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ESERCIZIO 1. Identificare e classificare i punti critici delle seguenti funzioni definite in tutto R?

2

f(x1,%7) = X1%z (%1 — 1) g(x1,x9) =xq — x‘21 h(xq,%) = (1— xf)x%ef"2

2

ESERcCIZIO 2. Date le seguenti funzioni
g(x1,X9,%3) = x12 —2x1+ x% +In(1 +x§) h(xy,x5,%3) = (x12 +x%)2 — XX + x§
f(xq,%9,X%3) = 1 + 1 + i +X1X2X3
X1 X2 X3
calcolarne il gradiente e la matrice hessiana. Usare le informazioni trovate per identificare e classificare i punti critici.

ESERCIzIO 3. Trovare e classificare i punti critici di

f(xq,%7) = xfxz — ZX% + 3x12x2

Successivamente calcolare massimo e minimo assoluto di f(x) in Q = {x: |x1| <1,|x,| <1}

ESERCIZIO 4. Si trovino estremi relativi e assoluti della funzione
2_\2
f(x1,%7) = €4 7% (x} —x3)

nel cerchio di centro [origine e raggio 2.

Esercizio 5. Scrivere il polinomio di Taylor di grado 2 e punto iniziale (O, O) delle funzioni

f(x1,%5) = €1 cos(x,) g(xq,X7) = cos(xq +X3)

h(xq,x;) = sin(x12 + x%) k(xq,%3) = sin(2xq + x5 + 5x12 +4x1Xp + 3x%)

EserciziO 6. Determinare gli eventuali punti di massimo e minimo relativo delle seguenti funzioni

f(xq,%2) = xq|x1]%7 g(x1,%3) =xf’ —4x12x2 +X% h(xq,%7) =x12 ln(1+x2)+x12x%

ESeERCIZIO 7. Determinare, se esistono, massimo e minimo in D = {(x1,x2) € R2: x12 + x% < x1} della funzione
f(xq,%9) = xlx% + x12x2 — X1X3 — xfx%

Determinare lestremo superiore e inferiore di f.

ESercizio 8. Determinare e classificare i punti critici della funzione

f(xq,%9,%3) = (x12 + x%)(1 - xg) + x_%



ESERCIZIO 9. Determinare e classificare i punti critici della funzione
1 1
f(x1,X9,X3) = — + X2 + — +x4x
(x1,%2,%3) % X2t T

nellaperto A = {x;,x3 > 0} C R3.

ESercizio 10. Determinare massimo e minimo assoluti (se esistono) della funzione

f(xq,%3) = (%1 — x2)2 — xfx%

nel dominio D = {x12 +x% <1} CRZ

Esercizio 11. Determinare massimo e minimo assoluti (spiegando perché esistono) della funzione

2,2, 2
fxq,x2,%3) = X7 +x5 +x3

2
X
nellinsieme E = {g(X|,X2,X3) = 71 T 1} CR3.

ESERCIZIO 12. Determinare gli eventuali punti di estremo locale di

f(X1,X2) = (‘Xﬂ +X2)€7X1X2

ESERCIZIO 13. Determinare gli eventuali punti di estremo locale e globale della funzione

f(xq,%9) = 4x% — 4x12x% — x‘z1r

EserciziO 14. Determinare inf e sup della funzione
f(x1,%7) = [x12 —(xp + 1)2]x2e”‘2

nellinsieme D = {(x1,x;) € R2: X3 > 0, |x1| < x5 +1} e specificare se sono minimo e massimo di f in D.

SVOLGIMENTI

ESERCIZIO 1. Identificare e classificare i punti critici delle seguenti funzioni definite in tutto IR2
2
f(xq,%2) = x1%2(x¢ — 1) g(xq,%7) = x12 — x‘z1r h(xy,x7) = (1— x12)x2e %
DISCUSSIONE.  Procediamo con ordine iniziando dallo studio della funzone f, per la quale abbiamo che
_ 2 _ S el (2X1 - 1)X2 =0
Vi(xq,x9) = (2x1x2 — X2, —x1) x = (X4,X;) & critico se e solo se { 2~ x1 =0 — 1) =0
per cui troviamo due soli punti critici A = (1,0) e O = (0, 0). La matrice hessiana nei punti critici vale
2X2 (2X1 — 1) . _ 0 —1 _ 0 1
(2xq —1) 0 da cui Hf(O) = 10 e Hf(A) = 10

Poiché det[Hf(O)] = det[Hf(A)] = —1 < O possiamo dire che i due autovalori delle matrici sono discordi e non
nulli, quindi i due punti critici sono dei punti di sella.
Consideriamo ora g per cui vale

Hf(X1,X2) = (

2 0
Vg(x1'X2)=(2X1v—4X§) € Hg(x)=( 0 —12x2 )
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E facile verificare che lunico punto critico & O, per tale punto la matrice hessiana risulta diagonale con un
autovalore positivo ed uno nullo, quindi non possiamo concludere nulla sulla natura del punto stazionario.
Pero possiamo osservare che

Pp(t)=g(O+te))=t> e  o(t)=g(O+tey) = —t*

questo significa che esistono punti arbitrariamente vicino ad O, del tipo p, = (1/k, 0), tali che g(p,) > O e punti
del tipo g, = (0,1/k) dove g(q,) < O, questo implica che lorigine non pud essere né un massimo locale né un
minimo locale, quindi O & un punto di sella.

