈ D tale che ∥x∥> Rm

cioè per ogni (x1, x2) ∈ D \B(O,Rm).
D’altronde, essendo B(O,Rm) chiuso e D chiuso (in quanto intersezione di contoimmagini, tramite funzioni
continue, di chiusi), anche la loro intersezione B(O,Rm)∩D è un chiuso quindi per il teorema di Weierstrass la
funzione continua f ammette minimo assoluto in B(O,Rm)∩D e per definizione

min
B(O,Rm)∩D

f(x1, x2)≤m< 0

Ma allora, poiché f≡ 0 su ∂D, il minimo di f su B(O,Rm)∩D è assunto in un punto interno di D e quindi, visto
che f è derivabile, il gradiente di f si annulla nel/nei punti di minimo assoluto. Quindi (0,−1 +

√
2) è un punto di

minimo assoluto di f in B(O,Rm)∩D. Allora f(0,−1 +
√

2) = m è un minimo assoluto di f in D (e quindi anche
infD(f)), visto che

m≤ f(x1, x2) per ogni (x1, x2) ∈ B(O,Rm)∩D

m< f(x1, x2) per ogni (x1, x2) ∈ D \B(O,Rm)
per quanto discusso precedentemente.


