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ESErCIzIO 17. Siaf: (RZ,|-||3) — (R, || - ||,) continua, ﬂ
allora £~'([0,1]) & compatto in (R, || - ||5).
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ESErcIZIO 20. Siaf: (R3] -[l3) — (R, | - |l2) continua, %\
allora f((0,1)3) é aperto in (R, || - ||).
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ESERCIZIO 4. Date u,w € C(R3) e F,H € C3(R3,R3), si verifichino le seguenti identita
V- (uH)(X) = Vu(x) - H(X) + u(x)(V - H(x))
V A (uH)(x) = Vu(x) A H(x) +u(x)(V A H(x))
V- (FAH)(X) =V AF(x) - H(x) — F(x) - V A H(x)
V- Vw(x) = Aw(x)
VAVw(x)=0
V-V AH(K)=0
V AV AH(KX) = VIV - H(x)] — AH(x)

prestando attenzione alle dimensioni degli oggetti coinvolti. Poi si riscrivano le identita usando le notazioni div[F] :=
V-Ferot[F]:=V AF.
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ESERCIZIO 2. Date la funzione
8(X1,X2,X3) = X1X7 +XaX3 +X1X3 conx e R3

i. si spieghi dove perché la funzione é differenziabile,

ii. si calcoli il gradiente e la matrice hessiana della funzione,

iii. si scriva lequazione del piano tangente al grafico nel punto (1,1,1,g(1,1,1), la giacitura del piano tangente e un
vettore normale al grafico.
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ESERrcIzIO 1. Date le seguenti leggi

f1(xq,%2,X3) = x12 — 2% +x% +In(1 +x§) fp(x1,%2,%3) = (x12 +x%)2 — X1X2 +x§

f3(x1,X9,X3) LI X1X9X:
= — 4+ —+—+
31, X2, X3 X Xz X3 1742243

i. si spieghi dove ogni espressione ha senso e dove é differenziabile,
ii. si calcoli il gradiente e la matrice hessiana della funzione,
iii. si scriva lequazione del piano tangente al grafico nel punto (1,1,1,f,(1,1,1)).
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~ Eserizio 27. Lafunzione f(x) = ||, é differenziabile in R"
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ESercizio 19. Siaf: (R3, |- [l;) — (R, |- ||2) continua, 4
allora f([0,113) & compattoin (R, ]| - ||2).
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ESERCIZIO 9. {O < x; < 1,x; = x3 = O} sottoinsieme di R3, || - ||,) & chiuso.
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ESERCIZIO 22. La funzioneh:RZ —s RZ, con h(xy,x;) = (x1,x%), é continua
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ESERCIZIO 6. Sia {p| = (X1 X2 k. X3 k) } una successione di Cauchy in R3,
allora la successione {(xx, X )} € convergente in R2.
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ESERCIZIO 11. Linsieme {x? +x3 +x2 <1} C (ﬂ@,” -||3) & chiuso.
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ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : R3 — Rdi legge f(x1,x2,%3) = x12 - x% +¢(x3), dove ¢ &
una funzione di classe C2(R):

i. si spieghi perché tale funzione é differenziabile in tutto lo spazio,

ii. si dica per quali ¢ la funzione f & armonica in R3,

iii. tra le precedenti si identifichino le funzioni ¢ tali che f(O) = O.
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ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : A— R definita come segue

f(XI.X2)=%ln(X12+X%) A={xelR2:xv=O]

i. si spieghi perché tale funzione é differenziabile in tutto il suo dominio,

ii..si scriva lequazione del piano tangente al grafico della funzione in (p,f(p)) € Ax R,
iii. si verifichi che la funzione f & armonica in A.
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TeorREMA 2.25 (test di Sylvester). Indichiamo con H® il minore principale di ordine k < n
estratto da H¢(p), composto dalle prime k righe e k colonne. Allora
i. Hy(p) ¢ definita positiva se e solo se det H® > 0, k = 1,...,n,
ii. Hy(p) e definita negativa se e solo se (=1)*detH® >0, k=1,...,n
iii. Hy(p) e indefinita se ha un minore principale di ordine pari con determinante ne-
gativo oppure ha due diversi minori principali di ordine dispari che sono discordi.