Infine interessiamoci di h, infatti abbiamo

x1x% =0

(1-x2)xp(1-x2) = 0

si noti che nelle equazioni del sistema che identifica i punti critici sono stati rimossi i fattori che non possono
essere nulli. Dunque i punti critici della funzione h sono

A=(0,1) B(O,—1) e Ps =(s,0) perognisc R

Vh(xq,x3) = (—2x1x%e_xg,2(1 —x12)x2(1 —x%)e_x%) da cui {

La matrice hessiana della funzione vale
—2x2e % — 4% (1 — xz)efx%
Hh(xg.xz) = L g D52 g 2
—4x1%5(1— xz)e 2 2(1— X - 5%+ 2x2]e 2
e ne ricaviamo
—2/le O 0 0
Hh(A)-Hh(B)-( 0 _4/e ) e Hh(Ps)-( 0 21-s?) )

notiamo che i punti A e B sono dei massimi, visto che la matrice hessiana ha autovalori negativi, mentre non
possiamo dedurre nulla sulla natura dei punti Ps da Hh(Ps), per cui dobbiamo proseguire nel nostro studio. Rap-
presentiamo con un disegno lo studio del segno della funzione h, dopo aver capito che gli zeri della funzione
si trovano esclusivamente sulle rette {x; =0} e {x; = £1}

oA

®B

Il disegno, o meglio lo studio del segno, prova che i punti Ps sono dei punti di massimo locale per |s| > 1, dei
punti di minimo locale quando |s| < 1e dei punti di sella per |s| = 1. ]

ESErcIzIO 2. Date le seguenti funzioni

g(x1,X9,%3) = x12 —2x1+ x% +In(1 +x§) h(xy,X,%3) = (x12 +x%)2 — XX + x%

f ) T 1 1
X1,X2,X3) = — + — + — + XXX
1:X2:X3 X1 X3 X3 1X2X3

calcolarne il gradiente e la matrice hessiana. Usare le informazioni trovate per identificare e classificare i punti critici.



4 EM

DISCUSSIONE.  Seguiamo alla lettera le disposizioni del testo scrivendo

2x
g(x1,x2,X3)=x12—2x1+x%+ln(1+x§) Vg(x1,x2,X3)=[2(x1—1),2x2,1 3 ]

+x§
2 0 0]
o 2 0]
Hg(X1,X2,X3) = 2(1 _ XZ)
00 3
(1+x3)2

lunico punto critico della funzione, cioé lunica soluzione del sistema Vg(xy,X;,x3) = O, € il punto e = (1,0,0),
inoltre abbiamo che

2 0 O
Hge)=| O 2 O

0O 0 -2

quindi il punto critico in questione € un punto di sella, visto che la matrice risulta non definita, in quanto ha un
autovalore negativo e due positivi.
Per la funzione h possiamo scrivere

h(xy,X2,X3) = (x12 +x%)2 — X1Xp +x§ Vh(xq,%2,X3) = (4x1(x12 +x%) — x2,4x2(x12 +x%) — X1,2X3)
12x12+4x% 8x1x;—1 O
Hh(q,x2.x3) =| 8xixg —1 4x2+12x2 O
o o 2

Per identificare i punti critici della funzione dobbiamo risolvere il sistema

{ 4x1(x12 +x2) =%,

sostituendo troviamo X [16(x% +x2)2 —1]1=0
Axp(xf +x9) = xq 21604 )" =]

la soluzione x; = O ci permette di ottenere x; = O, cioé il punto critico O = (O, 0), mentre la parentesi quadra &
nulla se e solo se (xq,x;) = (cos(0)/2,sin(6)/2), quindi x12 + x%) = 1/4 e abbiamo che il sistema si riduce a

cos(9) = sin(8) da cui otteniamo A= ‘l‘(\fZ, V2,0) e B= —%(\fZ, v2,0)

Scriviamo la matrice hessiana nei tre punti critici trovati

O 10 2 0O 2 0O
Hh(O)= -1 O O Hh(A)=] O 2 O Hh(B)=] O 2 O
0O 0 2 0O 0 2 0O 0 2

Osserviamo che, in tutti e tre i casi e3 € un autovettore con autovalore 2. Gli altri due autovalori sono legati al
minore di ordine 2 in alto a sinistra, perché € possibile suddividere la matrice in due blocchi legati ai sottospazi
vettoriali generati da [e},e;] e da e3.

Il fatto che det[Hh(O)] = —2 < O ci permette di concludere subito che O € un punto di sella perché deve avere
un autovalore negativo e due positivi.

Naturalmente il fatto che Hh(A) = Hh(B) indica che i due punti critici avranno la stessa natura, come suggerisce
la simmetria dell'espressione della funzione, il minore in alto a sinistra & tale che

2 -8 \]_ 207 2 -8 \]
det[( —7/8 2 )]—H >0 TI'[( —7/8 2 )]—4>O

quindi il blocco ha due autovalori positivi, per cui i punti critici A e B sono due punti di minimo locale.
Per concludere lesercizio interessiamoci alla terza funzione
1

1 1
f(xq,%9,%3) = — + — + — f(xq,%9,%3) =
(%1, %9, X%3) % + % + % +X1X9X3 V(xq,%7,%3) [

X12X2X3 —1 X1X§X3 —1 x1x2x§ —1

2 ! 2 ! 2
X1 X2 X3

2/x13 X3 Xy
Hf(x1,X7,%x3) =| X3 2/x; X1

X9 X1 2/x§
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Poiché la funzione ha dominio massimale {xyx;x3 # O} possiamo studiare il rapporto tra i numeratori delle
derivate parziali ottenendo che

X_X2. %1 dacui A=(11) e B=(-1-1-1)
X2 X3 Xq

A questo punto troviamo che
2 11 -2 -1 -1
Hf(A)=[ 1 2 1 e Hf(B) =] -1 -2 -1
11 2 -1 -1 =2

con alcuni calcoli troviamo che
p(c) = det[Hf(A) — cl] = —c3 + 62 — 9c+ 4 = (c — 1)2(4 — )

quindi la matrice A ha tre autovalori positivi, per cui possiamo affermare cheA & un minimo locale di f. Calcoli
analoghi ci permettono di ottenere

p(c) = det[Hf(B) — cl] = —c3 — 6c2 —9c— 4= —(c+1)%(c+ 4)

cioé B € un massimo locale, essendo tutti gli autovalri della sua matrice hessiana negativi. ]

ESERCIzIO 3. Trovare e classificare i punti critici di
f(xq,%9) = x13x2 - ZX% + 3x12x2
Successivamente calcolare massimo e minimo assoluto di f(x) in Q = {x : [x1] <1,|xy| <1}

DISCUSSIONE.  Per definizione i punti critici di una funzione sono i punti p tali che Vf(p) = O, quindi scriviamo
il sistema di equazioni da discutere

61f(x1,x2) = 3X12X2 + 6X1X2 = 3X1X2[X1 + 2] =0
Orf(x1,%7) = X13 + 3x12 —4x,=0

la prima equazione ci fornisce le informazioni che affinché sia nulla la derivata 9;f(x;,x;) deve valere x; = O,
X7 =0 0 X1 = —2, la seconda equazione ci permette di completare le precedenti informazioni per identificare i
punti critici

se x=0 allora X3 =0
se X3 =—2 allora  xp=1

se X=0 allora x1=0 0 x=-3

riassumendo abbiamo identificato i seguenti punti critici di f
0=(0,0) A=(-2,) B=(-3,0)
per la loro classificazione ricorriamo allo studio della matrice hessiana

811f(X1,X2) 612f(X1,X2) ) 6X2(X1 + 1) 3X1(X1 + 2)
621f(X1,X2) 622f(X1,X2) 3X1(X1 + 2) —4

Hf(X1,X2) = (

da cui otteniamo che

0 0 -6 6 0 9
Hf(O)=(O _4) Hf(A)=( . _4) Hf(B)=(9 _4)

Dalla teoria sappiamo che il segno degli autovalori della matrice hessiana ci indica la natura del punto critico, e
siccome il determinante della matrice € uguale al prodotto degli autovalori possiamo osservare che

det[Hf(A)]=-12 < O quindi M <0<y
det[Hf(B)]=-81< O quindi M <0<
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cioé A e B sono due punti di sella. La matrice hessiana Hf(O) € diagonale ed ha un autovalore nullo e laltro
negativo, quindi la matrice & semidefinita negativa, cioé il punto critico pud essere o un punto di sella o un
punto di massimo locale, poiché vale

f(o,e—k) =—2e % - 0=f(0,0) f(e—k,e—3k) =3e 2k _e 6k~ 0=1(0,0)

il punto risulta essere una sella. Il punto chiave della precedente osservazione risiede nel fatto che vicino ad O
lo studio del segno della funzione produce il seguente disegno

visto che la funzione puo essere fattorizzata nel seguente modo

1 3
f(xq,%3) = 2%, (—xz + §x13 + §X12)
il che suggerisce che il punto critico sia una sella. ]

ESERCIZIO 4. Sitrovino estremi relativi e assoluti della funzione

2_2
f(x1,%7) = €4 7% (x} —x3)

nel cerchio di centro lorigine e raggio 2.

DIScUSSIONE. La funzione f é regolare, precisamente di classe C*°, in tutto il piano, e quindi in particolare
nel dominio in cui dobbiamo studiarla, cioé D = {x € R? : ||x||; < 2}. Lesistenza del massimo e del minimo
dellapplicazione € garantito dal teorema di Weierstrass, visto che f € continua e D compatto, perché chiuso e
limitato. | punti di massimo e mnimo assoluti della funzione devono essere cercati tra i punti critici di f, cioé tra

gli zeri del gradiente, e tra i punti del bordo di D. Iniziamo scrivendo le derivate parziali della nostra protagonista
e il sistema che individua i punti critici dellapplicazione

= 4,902 _ AXE—xE _
Gflxaxa) = 2uabq + 24 —xgle 1z 22 ° che equivale a {
B, f(x1,x7) = 2xa[X5 + ZX% —x}1ei %2 =0

Lultimo sistema scritto possiede chiaramente la soluzione O = (0, 0), che corrisponde ad aver annullato i primi
due fattori nelle due equazioni, se vogliamo che siano nulle le due parentesi quadre, sommando otteniamo
che 2x12 + ZX% = O che ha come soluzione solo x; = x5 = 0, quindi possiamo concludere che O € lunico punto
critico interno a D. Notiamo che

f(0,00=0 f(t,0)=t%" >0=-=f(0,0) f(0,1)= —t*e~t < 0=£0,0)

quindi O & un punto di sella.
Per studiare la funzione lungo ilbordo di D ricorriamo alla seguente parametrizzazione, 8D = {2(cos(6),sin(6)),6 €
[0,27]}, da cui ricaviamo

(6) = f(2 cos(6), 2sin(6)) = 16[cos*(6) — sin*(6)]e*Icos’(0)—sin”(6)]
= 16[cos2(6)(1 — sin?(6)) — sin2(6)(1 — cos?(6))]e*<°s(2¢)
= 16[cos?(6) — sin2(6)]e*<°5(29) = 16 cos(20)e* <52 g < [0,27]
poiché vale
¢ (6) = 16[—25in(26) + 85in(26) cos(26)]e* <2529 = 325in(26)[4 cos(26) — 1]e* <529 = o

solo se

2x4 [xf + 2x12 — x‘Z‘] =0
2x3 [x‘21r + ZX% - xf] =0

1
0=0,7/2,7,37/2,27 O=o,mT—Q,T+Q,2mT— dove a = iarccos (1/4)
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otteniamo i seguenti candidati come valori di massimo e minimo
f(£2,0)=16e*  f(0,£2)=-16e"*  f(2(cos() sin(a)) = 4e

il confronto diretto tra i valori calcolati ci permette di concludere che max(f) = f(+2,0) = 16e* mentre vale che
min(f) = f(0, £2) = —16e 4. n

Esercizio 5. Scrivere il polinomio di Taylor di grado 2 e punto iniziale (O, O) delle funzioni
f(xq,%;) = €1 cos(x;) g(x1,X7) = cos(xq +X3)
h(xq,x7) = sin(x12 + x%) k(xq,%3) = sin(2x +x, + 5x12 +4X1X5 + 3x%)

DiscussIiONE. Ricordiamo che il polinomio di Taylor del secondo ordine della funzione f, rispetto al punto p,
ha la seguente espressione

1
T2¢(p,x) = f(p) + V(p) - x+ in(p)x - X
nel primo caso abbiamo che
f(xq,%,) = € cos(x;) VE(xq,%7) = (cos(xz)eX, —sin(x,)e*")

HF(X1,X2)=( cos(xz)e  —sin(x;)e™ )

—sin(xp)e*  —cos(x;)eX

e in particolare vale

f(O)=1  Vf(0)=(1,0) HF(0)=( (1) ?1 )

e possiamo scrivere il polinomio

1 1
T,£(0,x) = f(O) + VF(O) - x + in(O)x-x=1+(1,O)-(x1,x2)+§( C1) ?1 )(x1,x2)t~(x1,x2)
“Taxg e 2 (0, —xXg) (%) = o3+ o — 2
= X1 2X1, X2 X1,Xp) = X1 2X1 2X2

ESERcIZIO 6. Determinare gli eventuali punti di massimo e minimo relativo delle seguenti funzioni

f(xq,%2) = xq|xq]%7 g(x1,X7) =xf —4x12x2 +x% h(x,%7) =x12 ln(1+x2)+x12x%

DiscussioNE.  Cerchiamo gli eventuali punti di massimo e minimo relativo tra i punti di non derivabilita della
funzione (se esistono) e tra i punti critici cioé tra i punti che annullano il gradiente.

i. Notiamo subito che ,f esiste in tutto il piano, mentre ,f & definita sicuramente in R? \ {(0,x0,2):%02 € R}.
Studiamo lesistenza della derivata rispetto a x; nei punti della forma (O, xq 7). per i quali si ha

f(h,Xoyz) - f(o,Xovz) _ w -

of(O, = i = li
1f(0.x0,) h-0 h X02, 1M, ™

quindi f & derivabile in tutto il piano R2.
Gli estremi relativi si cercano tra le soluzioni del sistema

{ 81f(X1,X2) = 2|X1|X2 =0

0

e segue che 0.xg 7) € punto critico per ogni xg 7 € R
Byf(x1,%7) = Xq|x¢| = O g ( O,Z) P P gni Xo,2
Non possiamo costruire la matrice hessiana perché in tali punti critici non esiste 9yf. Si pud concludere fa-
cilmente che i punti critici sono punti di sella dato che f(O,xg ;) = O e f(x1,Xg 2) = X1|x|Xp 2 cambia segno a
seconda che x; sia positivo o negativo.

ii. Poiché g € C°°(IR?), possiamo trovare i punti critici risolvendo il sistema

{ 81g(x1,x2) = 4X1 (X1 — 2X2) =0

D81, %a) = *4)(12 +2%, =0 da cui otteniamo che (0,0) é punto critico
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Costruiamo, derivando, la matrice hessiana

s[4 3] 00(3 3 )

e otteniamo che Hg(O, O) & semidefinita positiva (ha un autovalore nullo e uno positivo), quindi il test dell’hes-
siano non ci permette di concludere alcunché. Perd possiamo notare che lungo lasse xq si ha g(x;,0) = xf’ >
0 =g(0,0), mentre sulla parabola x; = x12 siha g(x1,x12) = —ZX;‘ < 0=g(0,0), quindi lorigine non pud essere un
punto di massimo o minimo relativo, per cui deve essere un punto di sella.

iii. La funzione h(xq,x;) & definita nellinsieme aperto A = {(x4,X3) : x; > —1} C RZ ed & C*°(A). Come prima,
per trovare i punti critici, cerchiamo le soluzioni del sistema

9h(xq,%7) = 2% (ln(1 +X3) +x%) =0

62h(X1,X2) = X12(1+1X2 + ZXZ) =0

La prima equazione é verificata se x; = O oppure se ln(1+x2)+x% = 0. Nel primo caso anche la seconda equazione
& verificata per ogni x;, quindi tutti i punti nella forma (0,xg 7) € A, cioé (0,xg ) con xg 2 > —1, sono punti
stazionari, nel secondo caso si ha x; = O da cui segue che x; = O. Scriviamo la matrice hessiana

1
2
2 (x2 +ln(xy + 1)) 2x (ZXZ + - )

1 1
2| 2% + 22— —
X‘(XZ X2+1) X1( (x2+1)2)

che nei punti stazionari vale

Z(X(Z)'2 +In(xg2 +1)) 0 )

Hh(X],Xz) =

Hh(O,XO‘Z) = ( 0 0

Hh(O,xp ) € semidefinita, avendo almeno un autovalore nullo, e il test dell’'hessiano non ci permette di con-
cludere. Studiamo, in unintorno di (O, xg ;). la differenza h(xy,x;) — h(0,xg 7) = h(x1,x;). Osservando che

In(1+s)+s2 <0 se e solo se se (-1,0)
In(1+s)+s2=0 se e solo se s=0
In(1+s)+s2 >0 se e solo se s € (0,+00)

possiamo concludere che

se Xp 7 € (0,+x) allora (0,x0,2) € un punto di minimo relativo
sexp2=0 allora (0,xp,2) € un punto di sella
seXxp € (—1,0) allora (0,xp2) € un punto di massimo relativo

il che termina lesercizio. []

ESeRcIzIO 7. Determinare, se esistono, massimo e minimo in D = {(x1,x2) € R2: x12 + x% < x1} della funzione

f(xq,%7) = x1x% + x12x2 —X1Xy — xfx%

Determinare lestremo superiore e inferiore di f.
DiscussIONE. Linsieme D rappresenta un disco di centro (1/2,0) e raggio 1/2 dato che
D = {(x1.x2) : (x¢ — 1/2)% +x3 < 1/4]

quindi D & un insieme chiuso e limitato, la funzione f & continua in D (essendo un polinomio) e per il teorema
di Weierstrass abbiamo che esistono

max(f) min(f)
D D
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Dobbiamo cercare i punti di massimo e minimo assoluti della funzione tra i punti di non derivabilita (che in
guesto caso non ci sono), tra i punti critici liberi, cioé appartenenti all'interno di D e tra i punti di massimo o
minimo relativo appartenenti alla frontiera di D.

| punti stazionari liberi sono soluzioni del sistema

Onf(xq,x2) =xa(xp —=N)(1—2x1) =0
azf(XI,Xz) = X](X1 — 1)(1 — 2X2) =0

che, con alcuni calcoli, sono i seguenti cinque punti
(1/2,1/2) (1.1 (0,0) (0,1) (1,0)

notiamo che nessuno di questi punti & interno a D, quindi non possiamo tenerne conto.

Studiamo la funzione sulla frontiera 0D = {(x4,x3) : x12 +x% = X¢ } tramite un sistema di coordinate polari. La scelta

pit immediata &, forse, la seguente
oD = {(X1(9).X2(9)) = %(1 +cos(6),sin(9)): 6 € [O,27r]}
che trasforma la funzione nel seguente modo
£(x4(6),x,(6)) = %[1 +cos(6)]sin%(6) + %[1 +cos()]%sin(6) — %[1 +cos(6)]sin(6) — %[1 +cos(6)12 sin2(6)

== %sin3(0) [2 —sin(6)] := h(6)
Poiché
h'(6) = %cos(@)sinz(Q)B —2sin(9)]

abbiamo conque valori critici per la variabile angolare: O, 7/2, 7, 37/2, 2, che corrispondo ai punti (1, 0), (1/2,1/2),
(0,0) e (1/2,—1/2) da cui

11 1 . T 1\ 3
f(1,0)=f(0,0)=0 f(i,i)=g=m[;n(f) f(i,i)—ﬁ—mgx(f)
In alternativa & possibile anche usare la seguente parametrizzazione di 6D
oD = {(p,0) : p(6) = cos(6),6 € [—7/2,7/2]}
e poiché vale f(xq,x3) = —x1%2(1 — x1)(1 — x5) otteniamo
f(x1(6),%2(6)) = f((6) cos(6), p(6) sin(6)) = — cos?(6) - sin(§) cos(6) (1 — cos?(6) ) (1 — sin(6) cos(6))
= sin3(9) cos3(9) [sin(6) cos(8) — 1] = % sin3(29) [% sin(20) — 1] =1 g(0)
Per studiare il problema possiamo ricondurci allo studio della funzione g, per la quale vale
g') = %sinz(Ze) cos(26)[2sin(8) —3]1=0 se e solo se 6=0, i%, ig
In corrispondenza di questi valori (legati ai precedenti) si trova
1 3
g0)=g(=m/2)=0  g(m/4)=—-  gl=m/4)= ¢

e concludiamo nuovamente che

max(f) = f(12,—1/2) = = min(f)=(1/2,172) - — -
D 16 D 16
Volendo utilizzare la tecnica dei moltiplicatori di Lagrange dobbiamo cercare i punti critici liberi della funzione
di Lagrange
L(xy,X7,€) = —X1%p +x12x2 + x1x% - xfxg - C(X12 +X% —X)
quindi studiare il seguente sistema
61|_ =—Xp+ 2X1X2 + X% — 2X1X% — 2CX1 +c=0
OL=—x +x12 +2X1Xy — 2x12x2 —2cx=0
63L=x12+x% -x=0
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che si rivela un po' pit ostico dello studio della derivata delle funzioni precedenti. Osserviamo che se c = O
allora si ottengono i punti critici liberi dei quali abbiamo gia osservato che (0, 0), (1/2,1/2) e (1,0) appartengo-
no al vincolo 8D, se invece ¢ = O possiamo verificare (per sostituzione diretta) che il punto (1/2,—1/2,—7/8)
soluzione del sistema, ma é difficile provare che non ce ne sono altri, come abbiamo ottenuto dallo studio pre-
cedente. Osserviamo che, in questo caso, il metodo di parametrizzazione del vincolo si € rivelato piu efficacie
del metodo dei moltiplicatori di Lagrange...

Per concludere osserviamo che la funzione f & illimitata inferiormente nel piano IR? dato che

f(s,s) = —(1— s)zs2 e quindi (s,8) = —o0

im f
S—>+00
ma é anche illimitata inferiormente in quanto

f(s,1/4) = i(s —10s  dacui lim f(s,1/4) = +00
16 S—>+00

e possiamo affermare che limmagine della funzione deve essere tutto lasse reale. ]

ESERCIzIO 8. Determinare e classificare i punti critici della funzione
f(xq1,%9,%3) = (x12 + x%)(1 — xg) + xg
DiscussIiONE.  Cerchiamo i punti critici di f € C°°(RR3) risolvendo il sistema

&f=2x(1-x3) =0
Byf = 2%y (1 — x%) =0
85f=2x3(1—x —x2) =0
Per la terza equazione deve essere x3 = O oppure x12 + x% =1.Se x3 = O allora x; = x5 = 0. Se x12 + x% =1allora,
dalle prime due equazioni, non potendo essere x; e x5 entrambi nulli, deve essere x3 = 1 oppure x3 = —1. In
conclusione lorigine € un punto critico; inoltre tutti i punti delle circonferenze {x12 + x% =1x3=1}e {x12 + x% =
1,x3 = —1} sono punti critici.
Costruiamo la matrice hessiana

2(1-x3) 0 —4x1x3

Hf(x1,X7,%3) = 0 2(1— x%) —4x;5X3
—4xix3  —4xyx3 21— x12 — x%)

Nellorigine abbiamo

2 0O
Hf(0,0,0)=| O 2 O
0O 0 2

la matrice hessiana € definita positiva (gli elementi sulla diagonale principale sono gli autovalori della matrice),
quindi per il test dell’hessiano (O, 0, 0) & un punto di minimo relativo.
Nei punti della circonferenza {x? +x3 =1,x3 = 1} si ha
0] 0] —4X1
Hf(X1rX2!1) = O O —4X2
—4X1 —4X2 0

Si trova facilmente che Hf(xy,x,,1) ha autovalori —4, O, 4. Pertanto H;(xy,X,,1) & indefinita e, per il test dellhes-
siano, tutti i punti della circonferenza {x12 + x% = 1,x3 = 1} sono punti di sella. Stessa conclusione vale per la
circonferenza {x12 + x% =1,x3=—1} ]

ESERCIZIO 9. Determinare e classificare i punti critici della funzione
1 1
f(X1,Xp,X3) = — + X2 + — + XX
(x1,%2,%3) X X2t T

nellaperto A = {x;,x3 > 0} C R3.
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DIScUSSIONE. La funzione f, nellaperto A é di classe C*°, in particolare i suoi punti critici sono riconoscibili
dallo studio del vettore gradiente

1 1
Vf(X1,X2,X3) = (61f(X1,X2,X3),82f(X1,X2,X3),83f(X1,X2,X3)) =|X3 — X—Z,ZXZ,X1 -

2
1 X3
il sistema VT = O possiede, in A le seguenti soluzioni
1 1 X3 = 1/x12
X3 — =, 2%, X1 — — =(0,0,0) se e solo se 2x7 =0
X X3 xq = 1/x2 = x*
1 37N

cioé il solo punto critico & P = (1,0,1). Proseguiamo con lo studio della matrice hessiana per classificare P

2
anf(X1,X2,X3) = X—3 812f(X1,X2,X3) =0 azzf(X1,X2,X3) =2
1

2
fa3(x1.x2.x3) =0 B33f(x1,x2,%3) = 3 Or3f(xq,x2,x3) =1
3
da cui segue
2 0 1
Hf(P)=| O 2 O p(A) =23 —6X2+12x—6=0
1 0 2

avendo il polinomio caratteristico i segni alternati le sue radici sono tutte positive (per il teorema di Carte-
sio), quindi la matrice H¢(P) € definita positiva e possiamo concludere che il punto critico € un punto di mini-
mo locale. In realta possiamo dire qualcosa di piu: osserviamo che la funzione diventa molto grande quando
largomento tende la bordo di A. Infatti avvicinandosi a OA vale
l|m f(X1,X2,X3) =+00 l|m f(X1,X2,X3) = +00
x1—0* x3—0*

mentre se |(x1,X,X3)| — +00, cioé se x12 + x% + x_% — +00, segue che

lim f(X1,X2,X3) =+00
I(X1,X2,X3)|‘>O+
perché vale lalternativa o esplode x% oppure esplode il prodotto x;x3 o una delle frazioni rimanenti (questo
perché almeno una delle tre variabili deve tendere a +oc). Quanto provato implica che la funzione é coercitiva
in A, e quindi possiede un minimo assoluto che deve essere necessariamente P, visto che non ci sono altri punti
critici. -

ESERCIZIO 10. Determinare massimo e minimo assoluti (se esistono) della funzione

f(xq,%3) = (%1 — x2)2 - x%x%

nel dominio D = {x? + x% <1} CRZ
DISCUSSIONE. La funzione f & di classe C°(R2) e, in particolare, continua in D (insieme chiuso e limitato,

quindi compatto), quindi per il teorema di Weierstrass abbiamo che f possiede massimo e minimo assoluti.
Cerchiamo i suoi punti critici studiando il sistema Vf(xq,x;) = (0, 0)

2(x1 — Xp) — 2x1x% =0
—2(xq — %9) + 2x12x2 =0

XX (%1 —%2) =0

e sommando { 2 — Xy) = 2x12x2

Partendo dalla prima equazione, se x; = O abbiamo che x; = 0, se x; = O segue che x; = O e infine se x; = x;
troviamo 2x13 = 0, insomma in tutti i casi segue che lunico punto critico interno & O = (0,0) in cui l'hessiana

vale
2 -2
Hf(0,0)=( 9 9 )
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tale matrice ha determinante nullo, quindi non & daiuto per determinare la natura del punto critico. In ogni
caso é sufficiente osservare che

f(s,s) = —s* f(s,—s) = 452 ¢4

per poter concludere che (0, 0) & una sella.

A questo punto possaimo studiare il comportamente della funzione sul bordo di D parametrizzando la circon-
ferenza e componendo le equazioni con la funzione, in modo da ottenere la seguente funzione di una variabile
reale

F(t) = f(cos(t), sin(t)) = (cos(t) — sin(t))? — sin%(t) cos?(t)
1

=1—sin(2t) — v sin2(2t)  te[0,27]

e siccome lequazione
F/(t) = —2 cos(2t) — sin(2t) cos(2t) = — cos(2t)[2 +sin(2t)] = O
ha soluzione per t = 7/4,37/4,57/4,77/4, abbiamo identificato 4 punti critici

A=(2/2,V2/2) B=(—v2/2,v2/2)
C=(—v2/2,—V2/2) D =(v2/2,—V2/2)

evale
HA)=FCQ) =+ f(B)=F(D)=_
2 2
da cui segue che max(f) = 7/4 e min(f) = —1/4. [

ESERCIZIO 11. Determinare massimo e minimo assoluti (spiegando perché esistono) della funzione

2,2 2
fxq,x2,X3) = X7 +%5 +x3

x2 x2 x2
nellinsieme E = { g(x1,%3,X3) = 2L.2.3 qlcerd,

2 3 4
DISCUSSIONE.  Cominciamo osservando che l'insieme E & chiuso, perché g & continua in R3 ed E & la contro-
immagine della semiretta chiusa (—oo, 1], inoltre l'insieme e anche limitato, infatti vale

2 2 2 2 2 2
Xy X5 X Xy X5 X
—1+—2+—3<1 C —1+—2+—3<1
2 3 4= (=14 4 4-
cioé E C B(0,2) C R3. Questo significa che E & un insieme compatto ed essendo f continua, per il teorema
di Weierstrass, possiamo essere sicuri dellesistenza di massimo e minimo assoluti, come richiesto dal testo
dell'esercizio.

Sappiamo che gli evenutali punti critici di f interni ad E sono riconoscibili perché hanno vettore gradiente nullo,
quindi partiamo dallo studio delle componenti di Vf

81f(X1,X2,X3) = 2X1 82f(X1,X2,X3) = 2X2 83f(X1,X2,X3) = 2X3

tale vettore & nullo se e soltanto se (x,X,x3) = (0,0,0) = O, e f(O) = f(0, 0, 0) = O quindi tale punto & un punto
di minimo assoluto della funzione, che & composta da una somma di quadrati, quindi sempre non negativa.
Tale punto € lunico punto di minimo assoluto della funzione, mentre (per forza di cose) il massimo assoluto
deve essere assunto sulla frontiera del dominio, cioé sull'insieme

Possiamo descrivere lellissoide nel seguente modo

(x¢(u,v),%2(u,v),x3(u,v)) = (ﬁsin(u) cos(v), v/3sin(u) sin(v), 2cos(u))
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con (u,v) € [0, 7] x [0, 27], "deformando” la descrizione della sfera data dalle coordinate sferiche standard in
R3. Componendo le due applicazioni abbiamo

®(u,v) = f(xq(u,v),x7(u,v),x3(u,v))
= 2sin%(u) cos2(v) + 3sin%(u) sin®(v) + 4 cos(u)
=2 +sinZ(u) sinZ(v) + 2 cos(u)
da cui segue
dy(u,v) = 2sin(u) cos(u) sinZ(v) — 4sin(u) cos(u) = sin(2u)[sin(v) — 2] =0
by (u,v) = 25in2(u)sin(v) cos(v) = sinz(u)sin(Zv) =0
(u,v) € [0,7] x [0, 27]
i punti critici della funzione composta ® sono (O,v) e (m,V), per ogni v € [0,2n], (7/2,0), (7/2,7/2), (7/2,T),
(m/2,3m/2) e (m/2,27), e tornando alle coordinate cartesiane nello spazio otteniamo (rispettivamente) i punti
N=(0,0,2) S=(0,0,-2) A=(~2,0,0)
B=(0,v3,0, C=(-v20,0) D=(0,-v3,0)
sostituendo nella funzione f otteniamo
f(N) =f(S) =4 f(A)=f(C) =2 f(B) =f(D)=3
e possiamo concludere che il massimo e il minimo assoluti della funzione sono i seguenti

max(f) = 4 min(f) = 0
E E

Volendo usare il metodo dei moltiplicatori di Lagrange dobbiamo cercare i punti critici liberi della funzione
lagrangiana

2 2
X

2,58,
374

O1L(xq1,%2,X%3,p) = 21 — pX1 = (2 — p)x; = O
62L(x1,x2,X3,p) = 2X2 — 2pX2/3 = 2(1 — p/3)X2 =0
63L(X1,X2,X3,p) = 2X3 — sz3 = 2(1 — p)X3 =0
B4L(x1,%,X3,p) =x2/2+x3/3+x3/4 —1=0

le prime tre equazioni impongono che o una delle variabili spaziali sia nulla o che p assuma un preciso valore
diverso da O, analizziamo le alternative che ne scaturiscono:

i. se p = 2 allora segue che x; = x3 = O e la quarta equazione impone il valore x; = +-v/2, quindi ritroviamo i punti
AedC,

ii.p = 3 allora segue che x; = x3 = O la quarta equazione ci dice che x; = ++/3, quindi abbiamo i punti B ed D,

iii. p = 4 allora segue che x; = x; = O la quarta equazione ci dice che x3 = %1, quindi abbiamo i puntiN ed S,

iv. se p = 2,3,4 allora x; = x3 = x3 = 0, ma il punto O non soddisfa la quarta equazione (quella del vincolo).

In questo modo abbiamo ritrovato i risultati della precedente analisi, confermando che metodi diversi (applicati
correttamente) portano sempre ai risultati correttil Da un punto di vista geometrico il metodo dei moltiplicatori
di Lagrange mostra che i punti critici vincolati P sono punti in cui i vettori V(P) e Vg(P) sono paralleli, ed
entrambi risultano ortogonali a tutte e due le superfici di livello {g(x,y,z) = O} e {f(x,y,z) — f(P) = O} cioé le due
superfici di livello hanno lo stesso piano tangente, cioé (in ultima analisi) sono tangenti tra di loro... |

2
X
1
L(xq,%2,X3,p) = X12 +x% +x% - p[7 +

cioé le soluzioni del sistema

ESERCIZIO 12. Determinare gli eventuali punti di estremo locale di
f(x1,%7) = (|xq] +xp)e X2

DISCUSSIONE.  Per x; O, cioé per (x3,x3) € R2\ {x; = 0}, la funzione f & derivabile essendo composizione di
funzioni derivabili, quindi possiamo calcolarne il gradiente. Essendo

f(X1,X2) = {

(xq +xp)e™X1%2 sex; >0
(—xp+xz)e X2 sex <O
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abbiamo che
e X2 (1 — x1xy —x%,1 — X1Xp —x12) sex; >0
e X2 (—1+xyxy —x%,1 —x1x2+x12) sex; <0

Vf(X1 , X2) = {

Quindi il gradiente si annulla nei punti che risolvono uno dei seguenti sistemi:

x>0 x1 <0
1—xxg —x2=0 oppure —lexxg —x2=0

2
- 2 _
T—xx3—x7 =0 T—xx+x7 =0

Il primo sistema ha come unica soluzione il punto (1/v/2,1/v/2), mentre il secondo non ammette soluzioni,
quindi possiamo limitarci allora a calcoare la matrice Hessiana di f solo per x; > O:

Hf (e, 3) = e X2 (—2x, +x1x% +x%) e %2 (—2xy — 2x; +x12x2 +x1x%)
PR\ emx(—2xy — 2x2+x12x2 +x1x%) e X2 (—2x +x12x2+x13)
da cui
1 1 _§e—1/2 _§e—1/2
Hf{ —, — | = det|Hf(1/v/2,1/vV2)|= —3/2e < O
(ﬁ ﬁ) _ge—vz _ze—vz [ )

percid (1/v/2,1/v/2) & un punto di sella.
Resta da verificare se f ammette eventuali punti di estremo locale sullasse x,, per fare cio definiamo la restri-
zione di f allasse x:

g(x3) = f(0,x3) = x5

ma questa & una funzione crescente, quindi f non ammette né massimi né minimi locali. ]

ESERCIZIO 13. Determinare gli eventuali punti di estremo locale e globale della funzione
f(xq,%7) = 4x% - 4x12x% - x‘z1r

DiscussiONE.  Osserviamo innanzitutto che la funzione, essendo un polinomio, € ovunque derivabile, quindi
i punti di estremo locale e globale sono punti dove il gradiente si annulla.
Quindi essendo Vf(xq,x3) = (—8x1x%, 8x; — 8x12x2 - 4x§), abbiamo che i punti critici di f sono i seguenti:

(0,V2) (0,—V2) e (5,0) perogniseRR

Calcoliamo ora la matrice Hessiana di f

—8x2 —16x1x
_ 2 142
Hfba. x2) ( —16x1x3 8—8x12—12x% )
percio
-16 0
Hf(o,\fz)=Hf(o,—\/§)=( o 16 )

e dunque (0,v/2) e (0, —/2) sono punti di massimo relativo per f. Invece
0 0
Hs(s.0) =( 0 8- 8s2 )

quindi per tutti i valori di s dobbiamo fare unanalisi ulteriore.
In questo caso studiando globalmente il segno della funzione vediamo facilmente che, essendo
f(xq,%7) = x%(4 - 4x12 - x%)

fsiannulla se x; = O o se (x,x,) appartiene allellisse {4x12 +x% = 4} (curve in blu nella figura), mentre f € positiva
allinterno dellellisse pery = O (regione in arancione nella figura) e negativa altrove.
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Dallo studio del segno possiamo quindi concludere direttamente che i punti (s, 0) sono di massimo locale se
Is| > 1, di minimo locale se |s| < 1e disellase |s|=1.

Determiniamo ora estemo inferiore e superiore di f in RR2 e vediamo se sono assunti, cioé se si tratta di minimo
e/o massimo globale.

Abbiamo che

fx1xp) =33(4 — 4x2 —x3) <x3(4 — (x} +x3)) — —c0  per [|(x1,xp)|l — *+o0

quindi inf2 (f) = —oco e poiché la funzione —f & coercitiva (oltre che continua) ammette massimo assoluto per
il teorema di Weierstrass per funzioni coercitive. Quindi f possiede massimo assoluto e il massimo assoluto
(essendo f € C'(R?)) & assunto in un punto critico di f. Confrontando il valore di f nei punti critici (f(0,/2) =
f(0,—v/2) = 4 > 0 = (s, 0)) otteniamo che il massimo globale (o massimo assoluto) € 4. ]

ESERCIZIO 14. Determinare inf e sup della funzione
f(x1,%7) = [x12 —(xp + 1)2]x2e_"2

nellinsieme D = {(x1,x;) € R2: X3 > 0, |x1| < x5 +1} e specificare se sono minimo e massimo di f in D.

DISCUSSIONE. La funzione f & di classe C* quindi possiamo calcolare

Vi(xq,Xz) = (2x1x2e_X2,e_X2 (x12(1 —Xp)+ X';’ — x% — 3%y — 1))

da cui abbiamo che i punti critici di f sono le soluzioni del sistema

X1X2 = O
x12(1—x2)+x-;’—x%—3x2—1=0
Quindi i punti critici di f sono
P(0O,1+v2)  Q(0,1-v2) R(O,—1)  S(1,0)  T(-1,0)

ma solo il primo € interno a D, mentre T,S € 0D, come suggerito dalla figura che segue

oP X =% —1

T S

Inoltre si vede facilmente che sul bordo di D, poiché oy=0 o x12 = (xp + 1)2, f & identicamente nulla.

D’altronde osservando che in D x12 <(xp+ 1)2 si vede facilmente che f(x4,x7) < Oin D, quindi O & un massimo
assoluto difin D (e quindi anche supp(f)). Analizziamo il comportamento di f per (x,x;) € D quando |(x,y)] —



+00
im  [fxy)l=_ lm [ = (xg+ 1) P)xpe 7
Dox:||x||—+oc0 Dox:||x|| —+c0
= lim ((xp + )2 - x12)x2e_"2 < lim (xp+ 1)2x2e_"2 =0
Dox:||x|| —+c0 Xg —>+00

Abbiamo quindi dimostrato che
lim f(x1,%7) =0

Dox:||x|| —+oc0
Per definizione di limite, dalla precedente relazione segue che, fissato m = f(0, —1+1/2) = 2(1— v/2)e'~V2 < 0,
esiste Rm > O tale che

f(xq,%2) > m per ogni (x,y) € D tale che ||x|| > Rm

cioé per ogni (x1,X;) € D\ B(O,Rm).

Daltronde, essendo B(O,Rm) chiuso e D chiuso (in quanto intersezione di contoimmagini, tramite funzioni
continue, di chiusi), anche la loro intersezione B(O, Ry) N D € un chiuso quindi per il teorema di Weierstrass la
funzione continua f ammette minimo assoluto in B(O,Rm) N D e per definizione

min f(X1,X2) <m<O
B(O,Rm)ND

Ma allora, poiché f = O su 3D, il minimo di f su B(O,Rm) N D € assunto in un punto interno di D e quindi, visto
che f & derivabile, il gradiente di f si annulla nel/nei punti di minimo assoluto. Quindi (O, —1++/2) & un punto di

minimo assoluto di f in B(O,Rm) N D. Allora (O, —1+v/2) = m & un minimo assoluto di f in D (e quindi anche
infp(f)), visto che

m < f(x1,%x3)  per ogni (x1,x;) € B(O,Rm) ND

m < f(xq,%3)  per ogni (x1,%;) € 5\ B(O,Rm)

per quanto discusso precedentemente. n




